
1. INTRODUCTION

In recent years, several researchers
have examined the various problens connected
l,vith the optimization of ihe flight strategy
for a sailplane soarinq cross-country. Sone
of the most sionificant ork can be found in
(L) - (10). Fiom the point of view of the
theorist in optimization, these problems
have a perfectly lllell defined obiective.
Indeed, it is always the total time which
must be minimized, either because the sail-
plane is involved in a contest or because,
when lift is due to thennals alone, the use-
ful time for distance flight is limited to
the day time period durjng vlhich the sln
produces thennals. 0n the other hand, an
aspect of the problem which does not seen to
have been completely resolved at the present
Lime. i- Lne almoroneric model lhdl qhould be
,sed. )one dLLenpl\ f l) - (12) hdve bee"
made to model the shape of a thermal. l,ie

shall assume concentrated lift. l]{e shall see
later that this assumption is justified in
the framework of the problem that !,le are
treating.'lhe p"oblFr thdr we dre c^dnininq in
thr's paper is completely deterministic: no
stochastic aspects are considered. rr'e are
assentiallv cancetned with tte probTen af
dcterntnitg, fat a siven sailPfae, xhe
optituL fliqht strateqg which cottespands xo
xraveTTinq a Ejren distance in tuininDn xire
sith z-Ara nex aTtitude loss. He assume that
Ilft reqjons are concentrated at specified
locdiicns unequally spaced along the trajec-
lory. he iocdtions ol t,ese li-L regions.
as vr'ell as their characteristics, are
constarr wit' t i-lel (LrenqLns of the vd"ious
lift regions are not generally equal. ule

suppose that the air mass between lift
regions is stationary, i.e., there is no
sinkinq zone surroundinq the core of the
thermal. Finally, the flight must stay
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within tvlo given flight levels: the lowest
one corresponds to safety with respect to
ground clearance and the highest one means
that no cloud flying is allowed. Thus, the
sailplane's flight is divided into steps,
each of which consists of an ascent in a

thennal and a glide at constant speed to the
next thermal. The flight starts and ends at
the qiven minimurn flight level, l/{e assume
that there is no wind. The proiection of one
glide on the ground is rectilinear; however,
the p"ojeLrionc ol lhe glides ol s,icces<ive
steps can be incljned to one another. The
pjlot nust make t!,/o kinds of decisions
sequentially: how much to climb in each lift
region and lJhat speed to fly in between two
I ift regions.

By its very definition, the problem pro-
hibits soaring in the so called "dolphin" or
"essinq" mode. l,ie are llell aware, as was
righlly pointed o-t i. (2), LndL..."lt is
generally recognized that nany of the very
fast cross-country flights achieved jn recent
years have been made under conditions where
the latter two modes were utilized and rela-
tively little time was spent in thermaling".
However, !,ve stil'l think that the problen
treated here is of interest: first, because
the atmospheric conditions do not always
allow for the "dolphin" or essinq" mode and
second, because - to the best of our kno!.J-
ledge - it is the first time that a problem
has been solved which involves not just one
step but a whole flight, taking into account
altitude constraints.

Although, in general, the results cannot
be used by a pilot on an actLral flight since
he nust know the characteristics of all the
thennals that he !,,ill encounter 1ater, one
stjll can use these results for many purposes.
Tvlo applications are: simulation experiments
can be conducted wjth competition pilots to
enable them to compare their strategies with
the optimal one; perfonnance of sailplanes
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can be compared with respect to a given
standardized space-distribution of l ift
regions.

2. STATEI4ENT OF ]NE PROBLEI4

As stated in the introduction, we
divide the sailplane's flight into steps,
each of which consists of an ascent in a
thennal at minirnum sink rate, foilowed by a
glide at constant speed to the next therhal.

The situation is best illustrated in
Figure 1 which is drawn in a vertical plane.
The positive direction of the y axis indi-
cates the direction of travel of th€ sail-
piane and the vertical z axis is positive
upwards. Accordingly, all horizontal speedswill be considered positive to the right andall vertical speeds will be considered
posi ti ve upwards.

For reference, the ninimum altitude is
taken equal to zero and the maxinum altitude
is denoted by h.

