RANGO DE HOGAR Y USO DE HÁBITAT DEL FRUTERO VERDINEGRO PIPREOLA RIEFFERII EN BOSQUES MONTANOS FRAGMENTADOS AL NORTE DE PERÚ

Authors

  • Nicolas Willian Mamani-Cabana Facultad de Ciencias Naturales y Formales, Programa de Maestría en Ciencias, con mención en Gerencia, Auditoria y Gestion Ambiental, Universidad Nacional de San Agustín de Arequipa – UNSA, Av. Independencia s/n. Perú. https://orcid.org/0000-0002-0467-1907
  • Felicity L Newell Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, United States of America. https://orcid.org/0000-0002-7944-8603
  • Scott K Robinson Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, United States of America.
  • Ian J Ausprey Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, United States of America.Institute of Ecology & Evolution, Division of Conservation Biology, University of Bern, 3012 Bern, Switzerland. https://orcid.org/0000-0002-7127-2746

DOI:

https://doi.org/10.58843/ornneo.v34i2.1035

Keywords:

Cotingidae, Fragmentation, Habitat use, Neotropics, Radiotelemetry

Abstract

Resumen ∙ La fragmentación del hábitat ha causado la extinción local de muchas especies y mayormente de aquellas con poblaciones pequeñas. Sin embargo, ciertas características del paisaje permiten que algunas especies logren persistir a pesar del impacto en sus hábitats. Desde 2016 a 2019, estudiamos el rango de hogar y el uso de hábitat en función de la densidad poblacional del frutero verdinegro Pipreola riefferii (estimada mediante puntos de conteo) en bosques de niebla fragmentados en el norte de Perú. Usando radiotelemetría (10 individuos en 7 paisajes) estimamos que la media del rango de hogar para el frutero verdinegro basada en 95% densidad de Kernel (KDE) fue 3,72 ± 1,70 ha, y de 100% Polígono Mínimo Convexo (MCP) fue 1,85 ± 0,84 ha. La densidad del frutero verdinegro en bosque primario fue igual que en fragmentos, y significativamente más alta que en zonas de bosques en regeneración o silvopastoriles. Al mismo tiempo, la densidad en el bosque estuvo correlacionada negativamente con la cobertura del dosel medida con densitometría esférica. Concluimos que el frutero verdinegro puede persistir en paisajes fragmentados porque posee rangos de hogar pequeños y se encuentra en lugares con aperturas del dosel parcialmente abierto. Recomendamos el mantenimiento de bosque en regeneración u otras formas de hábitat sucesionales con abundancia de arbustos para mejorar la conectividad poblacional y la persistencia del frutero verdinegro en fragmentos aislados.

References

Antongiovanni, M & JP Metzger (2005) Influence of matrix habitats on the occurrence of insectivorous bird species in Amazonian Forest fragments. Biological Conservation 122: 441–451. https://doi.org/10.1016/j.biocon.2004.09.005 DOI: https://doi.org/10.1016/j.biocon.2004.09.005

Ausprey, IA, FL Newell & SK Robinson (2022) Functional response traits and altered ecological niches drive the disassembly of cloud forest bird communities in tropical montane countrysides. Journal of Animal Ecology 91: 2314–2328. https://doi.org/10.1111/1365-2656.13816 DOI: https://doi.org/10.1111/1365-2656.13816

Bayard, TS & CS Elphick (2010) How area sensitivity in birds is studied. Conservation Biology 24: 938–947. https://doi.org/10.1111/j.1523-1739.2010.01480.x DOI: https://doi.org/10.1111/j.1523-1739.2010.01480.x

Becker, CD, TM Loughin & T Santander (2008) Identifying forest-obligate birds in tropical moist cloud forest of Andean Ecuador. Journal of Field Ornithology 79: 229–244. https://doi.org/10.1111/j.1557-9263. 2008.00184.x DOI: https://doi.org/10.1111/j.1557-9263.2008.00184.x

Beyer, HL (2012) Geospatial Modelling Environment. Version 0.7.2.1. Disponible en http://www.spatialecology.com/gme [Consultado el 24 de enero de 2020].

