Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education

Main Article Content

Frank Fischer
Ingo Kollar
Stefan Ufer
Beate Sodian
Heinrich Hussmann
Reinhard Pekrun
Birgit Neuhaus
Birgit Dorner
Sabine Pankofer
Martin Fischer
Jan-Willem Strijbos
Moritz Heene
Julia Eberle

Abstract

Scientific reasoning and scientific argumentation are highly valued outcomes of K-12 and higher education. In this article, we first review main topics and key findings of three different strands of research, namely research on the development of scientific reasoning, research on scientific argumentation, and research on approaches to support scientific reasoning and argumentation. Building on these findings, we outline current research deficits and address five aspects that exemplify where and how research on scientific reasoning and ar-gumentation needs to be expanded. In particular, we suggest to ground future research in a conceptual frame-work with three epistemic modes (advancing theory building about natural and social phenomena, artefact-centred scientific reasoning, and science-based reasoning in practice) and eight epistemic activities (problem identification, questioning, hypothesis generation, construction and redesign of artefacts, evidence generation, evidence evaluation, drawing conclusions as well as communicating and scrutinizing scientific reasoning and its results). We further propose addressing the domain specificities and domain generalities of scientific reasoning and approaches to its facilitation as well as investigating the role of epistemic emotions in scientific reasoning, the social context of SRA, and the influence of digital technologies on scientific reasoning and argumentation.

Article Details

How to Cite
Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., Neuhaus, B., Dorner, B., Pankofer, S., Fischer, M., Strijbos, J.-W., Heene, M., & Eberle, J. (2014). Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education. Frontline Learning Research, 2(3), 28-45. https://doi.org/10.14786/flr.v2i2.96
Section
Articles
Author Biography

Frank Fischer, Ludwig Maximilians University

Frank Fischer earned his doctorate in Psychology in 1997 from the University of Munich. He was an assistant professor for Applied Cognitive Psychology and Media Psychology at the University of Tuebingen and held a professorship for Instructional Psychology at the University of Erfurt (2002-2003). From 2004-2006 he was an associate professor for Research on Learning and Instruction at the University of Tuebingen and at the Knowledge Media Research Center. Since October 2006, he has been a full professor of Educational Science and Educational Psychology at the University of Munich. He served as Dean of Faculty (2011-2013). Since 2009 and has been the Director of the Munich Center of the Learning Sciences, an interdisciplinary collaboration of more than 30 research groups focussing on advancing research on learning „from cortex to community“. He also served as the President of the International Society of the Learning Sciences (2012-2013) and is member of the Executive Committee of this society in the role of the past-president. His research focuses on scripting, scaffolding and guidance for collaborative learning, as well as inquiry and simulation-based learning. An overarching question is how technology-enhanced learning environments can advance knowledge and skills of collaborative learners in school, higher and continuing education. Two of his recent projects address questions of collaborative learning in video-supported environments in the context of teacher professional development. He has published more than 100 articles and chapters, and co-edited 6 books and special issues of scientific journals.