The sailplane starts at point A
corresponding io y = 0 ana io iitiirJ8
ho = 0, lhen cl inbs inLo ,he fir't Lhe'ndl at
dTLiL-de ht ano lhen glioas dr !on)tant tor-
wdrd \Deed v0 (correspording Lo .inl in9 .aLe
wn) co thF celond the.ndl whiLh is red(hed at
dTLiLude h2, hdving rrdvelleo thp horilontdl

distance 11,1. General ly, the sailplane reaches
the i-th lift with a forward speed vi-1 and
at an altitude h2i, then climbs to altjtude
h2i+t v,ith an achieved rate of climb ai and
leaves the thennal with a forward speed vi,
Finally, the sailplane must reach the point
An of coordinates y = L and z = 0. 0f course,
for the problem to make sense, all distances
.l,i must be such that they can be travelled by
Lhe <ailplare.lyinq.r rhe speed ol na(inum
lift-to-drag ratio with a loss of altjtude at
most equal to h.

Reldll (hdL we dssLmec that there is no
wind. l,le shall neglect the transient dynami-
cal effects occuring when entering or Ieaving
a thermal, hence the only characteristic of
th€ sailplane that we shall need will be the
polar equation relating the forward speed v
to the sinking rate l,v.

One last thing we must discuss, before
writing down the equations, is the vertical
characterizations ai(z) of the thermals. e
shal l examine t!,lo cases:

a) The strength of the thernal is
constant with the al titude
Iai =ai(z) = constant],

b) The strenqth of the thennal at fr'rst
increases with altitude up to a
naximum and then decreases
[a'' = ar(z)1.

z

(l.

Figure 1 Space Distribution of Lifts
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The pilot has two controls at his
disposal:

a) Al^i: Lhe gdin of alLiLude in the
i-fh ihermil -

l) v1: rtre speed to fly dfter teaving
the i-th thennal.

I we furlfer oerote by L2i Lhe cire to
clinb in the i-Lh themdl and bi t2irr the
time to travel the distance [i+1, we can
!r'rite the foilo\,/ing relations:

Finite difference equations for the altitudes:

hzi+l-h2i=Ah.

hzi.z-hz;'t'b*J li*l

hzi > o,

i = 1, 2, ..., n-l

The problem is thus to find the optinal
strategy, i.e., the sequence(s)

AhO, v0, Aht, vt, ..., Ahn_1, vn-l,

hzi

ar*t I
'i l

i = 0, 1,2, ... n-l [1']

where wr(vi) is given by the polar equation.

Cost:

hzi ' lhi

hzi

li+l
ti

t'rt - 
I

d.z
;iG)

'2i+l

..-, n-t [z]

Contr ol constraints:

Ah. > 0,

i = 0, l, 2, ..., n-l [3]

Initi al and termlnal constraintsl

hO=0, hzr, = 0 t4l

Altitude constraints:

h2i.t ( h'

i - 0, t, 2, ..-, n-1
tsl

!{hic" dnonq all -ucl .eq-ence\ sati5lving tn"
relarions III and []l 15l, minimizeis)"rhe
total cost (i.e., the total time)

h2i * 6hi

n-l Tr-xl i=0 l-

dz.
ai(z)

[6]

oora'n"d oy s-mning "l_ the od.(i.a1 o\ts
(i.e., parlial times qive. by L2ll

'tpre -ay be more Lhan onF niainizing
q.q,er,- b,E .h" nili-u co.l is ei,hel ulique
or does not exist,

As such, the problen is of course one of
mathematical prograrming with eqlality and
'inequality constraints. However, the way we
have set it up, it is in fact a "discrete
optiMl contbT prob7en".

rll detdils of L're maLhemd!ics dssocid-
ted with the problem specified and its
solution may be found in (13) and the aurnor's
complele report (I5). IEdito.'s Note: FurLher
work on this problem by the present authors
was reported in reference (16).1