BirdLife International. 2016. Pipreola riefferii. The IUCN Red List of Threatened Species 2016: e.T22700782A93796258. https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22700782A93796258.en [Accessed 11 July 2023]. DOI: https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22700782A93796258.en

Bregman TP, CH Sekercioglu & JA Tobias (2014a) Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biological Conservation 169: 372–383. https://doi.org/10.1016/j.biocon.2013.11.024 DOI: https://doi.org/10.1016/j.biocon.2013.11.024

Bregman, TP, AC Lees, N Seddon, HEA MacGregor, B Darski, A Aleixo, MB Bonsall & JA Tobias (2014b) Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96: 2692–2704. https://doi.org/10.1890/14-173 1.1 DOI: https://doi.org/10.1890/14-1731.1

Calenge, C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat uses by animals. Ecological Modelling 197: 516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017 DOI: https://doi.org/10.1016/j.ecolmodel.2006.03.017

Castaño-Villa, GJ & JC Patiño-Zabala (2008) Extinciones locales de aves en fragmentos de bosque en la región de Santa Elena, Andes Centrales, Colombia. El Hornero 23: 23–24. https://doi.org/10.56178/eh.v23i1.746 DOI: https://doi.org/10.56178/eh.v23i1.746

Castellón TD & KE Sieving (2006) An experimental test of matrix permeability and corridor use by an endemic understory bird. Conservation Biology 20: 135–145. https://doi.org/10.1111/j.1523-1739.2006.00332.x DOI: https://doi.org/10.1111/j.1523-1739.2006.00332.x

Chumpitaz, K, FL Newell & IJ Ausprey (2018) Utilización de patrones de muda para determinar la edad de la Reinita de Corona Rojiza (Myiothlypis coronata). Ornitología Neotropical 29: S75–S81. https://doi.org/10.58843/ornneo.v29i2.161 DOI: https://doi.org/10.58843/ornneo.v29i2.161

Curtis, PG, CM Slay, NL Harris, A Tyukavina & MC Hansen (2018) Classifying drivers of global forest loss. Science 361: 1108–1111. https://doi.org/10.1126/science.aau3445 DOI: https://doi.org/10.1126/science.aau3445

Daily, GC, PR Ehrlich & GA Sánchez-Azofeifa (2001) Countryside Biogeography: use of human-dominated habitats by the avifauna of southern Costa Rica. Ecological Applications 11: 1–13. https://doi.org/10.1890/1051-0761(2001)011[0001:CBUOHD]2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2001)011[0001:CBUOHD]2.0.CO;2

Díaz-Velez, MC, WR Silva, MA Pizo & L Galetto (2015) Movement patterns of frugivorous birds promote functional connectivity among Chaco Serrano woodland fragments in Argentina. Biotropica 47: 475–483. https://doi.org/10.1111/btp.12233 DOI: https://doi.org/10.1111/btp.12233

Estrada, A, R Coates-Estrada, D Meritt, S Montiel & D Curiel (1993) Patterns of frugivore species richness and abundance in forest islands and in agricultural habitats at Los Tuxtlas, Mexico. Pp. 245–257 en Fleming, TH & A Estrada (eds). Frugivory and Seed Dispersal: Ecological and Evolutionary Aspects. Springer, Dordrecht, Bélgica. DOI: https://doi.org/10.1007/978-94-011-1749-4_18

Fiske, I & R Chandler (2011) Unmarked: an R Package for Fitting Hierar-chical Models of Wildlife Occurrence and Abundance. Journal of Statistical Software 43: 1–23. https://doi.org/10.18637/jss.v043.i10 DOI: https://doi.org/10.18637/jss.v043.i10

Gascon C, TE Lovejoy, RO Bierregaard, JR Malcolm, PC Stouffer, HL Vasconcelos, WF Laurance, B Zimmerman, M Tocher & S Borges (1999) Matrix habitat and species richness in tropical forest remnants. Biological Conservation 91: 223–229. https://doi.org/10.1016/S0006-3207(99)00080-4 DOI: https://doi.org/10.1016/S0006-3207(99)00080-4

Gillies, CS & CC St. Clair (2008) Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. Proceedings of the National Academy of Sciences 105: 19774–19779. https://doi.org/10.1073/pnas.0803530105 DOI: https://doi.org/10.1073/pnas.0803530105

Giraudo AR, SD Matteucci, J Alonso, J Herrera & RR Abramson (2008) Comparing bird assemblages in large and small fragments of the Atlantic Forest hotspots. Biodiversity and Conservation 17: 1251–1265. https://doi.org/10.1007/s10531-007-9309-9 DOI: https://doi.org/10.1007/s10531-007-9309-9

Global Forest Watch (2019) Forest cover data. Disponible en www.globalforestwatch.org [Consultado el 1 de mayo de 2019].