References

Ainley, M. (2006). Connecting with learning: Motivation, affect and cognition in interest processes. Educational Psychology Review, 18(4), 391-405. doi: 10.1007/s10648-006-9033-0
Bromme, R., Jucks, R., & Runde, A. (2005). Barriers and biases in computer-mediated expert-layperson-communication. In R. Bromme, F.W. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication (pp. 89-118). New York: Springer.
Brun, G., Doğuoğlu, U., & Kuenzle, D. (Eds.). (2008). Epistemology and emotions. Aldershot, UK: Ashgate.
Bullock, M., Sodian, B., & Koerber, S. (2009). Doing experiments and understanding science. Development of scientific reasoning from childhood to adulthood. In W. Schneider, & M. Bullock (Eds.). Human development from early childhood to early adulthood: Findings from a 20 year longitudinal study (pp. 173-198). New York, NJ: Psychology Press.
Bullock, M., & Ziegler, A. (1999). Scientific reasoning: Developmental and individual differences. In F. E. Weinert, & W. Schneider (Eds.). Individual development from 3 to 12: Findings from the Munich Longitudinal Study (pp. 38-54). Cambridge: Cambridge University Press.
Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235-251. doi: 10.1207/s15326985ep2803_4
Cavagnetto, A. R. (2010). Argument to foster scientific literacy. A review of argument interventions in K-12 science contexts. Review of Educational Research, 80(3), 336-371. doi: 10.3102/0034654310376953
Charlin, B., Boshuizen, H. P., Custers, E. J., & Feltovich, P. J. (2007). Scripts and clinical reasoning. Medical Education, 41(12), 1178-1184. doi: 10.1111/j.1365-2923.2007.02924.x
Chi, M. T. (2009). Active, constructive, interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73-105. doi: 10.1111/j.1756-8765.2008.01005.x
Chinn, C., & Clark, D. B. (2013). Learning through collaborative argumentation. In C. E. Hmelo-Silver, C. A. Chinn, C. K. K. Chan, & A. M. O'Donnell (Eds.), International handbook of collaborative learning (pp. 314-332). New York: Routledge.
Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218. doi: 10.1002/sce.10001
Chinnappan, M., Ekanayake, M. B., & Brown, C. (2011). Specific and general knowledge in geometric proof development. SAARC Journal of Educational Research, 8, 1-28.
Chinnappan, M., & Lawson, M. J. (1996). The effects of training in the use of executive strategies in geometry problem solving. Learning and Instruction, 6(1), 1-17. doi: 10.1016/S0959-4752(96)80001-6
Cho, K., Schunn, C. D., & Wilson, R. W. (2006). Validity and reliability of scaffolded peer assessment of writing from instructor and student perspectives. Journal of Educational Psychology, 98(4), 891-901. doi: 10.1037/0022-0663.98.4.891
Clark, D. B., Sampson, V., Weinberger, A., & Erkens, G. (2007). Analytic frameworks for assessing dialogic argumentation in online learning environments. Educational Psychology Review, 19(3), 343-374. doi: 10.1007/s10648-007-9050-7
Clore, G. L., & Huntsinger, J. R. (2009). How the object of affect guides its impact. Emotion Review, 1, 39-54. doi: 10.1177/1754073908097185
Dochy, F., Segers, M., van den Bossche, O., & Gijbels, D., (2003). Effects of problem-based learning: a meta-analysis. Learning and Instruction, 13(5), 533-568. doi: 10.3102/00346543075001027
Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg, & J. Davidson (Eds.), Mechanisms of insight (pp. 365-395). Cambridge MA: MIT press.
Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268-291. doi: 10.3102/0091732X07309371
Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915-933. doi: 10.1002/sce.20012
Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae, 8, 128-140.
Fiedler, K., & Beier, S. (2014). Affect and cognitive processes. In R. Pekrun, & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education (pp. 36-55). New York: Taylor & Francis.
Fischer, F., Kollar, I., Stegmann, K., & Wecker, C. (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational Psychologist, 48(1), 56-66. doi: 10.1080/00461520.2012.748005
Fischer, F., & Mandl, H. (2005). Knowledge convergence in computer-supported collaborative learning: The role of external representation tools. Journal of the Learning Sciences, 14(3), 405-441. doi: 10.1207/s15327809jls1403_3
Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching. A meta-analysis. Review of Educational Research, 82(3), 300-329. doi: 10.3102/0034654312457206
