Combining physiological data and subjective measurements to investigate cognitive load during complex learning

Main Article Content

Charlotte Larmuseau
Pieter Vanneste
Jan Cornelis
Piet Desmet
Fien Depaepe


Cognitive load theory is one of the most influential theoretical explanations of cognitive processing during learning. Despite its success, attempts to assess cognitive load during learning have proven difficult. Therefore, in the current study, students’ self-reported cognitive load after the problem- solving process has been combined with measures of physiological data, namely, electrodermal activity (EDA) and skin temperature (ST) during the problem-solving process. Data was collected from 15 students during a high and low complex task about learning and teaching geometry. This study first investigated the differences between subjective and physiological data during the problem- solving process of a high and low complex task. Additionally, correlations between subjective and physiological data were examined. Finally, learning behavior that is retrieved from log-data, was related with EDA. Results reveal that the manipulation of task complexity was not reflected by physiological data. Nevertheless, when investigating individual differences, EDA seems to be related to mental effort.

Article Details

How to Cite
Larmuseau, C., Vanneste, P., Cornelis, J., Desmet, P., & Depaepe, F. (2019). Combining physiological data and subjective measurements to investigate cognitive load during complex learning. Frontline Learning Research, 7(2), 57–74.


Antonenko, P., Paas, F., Grabner, R., & van Gog, T. (2010). Using Electroencephalography to Measure Cognitive Load. Educational Psychology Review, 22. 425-438. doi:10.1007/s10648-010-9130-y

Antonietti, A., Colombo, B., & Di Nuzzo, C. (2015). Metacognition in self-regulated multimedia learning: integrating behavioural, psychophysiological and introspective measures. Learning, Media and Technology, 40. 187-209. doi:10.1080/17439884.2014.933112

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59. 390-412. doi:10.1016/j.jml.2007.12.005

Boekaerts, M. (2017). Cognitive load and self-regulation: Attempts to build a bridge. Learning and Instruction, 51, 90–97. doi:10.1016/j.learninstruc.2017.07.001

Braithwaite, J., Watson, D., Jones, R., & Row, M. (2013). A Guide for Analysing Electrodermal Activity (EDA) & Skin Conductance Responses (SCRs) for Psychological Experiments. Psychophysiology, 49, 1017–1034. doi:10.1017.S0142716405050034

Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct Measurement of Cognitive Load in Multimedia Learning. Educational Psychologist, 38. 53-61. doi : 10.1207/S15326985EP3801_7

Chang, C. C., & Yang, F. Y. (2010). Exploring the cognitive loads of high-school students as they learn concepts in web-based environments. Computers and Education, 55. 673-680. doi: 10.1016/j.compedu.2010.03.001

Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S. Z., Khawaji, A., & Conway, D. (2016). Robust Multimodal Cognitive Load Measurement. Human-Computer Interaction Series. doi: 10.1007%2F978-3-319-31700-7

Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Computers in Human Behavior, 25. 315-324. doi: 10.1016/j.chb.2008.12.020

De Bruin, A. B. H., & van Merriënboer, J. J. G. (2017). Bridging cognitive load and self-regulated learning research: a complementary approach to contemporary issues in educational research. Learning and Instruction, 51. 1-9. doi: 10.1016/j.learninstruc.2017.06.001

DeLeeuw, K. E., & Mayer, R. E. (2008). A Comparison of Three Measures of Cognitive Load: Evidence for Separable Measures of Intrinsic, Extraneous, and Germane Load. Journal of Educational Psychology, 100, 223-234. doi: 10.1037/0022-0663.100.1.223

Glogger-Frey, I., Gaus, K., & Renkl, A. (2017). Learning from direct instruction: Best prepared by several self-regulated or guided invention activities? Learning and Instruction, 51. 25-35. doi:10.1016/j.learninstruc.2016.11.002

Hoogerheide, V., Renkl, A., Fiorella, L., Paas, F., & van Gog, T. (2018). Enhancing Example-Based Learning: Teaching on Video Increases Arousal and Improves Problem-Solving Performance. Journal of Educational Psychology, 211. 45-56. doi: 10.1037/edu0000272

Haapalainen, E., Kim, S., Forlizzi, J. F., & Dey, A. K. (2010). Psycho-Physiological Measures for Assessing Cognitive Load. Proceedings of the 12th ACM International Conference on Ubiquitous Computing. doi: 10.1145/1864349.1864395