Gomes, GLL, V. Oostra, V. Nijman, AM, Cleef & M. Kappelle (2008) Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biological Conservation 141: 860–871. https://doi.org/10.1016/j.biocon.2008.01.007 DOI: https://doi.org/10.1016/j.biocon.2008.01.007

Gómez, C, EA Tenorio & CD Cadena (2021) Change in avian functional fingerprints of a Neotropical montane forest over 100 years as an indicator of ecosystem integrity. Conservation Biology 35: 1552–1563. https://doi.org/10.1111/cobi.13714 DOI: https://doi.org/10.1111/cobi.13714

Halley, JM, N Monokrousos, AD Mazaris, WD Newmark & D Vokou (2016) Dynamics of extinction debt across five taxonomic groups. Nature Communications 7: 1–6. https://doi.org/10.1038/ncomms12283 DOI: https://doi.org/10.1038/ncomms12283

Hanksi, I (1999) Habitat connectivity, habitat continuity, and metapopula-tions in dynamics landscapes. Oikos 87: 209-219. DOI: https://doi.org/10.2307/3546736

Hansbauer, MM, I Storch, S. Leu, JP Nieto-Holguin, RG Pimental, F Knauer & JPW Metzger (2008) Movements of neotropical understory passerines affected by anthropogenic forest edges in the Brazilian Atlantic rainforest. Biological Conservation 141:782-791. DOI: https://doi.org/10.1016/j.biocon.2008.01.002

Hilty, SL. 2003. Birds of Venezuela. Princeton Univ. Press, Princeton, New Jersey, USA.

Horne, JS & GO Garton (2006) Likelihood cross‐validation versus least squares cross‐validation for choosing the smoothing parameter in kernel home‐range analysis. The Journal of Wildlife Management 70: 641–648. https://doi.org/10.2193/0022-541X(2006)70[641:LCVLSC]2. 0.CO;2 DOI: https://doi.org/10.2193/0022-541X(2006)70[641:LCVLSC]2.0.CO;2

Johnson, EI & JD Wolfe (2017) Molt in Neotropical Birds: Life History and Aging Criteria. CRC Press: Boca Raton, Florida, USA. DOI: https://doi.org/10.4324/9781315119755

Jones, HH, E Barreto, O Murillo & SK Robinson (2021) Turnover-driven loss of forest-dependent species changes avian species richness, functional diversity, and community composition in Andean forest fragments. Global Ecology and Conservation 32: e01922. https://doi.org/10.1016/j.gecco.2021.e01922 DOI: https://doi.org/10.1016/j.gecco.2021.e01922

Kattan, GH, H Alvarez-López & M Giraldo (1994) Forest fragmentation and bird extinctions: San Antonio eighty years later. Conservation Biology 8: 138–146. https://doi.org/10.1046/j.1523-1739.1994.08010138.x DOI: https://doi.org/10.1046/j.1523-1739.1994.08010138.x

Kattan, GH & WH Beltran (2002) Rarity in antpittas: territory size and population density of five Grallaria spp. In a regenerating habitat mosaic in the Andes of Colombia. Bird Conservation International 12: 231–240. https://doi.org/10.1017/S0959270902002149 DOI: https://doi.org/10.1017/S0959270902002149

Kranstauber, B, M Smolla & AK Scharf (2020) Move: visualizing and analyzing animal track data. R package version 3.3.0. Disponible en https://CRAN.R-project.org/package=move [Consultado el 24 de enero de 2020].

Lair, H (1987) Estimating the location of the focal center in Red Squirrel home ranges. Ecology 68: 1092–1101. https://doi.org/10.2307/1938381 DOI: https://doi.org/10.2307/1938381

Laurance, SGW, PC Stouffer, WF Laurance (2004) Effects of road clearings on movement patterns of understory rainforest birds in central Amazonia. Conservation Biology 18: 1099–1109. https://doi.org/10.1111/j.1523-1739.2004.00268.x DOI: https://doi.org/10.1111/j.1523-1739.2004.00268.x

Leavelle, KM, LL Powell, GVN Powell & A Forsyth (2015) A radio-telemetry study of home range and habitat use of the endangered Yellow-billed Cotinga (Carpodectes antoniae) in Costa Rica. The Wilson Journal of Ornithology 127: 302–309. https://doi.org/10.1676/wils-127-02-302-309.1 DOI: https://doi.org/10.1676/wils-127-02-302-309.1