Galbraith, P. L., Henn, H.-W., & Niss, N. (2007). Modelling and applications in mathematics education. New York, NJ: Springer.
Gijlers, H., & de Jong, T. (2009). Sharing and confronting propositions in collaborative inquiry learning. Cognition and Instruction, 27(3), 239-268. doi: 10.1080/07370000903014352
Herrenkohl, L. R. & Cornelius, L. (2013). Investigating Elementary Students' Scientific and Historical Argumentation. Journal of the Learning Sciences, 22(3), 413-461. doi: 10.1080/10508406.2013.799475
Hierholzer, C., & Wiener, C. (1873). Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen, 6(1), 30-32. doi: 10.1007/BF01442866
Hollingshead, A. B., Gupta, N., Yoon, K., & Brandon, D. P. (2011). Transactive memory theory and teams: Past, present, and future. In E. Salas, S. M. Fiore, & M. P. Letzky (Eds.), Theories of Team Cognition: Cross-disciplinary Perspectives (pp. 421-455). New York: Routledge.
Inhelder, B. & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structure. London: Routledge & Kegan Pau.
Janssen, J., & Bodemer, D. (2013). Coordinated computer-supported collaborative learning: Awareness and awareness tools. Educational Psychologist, 48(1), 40-55. doi: 10.1080/00461520.2012.749153
Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing. Science Education, 86(3), 314-342. doi: 10.1002/sce.10024
Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive science, 12(1), 1-48. doi: 10.1207/s15516709cog1201_1
Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children’s scientific thinking. Science, 333(6045), 971-975. doi: 10.1126/science.1204528
Koerber, S., & Sodian, B. (2009). Reasoning from graphs in young children. Preschoolers’ ability to interpret and evaluate covariation data from graphs. Journal of Psychology of Science & Technology, 2(2), 73-86. doi: 10.1891/1939-7054.2.2.73
Koerber, S., Sodian, B., Kropf, N., Mayer, D., & Schwippert, K. (2011). Die Entwicklung des wissenschaftlichen Denkens im Grundschulalter. Theorieverständnis, Experimentierstrategien, Dateninterpretation. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 43(1), 16-21. doi: 10.1026/0049-8637/a000027
Koerber, S., Sodian, B., Thoermer, C., & Nett, U. (2005). Scientific reasoning in young children: Preschoolers' ability to evaluate covariation evidence. Swiss Journal of Psychology 64(3), 141-152. doi: 10.1024/1421-0185.64.3.141
Kollar, I., Fischer, F., & Slotta, J. D (2007). Internal and external scripts in computer-supported collaborative inquiry learning. Learning & Instruction, 17(6), 708-721. doi: 10.1016/j.learninstruc.2007.09.021
Kolodner, J. L. (2007). The roles of scripts in promoting collaborative discourse in learning by design. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting computer-supported collaborative learning - cognitive, computational and educational approaches (pp. 237-262). New York: Springer.
Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, MA: MIT Press/Bradford Books.
Koslowski, B. (2012). Scientific reasoning: Explanation, confirmation bias, and scientific practice. In G. J. Feist, & M. E. Gorman (Eds.), Handbook of the psychology of science (pp. 151-192). New York, NJ: Springer.
Kruglanski, A. W., & Gigerenzer, G. (2011). Intuitive and deliberate judgments are based on common principles. Psychological Review, 118(1), 97-109. doi: 10.1037/a0020762
Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.
Kuhn, D., & Franklin, S. (2006). The second decade: What develops (and how)? In D. Kuhn, & R. Siegler (Eds.), Handbook of child psychology: Vol. 2. Cognition, perception, and language (pp. 517-550). Hoboken, NJ: Wiley.
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.
Mäkitalo-Siegl, K., Kohnle, C., & Fischer, F. (2011). Computer-supported collaborative inquiry learning and classroom scripts: Effects on help-seeking processes and learning outcomes. Learning and Instruction, 21(2), 257-266. doi: 10.1016/j.learninstruc.2010.07.001
Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: Assessment and relations with cognitive abilities. Learning and Instruction, 29, 43-55. doi: 10.1016/j.learninstruc.2013.07.005
McNeill, K. L. (2011). Elementary students' views of explanation, argumentation, and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793-823. doi: 10.1002/tea.20430
McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153-191. doi: 10.1207/s15327809jls1502_1
