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1.  INTRODUCTION within two given flight levels: the lowest

In recent years, several researchers
have examined the various problems connected
with the optimization of the flight strategy
for a sailplane socaring cross-country. Some
of the most significant work can be found in
(1) - (10). From the point of view of the
theorist in optimization, these problems
have a perfectly well defined objective.
Indeed, it is always the total time which
must be minimized, either because the sail-
plane is involved in a contest or because,
when 1ift is due to thermals alone, the use-
ful time for distance flight is Timited to
the day time period during which the sun
produces thermals. On the other hand, an
aspect of the problem which does not seen to
have been completely resolved at the present
time, is the atmospheric model that should be
used. Some attempts (11) - (12) have been
made to model the shape of a thermal. We
shall assume concentrated T1ift. We shall see
later that this assumption is justified in
the framework of the problem that we are
treating.

The problem that we are examining in
this paper is completely deterministic: no
stochastic aspects are considered. We are
essentially concerned with the problem of
determining, for a given sailplane, the
optimal flight strategy which corresponds to
travelling a given distance in minimum time
with zero net altitude loss. We assume that
11ft regions are concentrated at specified
locaticns unegually spaced along the trajec-
tory. The locations of these Tift regions,
as well as their characteristics, are
constant with time; strengths of the various
1ift regions are not generally equal. We
suppose that the air mass between 1ift
regions is stationary, i.e., there is no
sinking zone surrounding the core of the
thermal. Finally, the flight must stay

one corresponds to safety with respect to
ground clearance and the highest one means
that no cloud flying is allowed. Thus, the
sailplane's flight is divided into steps,
each of which consists of an ascent in a
thermal and a glide at constant speed to the
next thermal. The flight starts and ends at
the given minimum flight level. We assume
that there is no wind. The projection of one
glide on the ground is rectilinear: however,
the projections of the glides of successive
steps can be inclined to one another. The
pilot must make two kinds of decisions
sequentially: how much to climb in each Tift
region and what speed to fly in between two
1ift regions.

By its very definition, the problem pro-
hibits soaring in the so called "dolphin" or
"essing" mode. We are well aware, as was
rightly pointed out in (2), that..."It is
generally recognized that many of the very
fast cross-country flights achieved in recent
years have been made under conditions where
the latter two modes were utilized and rela-
tively Tittle time was spent in thermaling".
However, we still think that the problem
treated here is of interest: first, because
the atmospheric conditions do not always
allow for the "dolphin" or essing" mode and
second, because - to the best of our know-
ledge - it is the first time that a problem
has been solved which involves not just one
step but a whole flight, taking into account
altitude constraints.

Although, in general, the results cannot
be used by a pilot on an actual flight since
he must know the characteristics of all the
thermals that he will encounter later, one
still can use these results for many purposes.
Two applications are: simulation experiments

can be conducted with competition pilots to
enable them to compare their strategies with
the optimal one; performance of sailplanes
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can be compared with respect to a given distqnce L1. Generally, the sailplane reaches
standardized space-distribution of 1ift the i-th 17ft with a forward speed vj.1 and
regions. at an altitude hsi, then climbs to altitude

hpi41 with an achieved rate of climb aj and
leaves the thermal with a forward speed v;.

2 STATEMENT OF THE PROBLEM © Finally, the sailplane must reach the point
Apn of coordinates y = & and z = 0. Of course,
As stated in the introduction, we for the problem to make sense, all distances
divide the sailplane's flight into steps, Lj must be such that they can be travelled by
each of which consists of an ascent in a the sailplane flying at the speed of maximum

thermal at minimum sink rate, followed by a 1ift-to-drag ratio with a loss of altitude at

glide at constant speed to the next thermal. most equal to h. ;
The situation is best illustrated in Recall that we assumed that there is no

Figure 1 which is drawn in a vertical plane. wind. We shall neglect the transient dynami-
The positive direction of the y axis indi- cal effects occuring when entering or ?eav1ng
cates the direction of travel of the sail- a thermal, hence the only characteristic of
plane and the vertical z axis is positive the sa11p1aﬂe that we shall need will be the
upwards. Accordingly, all horizontal speeds polar equation relating the forward speed v
will be considered positive to the right and to the sinking rate w.

all vertical speeds will be considered .. One last thing we must discuss, before
positive upwards. writing down the equations, 1s the vertical

For reference, the minimum altitude is characterizations aj(z) of the thermals. We
taken equal to zero and the maximum altitude shall examine two cases:

is denoted by h. _ a) The strength of the thermal is
The sailplane starts at point A constant with the altitude
corresponding to y = 0 and to altitudd [ai = a.{z) = constant],
1

hg = 0, then climbs into the first thermal at
a?titude h1 and then glides at constant for- ; s :
ward speed vg (corresponding to sinking rate increases with altitude .up to.a
w?) to the second thermal which is reached at maximum and then decreases
altitude hp, having travelled the horizontal [a; = a;(2)].

b) The strength of the thermal at first

AZ Figure 1  Space Distribution of Lifts
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The pilot has two controls at his
disposal:

a) Ah;j: the gain of altitude in the
i-th thermal,

b) vi: the speed to fly after leaving
the i-th thermal.

