MORPHOMETRIC TRAITS AND THEIR ASSOCIATION WITH SEX IN THE KEEL-BILLED TOUCAN RAMPHASTOS SULFURATUS

Authors

  • Danielle Erin Leeman Suástegui Universidad Nacional Autónoma de México https://orcid.org/0000-0003-3121-3925
  • Ubaldo Márquez-Luna Laboratorio de Ecología, UBIPRO, Facultad de Estudios Superiores-Iztacala, UNAM https://orcid.org/0000-0002-4896-3418
  • Carlos Vásquez Departamento de Genética y Bioestadística, UNAM https://orcid.org/0000-0002-3232-4283
  • Blanca Valladares Riverol Dirección General de Zoológicos y Conservación de la Fauna Silvestre, Secretaría del Medio Ambiente https://orcid.org/0000-0001-8285-2677
  • Josué Garduño Ruiz
  • Annuar Majluf Trejo Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, UNAM

DOI:

https://doi.org/10.58843/ornneo.v34i2.1233

Keywords:

Beak, dimorphism, morphometry, sexing, Ramphastidae

Abstract

Sexing monomorphic birds is essential for reproduction in conservation programs. In ramphastids (toucans) species, males have longer beaks than females, making beak morphometry potentially useful for sexing. In this study, we measured the following traits: curved beak length, total culmen length, straight beak length, curved and straight length of the ventral line of the gnathotheca, beak width, lateral area of the rhinotheca, and cloacal opening in 44 Keel-billed Toucans, as well as previously reported morphometric data from 17 additional individuals. Measurements were obtained using two methods (manual and image processing software), and the reliability between the two methods was assessed using the intraclass correlation coefficient (ICC). Individuals of unknown sex were sexed via PCR tests. The ICC showed poor reliability between the two measurement methods, so we only used manual measurements for comparisons between the sexes. We used GLMMs to determine whether the morphometric traits we measured could be used to determine sex in keel-billed toucans. In addition, we evaluated GLMMs to determine which morphometric trait was the strongest predictor of sex in this species. Beak length was longer in adult males than in females. The GLMMs indicated that beak traits associated with sex in this species are beak curved length, beak straight length, straight length of the ventral line of the gnathotheca, and total culmen length. The straight length of the ventral line of the gnathotheca was the strongest predictor of sex in the Keel-billed Toucan. Unlike previous research, the development of GLMMs allows us to determine the probability of a toucan’s sex based on continuous variables, facilitating sexing and allowing us to evaluate the reliability of the estimation of the sexing of each toucan. This method is an alternative for situations where other sexing methodologies cannot be performed.

Author Biography

Danielle Erin Leeman Suástegui, Universidad Nacional Autónoma de México

Departamento de Etología, Fauna Silvestre y Animales de Laboratorio.  Alumna del Programa Único de Internado de Medicina Veterinaria y Zootecnia  de Fauna Silvestre FMVZ - UNAM. 

References

Bates, D, M Mächler, B Bolker & S Walker (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 7: 1–48. https://doi.org/10.18637/jss.v067.i01

Castro, MS, SM Recco-Pimentel & GT Rocha (2003) Sexual dimorphism in Ramphastos toco and Ramphastos dicolorus (Piciformes, Aves). Revista de Biología Tropical 51: 241–245.

Gamer M, J Lemon, I Fellows & P Singh (2019) irr: Various Coefficients of Interrater Reliability and Agreement. R package version 0.84.1, Available at https://CRAN.R-project.org/package=irr.

Gual Sill, F, EM Ramírez, FS Sosa & MGS González (1996) Beak measure-ment as a method for sexing Kell-billed Toucans (Ramphastos sulfuratus) at Chapultepec Zoo, Mexico City. Pp. 141–147 in Proceedings American Association of Zoo Veterinarians.

Howell, S & S Webb (1995) A guide to the Birds of Mexico and Central Northern Central America. Oxford University Press, New York.

ITIS (2020) Ramphastos sulfuratus. Integr. Taxon. Inf. Syst. Online database. Available at https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=554307#null [Accessed 21 October 2020].

Jones, R & CS Griffiths (2020) Keel-billed Toucan (Ramphastos sulfuratus), version 1.0. In Schulenberg, TS (ed.). Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.kebtou1.01

Koo, TK & MY Li (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of chiropractic medicine 15: 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Lee, JCI, LC Tsai, PY Hwa, CL Chan, A Huang, SC Chin, LC Wang, JT Lin, A Linacre & HM Hsieh (2010) A novel strategy for avian species and gender identification using the CHD gene. Molecular and cellular probes 24: 27–31. https://doi.org/10.1016/j.mcp.2009.08.003

Miyaki, CY, R Griffiths, K Orr, LA Nahum, SL Pereira & AWajntal (1998) Sex Identification of Parrots, Toucans, and Curassows by PCR: Perspectives for Wild and Captive Population Studies. Zoo Biology 423: 415–423. https://doi.org/10.1002/(SICI)1098-2361(1998)17:5<415::AID-ZOO6>3.0.CO;2-2

Peralta-Moreno, K, E Meoño-Sánchez, V Porras-Morfín, AL Quinto, J Esquite-Montoya & D Guerra-Centeno (2017) Utilidad de la medición de la longitud del pico para el sexado del tucán collarejo (Pteroglossus torquatus). Revista Electrónica de Veterinaria 18: 1–9.

Porras-Morfin, V, E Meono-Sanches, K Peralta-Moreno, A-L Quinto & D Guerra-Centeno (2018) Relación entre el largo del pico y el sexo en tucán pico arcoíris (Ramphastos sulfuratus). Revista Electrónica de Veterinaria 19: 1–9.

Quinto, A.-L., E. Meono-Sanches, K. Peralta-Moreno, V. Porras-Morfin, J. Esquite-Montoya, K. Duchez, B. Zelaya, & D. Guerra-centeno (2018) Longitud y ancho del pico como indicadores del sexo del tucán esmeralda (Aulacorhynchus prasinus). Revista Electrónica de Veterinaria 19: 1–10.

Ryeland, J, MRE Symonds & MA Weston (2017) Measurement techniques for curved shorebird bills: A comparison of low-tech and high-tech methods. Wader Study 124: 49–54. https://doi.org/10.18194/ws.00065

Schneider, CA, WS Rasband & KW Eliceiri (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. https://doi.org/10.1038/nmeth.2089

Skutch, AF (1971) Life History of the Keel-Billed Toucan. The Auk 88: 381–396. https://doi.org/10.2307/4083886

Stoffel, MA, S Nakagawa & H Schielzeth (2021) partR2: partitioning R2 in generalized linear mixed models. PeerJ 9:e11414. https://doi.org/10.7717/peerj.11414

Takagi, N, M Itoh & M Sasak (1972) Chromosome studies in four species of Ratitae (Aves). Chromosoma 36: 281–291. https://doi.org/10.1007/BF00283247

Williams, HM, SB Wilcox & AJ Patterson (2020) Photography as a tool for avian morphometric measurements. Journal of Ornithology 161: 333–339. https://doi.org/10.1007/s10336-019-01728-w

Worell, A (1988) Management and medicine of toucans. Pp. 253–262 in Proceedings Association of Avian Veterinarians.

Downloads

Published

13-11-2023

Issue

Section

Articles