Herborn, K. A., Graves, J. L., Jerem, P., Evans, N. P., Nager, R., McCafferty, D. J., & McKeegan, D. E. F. (2015). Skin temperature reveals the intensity of acute stress. Physiology and Behavior, 1. 225-230. doi: 10.1016/j.physbeh.2015.09.032

Ikehara, C., & Crosby, M. (2005). Assessing Cognitive Load with Physiological Sensors. Proceedings of the 38th Hawaii International Conference on System Sciences. doi: 10.1109/HICSS.2005.103

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48. 63-85. doi: 10.1007/BF02300500

Karthikeyan, P., Murugappan, M., & Yaacob, S. (2012). Descriptive Analysis of Skin Temperature Variability of Sympathetic Nervous System Activity in Stress. Journal of Physical Therapy Science, 24. 1341-1344. doi: 10.1589/jpts.24.1341

Kirschner, P. A., Ayres, P., & Chandler, P. (2011). Contemporary cognitive load theory research: The good, the bad and the ugly. Computers in Human Behavior, 27. 99-105. doi: 10.1016/j.chb.2010.06.025

Kirschner, F., Kester, L., & Corbalan, G. (2011). Cognitive load theory and multimedia learning, task characteristics and learning engagement: The Current State of the Art. Computers in Human Behavior, 27, 1-4. doi: 10.1016/j.chb.2010.05.003

Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8. doi: 10.3389/fpsyg.2017.01997

Larmuseau, C., Elen, J., & Depaepe, F. (2018). The influence of students’ cognitive and motivational characteristics on students’ use of a 4C/ID-based online learning environment and their learning gain. In LAK'18:International Conference on Learning Analytics and Knowledge, March 7–9, 2018, Sydney, NSW, Australia. ACM, New York, NY, USA, 10 pages. doi: 10.1145/3170358.3170363

LeCroy, C. W., & Krysik, J. (2007). Understanding and interpreting effect size measures. Social Work Research, 31. 243-248. doi: 10.1093/swr/31.4.243

Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45. 1085-1072. doi: 10.3758/s13428-013-0334-1

Liapis, A., Katsanos, C., Sotiropoulos, D., Xenos, M., & Karousos, N. (2015). Recognizing emotions in human computer interaction: Studying stress using skin conductance. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 255-262. doi: 10.1007/978-3-319-22701-6_18

Martin, S. (2014). Measuring cognitive load and cognition: metrics for technology-enhanced learning. Educational Research and Evaluation, 20. 592-621. doi: 10.1080/13803611.2014.997140

Mayer, R. E. (2014). Incorporating motivation into multimedia learning. Learning and Instruction, 29. 171–173. doi: 10.1016/j.learninstruc.2013.04.003

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38. 43-52. doi: 10.1207/S15326985EP3801_6

Merrill, D. (2009). First principles of instruction. In Instructional-Design Theories and Models, 50. 43-59. doi: 10.4324/9780203872130

Mudrick, N. V., Taub, M., Azevedo, R., Price, M. J., & Lester, J. (2017). Can physiology indicate cognitive, affective, metacognitive, and motivational self-regulated learning processes during multimedia learning? Paper presented at the Annual Meeting of the American Educational Research Association (AERA), San Antonio, TX.

Nourbakhsh, N., Wang, Y., Chen, F., & Calvo, R. a. (2012). Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. Proceedings of the 24th Conference on Australian Computer-Human Interaction OzCHI ’12. doi: 10.1145/2414536.2414602

Paas, F. (1992). Training strategies for attaining transfer of problem solving skills in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429–434. doi: 10.1037/0022-0663.84.4.429

Paas, F., van Gog, T., & Sweller, J. (2010). Cognitive load theory: New conceptualizations, specifications, and integrated research perspectives. Educational Psychology Review, 2. 115-121. doi: 10.1007/s10648-010-9133-8

Paas, F., Tuovinen, J., Tabbers, H., & Van Gerven, P. W. M. (2010). Cognitive Load Measurement as a Means to Advance Cognitive Load Theory. Educational Psychologist, 38. 63-71.