If we further denote by tp; the time to
climb in the i-th thermal and by t2;:+] the
time to travel the distance %47, we can
write the following relations:

Finite difference equations for the altitudes:

hyje1 = hy5 = 8hy

" = ¥ilvj
oges ™ B kg

i=0,1, 2, ... n=1 [1]

where wi(vi) is given by the polar equation

Cost:
hy; * Adh;
¢ - dz
2i ai(z)
hy s
- 2341
tin v,

Control constraints:

Ah. 2 0,
i

§o= 0, 1, 2 wusy A-1 [3]

Initial and terminal constraints:

hy = 0, h, =0 [a]

Altitude constraints:

h21+1 < h,
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The problem is thus to find the optimal
strategy, i.e., the sequence(s)

ﬂho, Voe ﬂhl, Vis =ees &hn_l, Voo

which among all such sequences satisfying the
relations %1] and [3] - [5], minimize(s) the
total cost (i.e., the total time)
hZi + Ah
n-1
T = ¥ dz + 111—]
i=0 a;(z) vy
b,s

(6]

obtained by summing all the partial costs
(i.e., partial times given by [2])

There may be more than one minimizing
sequence but the minimum cost is either unique
or does not exist.

As such, the problem is of course one of
mathematical programming with equality and
inequality constraints. However, the way we
have set it up, it is in fact a "discrete
optimal control problem".

Full details of the mathematics associa-
ted with the problem specified and its
solution may be found in (13) and the author's
complete report (15). [Editor's Note: Further
work on this problem by the present authors
was reported in reference (16).]

3.  EXAMPLES

As a simple example of the results of the
optimization discussed, we have taken the 300
km f1ight schematized in Figure 2. The 1ift
regions are equidistant (10 km) for simplicity
although this is by no means required. The
lift strengths are indicated in m/sec along
the y axis. They increase progressively
during the flight, then decrease, but are in
general unequal. The altitude limits are 0
and 1000 m. We considered a sailplane having
a polar equation given by

w = -0.0016409 vZ + 0.061637 v - 1.02557
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Figure 2  Optimum F]ight Strategy
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The optimal strategy for that 1ift dis-
tribution is illustrated in Figure 2 where
the MacCready setting for each glide is indi-
cated. It follows as a simple and systematic
application of rules for optimality estab-
lished in (15). Note that the flight
strategy consists in hitting systematically
the altitude constraints, except at 110 km
and 170 km where we gain, in 1ift equal to
the present MacCready setting, the altitude
necessary to reach (at zero altitude) the
next best 1ift. Note also that the Mac-
Cready setting is not always equal to the
strength of the next 1ift used. Note finally
that this example clearly justifies the
practical rule of flying "low" where the 1ift
is improving and flying "high" when it is
deteriorating. The total time required for
the f1ight is T = 13331 sec corresponding to
a cruising speed of 81.01 km/h.

To illustrate and quantify on the same
example the importance of the global flight
strategy, we have compared the result
obtained by a pilot flying according to the
following rules.

e Decision to use a particular thermal:

from h = 0 to h = 300
1ift aj > 0

from h = 300 m to h
only if aj > 1m

from h = 600 m t
1ift only if a;

m take any

600 m take 1ift

il

1000 m take

1

=]

o h
B
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e ATtitude gained:

c¢limb up to 600 m if the Tift is
a; <2m

climb up to 1000 m §if the Tift is
a; z 2m
e Speed to fly:

Adopt a MacCready setting corresponding
to the moving average of the last 3
lTifts encountered {even if they are not
used).

The result is illustrated in Figure 3
and leads to a total time of T = 14401 sec
(cruising speed of 74.9 km/h).

4. CONCLUSIONS

Simple rules have been derived for
finding the global optimal flight strategy
in the case of unequally spaced 1ifts of
variable strength taking into account
altitude constraints. The assumption that

the Tocations and strengths of the 1ift
regions are known in advance makes the
practical usefulness of the results ques-
tionable during an actual flight. However,
it is now possible to determine optimal
flight strategies in a set of given situa-
tions that are often encountered during a
flight. The importance of giving due
consideration to the altitude constraints is




Figure 3
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dent. From various tests conducted by

the authors in a community of experienced
competition pilots it appears that the rules
given here are, at best, intuitively
approximated.

Improvements to the theory should take

into account the size and structure of the
thermals in order to allow for dolphin

flight segments.

if

This seems possible only

a numerical model is set up. It implies

that no simple rules for optimality will be
obtained in that case but that a catalog of
optimal strategies in a given set of
situations could be derived.
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(2)

(3)

(4)

(7)
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