Miyake, N. (1986). Constructive interaction and the iterative process of understanding. Cognitive Science, 10, 151-177. doi: 10.1207/s15516709cog1002_2
Mohammed, S., & Dumville, B. C. (2001). Team mental models in a team knowledge framework: Expanding theory and measurement across disciplinary boundaries. Journal of Organizational Behavior, 22(2), 89-106. doi: 10.1002/job.86
Moors, A., Ellsworth, P. C., Scherer, K. R., & Frijda, N. H. (2013). Appraisal theories of emotion: State of the art and future development. Emotion Review, 5(2), 119-124. doi: 10.1177/1754073912468165
Morton, A. (2010). Epistemic emotions. In P. Goldie (Ed.), The Oxford handbook of philosophy of emotion (pp. 385–399). Oxford, United Kingdom: Oxford University Press.
Nicol, D., Thomson, A., & Breslin, C. (2014). Rethinking feedback practices in higher education: a peer review perspective. Assessment & Evaluation in Higher Education, 39(1), 102-122. doi: 10.1080/02602938.2013.795518
Noroozi, O., Weinberger, A., Biemans, H. J., Mulder, M., & Chizari, M. (2012). Argumentation-Based Computer Supported Collaborative Learning (ABCSCL): A synthesis of 15 years of research. Educational Research Review, 7(2), 79-106. doi: 10.1016/j.edurev.2011.11.006
Nückles, M., & Stürz, A. (2006), The assessment tool: A method to support asynchronous communication between computer experts and laypersons. Computers in Human Behavior, 22(5), 917-940. doi: 10.1016/j.chb.2004.03.021
Nussbaum, M. (2011). Argumentation, dialogue theory, and probability modeling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46(2), 84-106. doi: 10.1080/00461520.2011.558816
Okada, T., & Simon, H. A. (1997). Collaborative discovery in a scientific domain. Cognitive Science, 21(2), 109-146. doi: 10.1207/s15516709cog2102_1
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463-466. doi: 10.1126/science.1183944
Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1(2), 117-175. doi: 10.1207/s1532690xci0102_1
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315-341. doi: 10.1007/s10648-006-9029-9
Pekrun, R., Hall, N. C., Goetz, T., & Perry, R. P. (in press). Boredom and academic achievement: Testing a model of reciprocal causation. Journal of Educational Psychology.
Pekrun, R., & Stephens, E. J. (2011). Academic emotions. In K. R. Harris, S. Graham, T. Urdan, S. Graham, J. M. Royer, & M. Zeidner (Eds.), APA educational psychology handbook (Vol. 2, pp. 3-31). Washington, DC: American Psychological Association.
Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., & Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337-386. doi: 10.1207/s15327809jls1303_4
Roschelle, J., & Teasley, S. D. (1997). The construction of shared knowledge in collaborative problem solving. In C. O'Malley (Ed.), Computer supported collaborative learning (Vol. 128, pp. 69-97). Berlin: Springer.
Rosé, C. P., Wang, Y. C., Arguello, J., Stegmann, K., Weinberger, A., & Fischer, F. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning, 3, 237-271. doi: 10.1007/s11412-007-9034-0
Sadler, T. D. (2004). Informal reasoning regarding socio-scientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536. doi: 10.1002/tea.20009
Salomon, G., & Perkins, D. N. (1998). Individual and social aspects of learning. Review of Research in Education, 23, 1-24. doi:10.3102/0091732X023001001
Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448-484. doi: 10.1002/sce.20306
Scardamalia, M., & Bereiter, C. (2006). Knowledge Building: Theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97-119). New York: University Press.
Schunn, C. D., & Anderson, J. R. (1999). The generality/specificity of expertise in scientific reasoning. Cognitive Science, 23(3), 337-370. doi: 10.1016/S0364-0213(99)00006-3
Shafto, P., Kemp, C., Bonawitz, E. B., Coley, J. D., & Tenenbaum, J. B. (2008). Inductive reasoning about causally transmitted properties. Cognition, 109(2), 175-192. doi: 10.1016/j.cognition.2008.07.006
Shavelson, R. J., & Towne, L. (Eds.). (2002). Scientific research in education. Washington, DC: National Academic Press.
Shuman, V., & Scherer, K. R. (2014). Concepts and structures of emotions. In R. Pekrun, & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education (pp. 13-35). New York: Taylor & Francis.
Sinatra, G. M., Broughton, S. H., & Lombardi, D. (2014). Emotions in science education. In R. Pekrun, & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education (pp. 415-436). New York: Taylor & Francis.