3. EXMPLES

As a simple example of the resuits of the
optimization discussed, we have taken the 300
k-l fliglt scaemat'zed ir Figure 2. lhe titt
regions dre equioistant (10 kfl) for simpticity
dlthough this is by no means required. The
lifE sl-"n9ths are indicaled in m/sec dlong
the y axis. They lncrease progressive'ly
during the fliqht, then decrease. but dre in
general unequal. The altitude limits arc 0
dnd 1000 m. hla consioered d sdilpldne hdving
d polar equation given by

w = -0.0016409 u2 * o.ooto:z v - t.02557
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from h = 600 m to h - 1000 m take'lift only if ai : 2 m

Figure 2 Optimum Flight Strategy

Di stances (kn) adv ting

Lifts {m/sec)

. Altitude Sained:
climb up to 600 n if the l ift is

clinb up to 1000 m if the lift is
ar. > 2 m

. Speed to fly:
AoopL d lr'dcr-Fday qett'nq o'respo'rdi4g
ro Lne movinq averdqF or fre d.- 1

'lifts encouniered (even if they are not
used).

The result is illustrated in Figure 3

ard leads to a total time of T = 14401 sec
(cruising speed of 74.9 km/h).

4. CONCLUSI()NS

impl. rLles ldve beer oerived for
findinq the qlobal optima'l flight strategy
in the case of unequally spaced lifts of
variable strenqth taking into account
altitude constiaints. The assumption that
rhe lo.drior- drd slrpngrhs of thF lilt
reqions ar€ lnown in ddvdnce mdles the
prdLrical L-a'Llnps. ol ll-e ,esLlts qu"s-
r iordble curins an acluol liiqht. !owever.

it is now possjble to determine optimal
|,iqht srralFqiec in d rel o qiva'r \'tua-
tio;s tndT dre ol(en er,ou'llered d rinq a

tliqht. The importdnce of qivirg due
ioniide.at;on to rhe .l itLd' colstrdi, Ls j,

lhe oDl imal sLrdteqv tor (rd l lt dis-
Lribution i\ illusrrdted in iqr'e I w1e'e
Lhe tlacLreaay .atLinq 'or edch glide i indi-
.dLed. 1t folrows d\ d si ple and sysLFnatic
doolicdtion o- rLle\ 1o'l opLi_dliry e(tab-
li;hed in (15). Note thdt the fliqht
strdieqv corsiqLs in hi(Lrng sysre dlicdlly
rhF aliirude consLrdint.. e/cepL oL ll0 t-
dnd l/0 L 

"here de gd,n. in lil'eaual Lo

the DresenL YdcC.edo/ seLLinq. lhe dltilrde
nece;sarv lo 'ed(1(at /a'o al';Luopl lhe
nert besi lirL. NoLe alqo 1..'Ine l4dc-
Creddv settirq i, nor alwdy'eqLdl Lo lhe
srren'aLn of lhe ne'l li't Lsed. N!te li,qlly
lhaL inis e,/d-Dlp cleddy ju(riljes lle
oia.rical -ule;: lvi'rlrlow r.lare L'e lilL
is imorovinq aadTlvins hish" wlpn il is
deter'ioraliiq. Tle tol.l timF req'ited ror
ihtTl ioht-i -. t)3rl <"c.or,esponotnq Lo

a cruisinq speed of 81.01 l'mlh.
Tn iil ,s1.dLe dno auanl:iv on lhe sa_e

F)(amplp he impo.tance of the globd l rl'qh'
strateqv. we have compdred the result
olrainio ov d pilot'lvinq "'cordino lo tl^e

follo\ving rul es.

. Decision to use a particular thennal:

h = 300 m take any

toh=600mtakelift

froflrh=0to
I ift ai > 0

fromh=300m
only if ai : 1
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on optitrdl Fl ight SLrdlegYFigure 3

Distances (km)

Li fts
evident. From various tests conducteo Dy
the authors in a conmunity of experr'enced
conrpetition pilots it appears that the rules
given here are, at best, intuitively

Inrprovem?nts to the theory should take
into account the size and structure of the
thermals in order to allor for dolphin
flight segments. This seems possible only
if a numerjcal model is set up. lt implies
that no simple rules for optiDality wjll be
obtained in that case but that a catalog of
optimal strategies in a given set of
situations could be derived.
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