Raaijmakers, S. F., Baars, M., Schaap, L., Paas, F., & van Gog, T. (2017). Effects of performance feedback valence on perceptions of invested mental effort. Learning and Instruction, 51. 35-46. doi: 10.1016/j.learninstruc.2016.12.002

Roth, A. J. (1999). Multiple comparison procedures for discrete test statistics. Journal of Statistical Planning and Inference, 82. 101-117. doi: 10.1016/S0378-3758(99)00034-8

Scharinger, C., Soutschek, A., Schubert, T., & Gerjets, P. (2015). When flanker meets the n-back: What EEG and pupil dilation data reveal about the interplay between the two central-executive working memory functions inhibition and updating. Psychophysiology. 1293-1304. doi: 10.1111/psyp.12500

Schmeck, A., Opfermann, M., van Gog, T., Paas, F., & Leutner, D. (2015). Measuring cognitive load with subjective rating scales during problem solving: differences between immediate and delayed ratings. Instructional Science, 43. 93-114. doi: 10.1007/s11251-014-9328-3

Schmuckler, M. A. (2001). What is ecological validity? A dimensional analysis. Infancy, 2, 419–436. doi: 10.1207/S15327078IN0204_02

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: a review. The Journal of Educational Research, 99, 323-338. doi: 10.3200/JOER.99.6.323-338

Setz, C., Arnrich, B., Schumm, J., La Marca, R., Tröster, G., & Ehlert, U. (2010). Discriminating stress from cognitive load using a wearable eda device. IEEE Transactions on Information Technology in Biomedicine, 14. 410-417. doi: 10.1109/TITB.2009.2036164

Shi, Y., Ruiz, N., Taib, R., Choi, E., & Chen, F. (2007). Galvanic skin response (GSR) as an index of cognitive load. In CHI ’07 extended abstracts on Human factors in computing systems - CHI ’07. doi: 10.1145/1240866.1241057

Shusterman, V., Anderson, K. P., & Barnea, O. (1997). Spontaneous skin temperature oscillations in normal human subjects. The American Journal of Physiology, 273. doi: 10.1152/ajpregu.1997.273.3.R1173

Smets, E., Velazquez, E. R., Shiavone, G., Chakroun, I., D’Hondt, E., De Raedt, … Van Hoof, C. (2018). Large-scale wearable data reveal digital phenotypes for daily-life stress detection. Digital Medicine, 67. doi: 10.1038/s41746-018-0074-9

Spanjers, I. A. E., Van Gog, T., & Van Merriënboer, J. J. G. (2012). Segmentation of Worked Examples: Effects on Cognitive Load and Learning. Applied Cognitive Psychology, 26. 353-358. doi: 10.1002/acp.1832

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4. 295-312. doi: 10.1016/0959-4752(94)90003-5

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22. 123-138. doi: 10.1007/s10648-010-9128-5

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive Load Theory. Explorations in the Learning Sciences, Instructional Systems and Performance Technologies. doi: 10.1007/978-1-4419-8126-4

Sweller, J., van Merrienboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 3. 251-196. doi: 10.1023/A:1022193728205

van Merrienboer, J. J. G., Kirschner, P. A., & Kester, L. (2003). Taking the Load Off a Learner’s Mind: Instructional Design for Complex Learning. Educational Psychologist, 38, 5–13. doi: 10.1207/S15326985EP3801_2

van Merriënboer, J. J. G., & Sluijsmans, D. M. A. (2009). Toward a synthesis of cognitive load theory, four-component instructional design, and self-directed learning. Educational Psychology Review, 21. 55–66. doi: 10.1007/s10648-008-9092-5

Vinkers, C. H., Penning, R., Hellhammer, J., Verster, J. C., Klaessens, J. H. G. M., Olivier, B., & Kalkman, C. J. (2013). The effect of stress on core and peripheral body temperature in humans. Stress, 16. 520-520. doi: 10.3109/10253890.2013.807243

Yousoof, M., & Sapiyan, M. (2013). Measuring cognitive load for visualizations in learning computer programming-physiological measures. Ubiquitous and communication journal, 8. 1410-1426. Retrieved from :

Zagermann, J., Pfeil, U., & Reiterer, H. (2016). Measuring Cognitive Load Using Eye Tracking Technology in Visual Computing. Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. doi: 10.1145/2993901.2993908

Zheng, R., & Cook, A. (2012). Solving complex problems: A convergent approach to cognitive load measurement. British Journal of Educational Technology, 43. 233-246. doi: 10.1111/j.1467-8535.2010.01169.x