Sodian, B., & Bullock, M. (2008). Scientific reasoning – where are we now? Cognitive Development, 23(4), 431-434. doi: 10.1016/j.cogdev.2008.09.003
Sodian, B., Jonen, A., Thoermer, C. & Kircher, E. (2006). Die Natur der Naturwissenschaften verstehen: Implementierung wissenschaftstheoretischen Unterrichts in der Grundschule. In M. Prenzel, & L. Allolio-Näcke (Eds.), Untersuchungen zur Bildungsqualität von Schule. Abschlussbericht des DFG-Schwerpunktprogramms (S. 147-160). Münster: Waxmann.
Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children's differentiation of hypothetical beliefs from evidence. Child Development, 62, 753 766. doi: 10.1111/j.1467-8624.1991.tb01567.x
Sparrow, B., Liu, J., & Wegner, D. (2011). Google effects on memory: Cognitive consequences of having information at our fingertips. Science, 333(6043), 776-778. doi: 10.1126/science.1207745
Stegmann, K., Wecker, C., Weinberger, A., & Fischer, F. (2012). Collaborative argumentation and cognitive elaboration in a computer-supported collaborative learning environment. Instructional Science, 40(2), 297-323. doi: 10.1007/s11251-011-9174-5
Stokes, D. E. (1997). Pasteur’s quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution Press.
Streng, S., Stegmann, K., Boring, S., Böhm, S., Fischer, F., & Hussmann, H. (2010). Measuring effects of private and shared displays in small-group knowledge sharing processes. In E. Hvannberg, M. K. Lárusdóttir, A. Blandford, & J. Gulliksen (Eds.), Proceedings of the 6th Nordic Conference on Human-Computer Interaction (NordiCHI 2010) (pp. 789-792). New York, NY: ACM.
Strijbos, J. W., & Sluijsmans, D. (2010). Unravelling peer assessment: Methodological, functional, and conceptual developments. Learning and Instruction, 20(4), 265-269. doi: 10.1016/j.learninstruc.2009.08.002
Teasley, S., Fischer, F., Dillenbourg, P., Kapur, M., Chi, M., Weinberger, A., & Stegmann, K. (2008). Cognitive convergence in collaborative learning. In Proceedings of ICLS 2008 (Vol. 3, pp. 360–367). International Society of the Learning Sciences.
Trilling, B., & Fadel, C. (2009). Twenty-first century skills. Learning for life in out times. San Francisco: Jossey-Bass.
van Joolingen, W. R., & de Jong, T. (1993). Exploring a domain through a computer simulation: traversing variable and relation space with the help of a hypothesis scratchpad. In D. Towne, T. de Jong, & H. Spada (Eds.), Simulation-based experiential learning (pp. 191-206). Berlin: Springer.
van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E. R., & Manlove, S. (2005). Co-Lab: research and development of an online learning environment for
collaborative scientific discovery learning. Computers in Human Behavior, 21, 671-688. doi: 10.1016/j.chb.2004.10.039
Wegerif, R. (2007). Dialogic education and technology: Expanding the space of learning. New York: Springer.
Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind. In B. Mullen & G. R. Goethals (eds.), Theories of group behavior (pp. 185-208). New York: Springer.
Weinberger, A., Stegmann, K., & Fischer, F. (2010). Learning to argue online: Scripted groups surpass individuals (unscripted groups do not). Computers in Human Behavior, 26(4), 506-515. doi: 10.1016/j.chb.2009.08.007
Weiner, B. (2007). Examining emotional diversity in the classroom: An attribution theorist considers the moral emotions. In P. A. Schutz, & R. Pekrun (Eds.), Emotion in education (pp. 75-88). San Diego, CA: Academic Press.
White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modelling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118. doi: 10.1207/s1532690xci1601_2
Wiethoff, A., Schneider, H., Rohs, M., Butz, A., & Greenberg, S. (2012). Sketch-a-TUI: low cost prototyping of tangible interactions using cardboard and conductive ink. In S. N. Spencer (ed.), Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction (pp. 309-312). New York: ACM.
Wu, S., & Keysar, B. (2007). The effect of information overlap on communication effectiveness. Cognitive Science, 31(1), 169-181. doi: 10.1080/03640210709336989
Zazkis, R., & Chernoff, E. J. (2008). What makes a counterexample exemplary? Educational Studies in Mathematics, 68, 195-208. doi: 10.1007/s10649-007-9110-4
Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99-149. doi: 10.1006/drev.1999.0497
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27, 172-223. doi: 10.1016/j.dr.2006.12.001