Lees, AC & CA Peres (2008) Avian life-history determinants of local extinction risk in a hyper-fragmented neotropical forest landscape. Animal Conservation 11: 128–137. https://doi.org/10.1111/j.1469-1795.2008.00162.x DOI: https://doi.org/10.1111/j.1469-1795.2008.00162.x

Lees, AC & CA Peres (2009) Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118: 280–290. https://doi.org/10.1111/j.1600-0706.2008.16842.x DOI: https://doi.org/10.1111/j.1600-0706.2008.16842.x

Lima, J & E Guilherme (2021) Birds associated with treefall gaps in a lowland forest in southwestern Brazilian Amazonia. Acta Amazonica: 42–51. https://doi.org/10.1590/1809-4392202002380 DOI: https://doi.org/10.1590/1809-4392202002380

Martin, TE, C Paine, CJ Conway, WM Hochachka, P Allen & W Jenkins (1997) BBIRD field protocol. Biological Resources Division Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT.

Morante-Filho, JC, V Arroyo-Rodríguez, M de Souza Pessoa, E Cazetta & D Faria (2018) Direct and cascading effects of landscape structure on tropical forest and non-forest frugivorous birds. Ecological Applications 28: 2024–2032. https://doi.org/10.1002/eap.1791 DOI: https://doi.org/10.1002/eap.1791

Newell, FL, IJ Ausprey & SK Robinson (2022) Spatiotemporal climate variability in the Andes of northern Peru: Evaluation of gridded datasets to describe cloud forest microclimate and local rainfall. International Journal of Climatology 42: 5892–5915. https://doi.org/10.1002/joc.7567 DOI: https://doi.org/10.1002/joc.7567

North American Banding Council (NABC) (2003) Guía de estudio del anillador de Norteamérica. North American Banding Council Publication Committee, California, USA.

O’Dea, N & RJ Whittaker (2007) How resilient are Andean montane forest bird communities to habitat degradation? Biodiversity and Conser-vation 16: 1131–1159. https://doi.org/10.1007/s10531-006-9095-9 DOI: https://doi.org/10.1007/s10531-006-9095-9

Palacio, RD, GH Kattan & SL Pimm (2019) Bird extirpations and comm-unity dynamics in an Andean cloud forest over 100 years of land-use change. Conservation Biology 34: 677–687. https://doi.org/10.1111/cobi.13423 DOI: https://doi.org/10.1111/cobi.13423

Poulsen, BO (1994) Movements of single birds and mixed-species flocks between isolated fragments of cloud forest in Ecuador. Studies on Neotropical Fauna and Environment 29: 149–160. https://doi.org/10.1080/01650529409360927 DOI: https://doi.org/10.1080/01650529409360927

R Core Team (2019) R: A language and environment for statistical compu-ting. R Foundation for Statistical Computing, Vienna, Austria. Disponi-ble en https://www.R-project.org/ [Consultado el 24 de enero 2020].

Ralph CJ, JR Sauer & S Droege (1995) Managing and monitoring birds using point counts: standards and applications. Pp. 161–168 en Ralph CJ, S Droege & JR Sauer (eds). Monitoring bird populations by point counts. General Technical Report PSW-GTR-149, U.S. Department of Agriculture, Pacific Southwest Research Station, Forest Service. Albany, California, USA. DOI: https://doi.org/10.2737/PSW-GTR-149

Ralph, CJ, GR Geupel, P Pyle, TE Martin, DF DeSante & B Milá (1996) Manual de métodos de campo para el monitoreo de aves terrestres. General Technical Report PSW-GTR159, U.S. Department of Agriculture, Pacific Southwest Research Station, Forest Service. Albany, California, USA. DOI: https://doi.org/10.2737/PSW-GTR-159

Renjifo, LM (1999) Composition changes in a subandean avifauna after long‐term forest fragmentation. Conservation Biology 13: 1124–1139. https://doi.org/10.1046/j.1523-1739.1999.98311.x DOI: https://doi.org/10.1046/j.1523-1739.1999.98311.x

Renjifo, LM (2001) Effect of natural and anthropogenic landscape matrices on the abundance of subandean bird species. Ecological Applications 11: 14–31. https://doi.org/10.1890/1051-0761(2001)011[0014:EONAAL]2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2001)011[0014:EONAAL]2.0.CO;2

Restrepo, CN, CN Gomez & S Heredia (1999) Anthropogenic edges, treefall gaps, and fruit–frugivore interactions in a neotropical montane forest. Ecology 80: 668–685. https://doi.org/10.1890/0012-9658(1999)080[0668:AETGAF]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(1999)080[0668:AETGAF]2.0.CO;2

Reynolds RT, Scott JM & Nussbaum RA (1980) A variable circular plot method for estimating bird members. Condor 82: 309–313. https://doi.org/10.2307/1367399 DOI: https://doi.org/10.2307/1367399

Rivas E (2015) Ámbito de hogar, fidelidad al sitio y selección de recursos de la Cortarrama Peruana (Phytotoma raimondii) en el bosque seco de talara, noroeste de Perú. Ornitología Neotropical 26: 179–191.

Rolando, A (2002) On the ecology of home range in birds. Revue d'Ecologie, Terre et Vie 57: 53–73. https://doi.org/10.3406/revec.2002.2381 DOI: https://doi.org/10.3406/revec.2002.2381

Rueda-Hernandez, R, I MacGregor-Fors & K Renton (2015) Shifts in resident bird communities associated with cloud forest patch size in Central Veracruz, Mexico. Avian Conservation and Ecology 10: 2. https://doi.org/10.5751/ACE-00751-100202 DOI: https://doi.org/10.5751/ACE-00751-100202

Seaman, DE & RA Powell (1996) An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77: 2075–2085. https://doi.org/10.2307/2265701 DOI: https://doi.org/10.2307/2265701

Snow, D (2020) Green-and-black Fruiteater (Pipreola riefferii) en del Hoyo, J, A Elliott, J Sargatal, DA Christie & E de Juana (eds.) Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. Disponible en https://www.hbw.com/node/57004 [Consultado el 24 febrero 2020] DOI: https://doi.org/10.2173/bow.gabfru1.01

Sodhi, NS, LH Liow & FA Bazzaz (2004) Avian extinctions from tropical and subtropical forests. Annual Review of Ecology Evolution and Systematics 35: 323–345. https://doi.org/10.1146/annurev.ecolsys.35.112202.130209 DOI: https://doi.org/10.1146/annurev.ecolsys.35.112202.130209

TeamQD (2016) QGIS geographic information system. Open-source geospatial foundation project. Disponible en http://qgis.orgeo.org [Consultado el 1 de enero de 2020]

Terborgh, J, SK Robinson, TA Parker III, CA Munn, N & Pierpont (1990) Structure and organization of an Amazonian forest bird community. Ecological Monographs 60: 213–238. https://doi.org/10.2307/1943045 DOI: https://doi.org/10.2307/1943045

Théry, M (1992) The evolution of leks through female choice: Differential clustering and space utilization in six sympatric manakins. Behavioral Ecology and Sociobiology 30: 227–237. DOI: https://doi.org/10.1007/BF00166707

Tilman, D, RM May, CL Lehman & MA Nowak (1994) Habitat destruction and the extinction debt. Nature 371: 65–66. https://doi.org/10.1038/371065a0 DOI: https://doi.org/10.1038/371065a0

Tori, WP, KH Bodawatta, K Tanager, EL Lewis, DS Neumeister, & J Hogle (2016) White-crowned manakin (Dixiphia pipra) use of space in the Ecuadorian Amazon. Ornitología Neotropical 27: 145–154. https://doi.org/10.58843/ornneo.v27i0.33 DOI: https://doi.org/10.58843/ornneo.v27i0.33

Walter, ST, L Browne, J Freile, J Olivo, Mónica González & J Karubian (2017) Landscape-level tree cover predicts species richness of large-bodied frugivorous birds in forest fragments. Biotropica 49: 838–847. https://doi.org/10.1111/btp.12469 DOI: https://doi.org/10.1111/btp.12469

Welford, MR (2000) The importance of early successional habitats to rare, restricted-range, and endangered birds in the Ecuadorian Andes. Bird Conservation International 10: 351–359. https://doi.org/10.1017/S0959270900000307 DOI: https://doi.org/10.1017/S0959270900000307

Woltmann, S, BR Kreiser, & TW Sherry (2012) Fine-scale genetic population structure of an understory rainforest bird in Costa Rica. Conservation Genetics 13: 925-935. DOI: https://doi.org/10.1007/s10592-012-0341-2

Downloads

Additional Files

Published

27-07-2023

Issue

Section

Articles