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SUMMARY

On a cross-country flight a sailplane pilot
may optimize his average cross-country speed
by adjusting his instantaneous horizontal
velocity (and thereby his instantaneous ver-
tical velocity) so that he flies faster thru
regions with downward moving air and slower
thru regions with upward moving air. For the
exact solution of this optimization problem
in case of a given arbitrary vertical atmos-
pheric velocity distribution along the course,
a simple new tool is introduced in this paper
in the form of the definition of an "optimal-
range-velocity-polar" or, ORV-polar. This
ORV-polar is the plot which provides the
optimal average vertical velocity of the sail-
plane over the course as a function of its
average horizontal velocity.The shape, the
properties, the construction and the use of
the ORV-polar are discussed in this paper.

In particular it is shown that the optimal
velocity histories which correspond to the
individual points of the ORV-polar are each
dependent on only one quantity, the so called
"McCready-ring setting." As a result, these
optimal velocity histories may be generated
in practice in a relatively easy way with
aids and/or instruments currently in use by
the sailplane pilots.

For theoretical purposes the ORY-polar
concept facilitates the understanding of
known theoretical results, such as the rule
that (ignoring the possibility of an early
landing by lack of height) the optimal velo-
city history over the total range is complete-
ly determined by the largest possible net rate
of climb encountered along the course. Also,
the concept of the ORV-polar makes it easy to
understand that flying S-curves, as proposed
by some authors, when optimal, is never the
only optimal strategy.

For practical purposes the ORV-concept
makes it feasible to determine the exact
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optimal McCready-ring-setting for any course
with any vertical atmospheric velocity dis-
tribution. For the special case of a square-
wave thermal model, the optimal McCready-ring-
setting may be determined by a simple graphi-
cal method which requires no more information
than the velocity polar (i.e., the regular
relationship between the horizontal and ver-
tical velocity) of the sailplane. As such,
this particular optimal McCready-ring-setting
can be determined by any sailplane pilot
without the aid of a computer. As an example
of this Tast use of the ORV-polar concept,
the paper also presents the optimal McCready-
ring-settings for a variety of square-wave-
thermal-model values for a particular sail-
plane type (LS-3) representative of modern
racing-class sailplanes.

SYMBOLS
e (=Lp/L) (cloud street) extension factor
L length of range
T time of travel over range
u vertical atmospheric velocity
v horizontal velocity of sailplane
W vertical velocity of sailplane
z Lagrange multiplier value or
McCready-ring-setting {(or net rate
of climb)
A Lagrange multiplier
SUBSCRIPTS
i,1,2,... vrelate to the 1th,lst,2nd,..part
of range
a relates to the atmosphere
av relates to the average value
max relates to the maximum value




mind relates to minimum rate of descent

mr relates to minimal value over the
range

msf relates to MSF (=minimal-straight-
flight-) point

opt relates to solution of an optimization
problem

orv relates to ORV (=optimal-range-

velocity-) vector

p relates to velocity polar, i.e., to
the sailplane relative to the
surrounding air

s relates to synthesis of two or more
ORV-polars

th relates to the thermal

x1 relates to the ZL (=zero-(altitude-)

loss) point

NOTATIONAL AIDS

relates to use of the extended
velocity polar

™ relates to the solution of the
optimization problem

= proportional to

1. INTRODUCTION

A sailplane may travel over great distances
when the pilot gains altitude in regions of
rising air and subsequently transforms this
altitude into distance by gliding thru regions
of sinking or still air. For a given sail-
plane in equilibrium flight, there exists a
(usually known) relationship between the hor-
izontal velocity of the plane and its vertical
velocity relative to the air and this provides
the pilot with the option of trading altitude
loss for speed over the descent part of his
trajectory. The determination of the best
speed to fly to optimize the average velocity
along the course, taking into account the
time spent in gaining altitude, is an inter-
esting optimization problem that has been
attacked by a number of theory-minded sail-
plane pilots and optimization specialists
over the years.

In the earliest formulation of the problem
of the cross-country flight of sailplanes,
the case considered was that of altitude
gained exclusively in small local regions
(thermals) with relatively strong vertical
atmospheric velocity with given fixed magni-
tude and that gliding takes place through a
region of still air (Fig. 1). The problem in
this case consists of the determination of
the (constant) cruise velocity between
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thermals which results in the shortest time to
fly from a point (Pt A, Fig. 1) in one thermal
to a point (Pt. C, Fig. 1) at the same height
in the following thermal. The solution to
this algebraic optimization problem already
knownto some German competition sailplane
pilots before WWII, became common knowledge

to the sailplane community after the success
in 1948 of the American WorldChampionship
pilot Paul McCready who invented a simple
device, the McCready-ring, to implement the
optimal solution in actual practice. Since
then the problem formulation is usually
referred to as the McCready problem.

In practice the atmosphere between two
thermals will seldom be completely at rest
and quite often there will be some vertical
atmospheric velocity distribution along the
course, As long as this vertical atmospheric
velocity is constant over parts of the total
course a simple extension of the McCready
theory provides the optimal strategy directly.
In case of a varying distribution, the deter-
mination of the best instantaneous cruise
velocity becomes a (simple) problem in the
realm of the calculus of variations, the
solution of which can be easily derived?. The
implementation of this solution may be realized
in practice quite simply with the earlier
mentioned McCready-ring or its recently
developed mechanized version, the so-called
"Sollfahrtgeber" or speed director!?,

The character of the optimal solution in
case of a varying vertical atmospheric velocity
distribution is in general such that one
should fly faster the stronger the downwards
atmospheric velocity and slower the stronger
the upward atmospheric velocity. The tra-
Jectory of a sailplane thus flying at optimal
cruise speeds resembles the trajectory of a
jumping dolphin and this mode of flying of
sailplanes at optimal cruise speeds has there-
fore become know as "dolphin-soaring"ll.

In a number of situations, for instance in
case of flights under cloud formations known
as cloud streets, it may happen that in this
type of dolphin flight altitude is gained
instead of lost, in which case the pilot no
longer has to use thermals to gain altitude:
he may fly over long distances in straight
flight without circling! Especially during
the last ten years, this type of dolphin
soaring, also made possible by the advent of
glass fiber sailplanes with very high perfor-
mance characteristics, has resulted in a
number of record breaking flights. Dolphin
flying strategies are practiced frequently
over stretches during regular cross-country
flights.

The determination of the optimal cruise
velocities in cases where there are large
enough regions along the course to permit
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cross country flying without circling has
been the subject of a number of studies. In
the earliest of thesel,* heuristic arguments
were used to arrive at good or roughly opti-
mal strategies. Later, studies®s formulated
the problem as a (simple) problem in the
calculus of variations and arrived at the
correct mathematical characterization of the
optimal solution. These studies also provi-
ded rules for the computation of the optimal
solution in any given situation. Most
studies thereafter?® applied the theory to
simple periodical vertical atmospheric
velocity distributions employ-

ing sailplanes with mathematically simple
performance characteristics. Only very
recently? has attention been paid to a non-
periodic vertical atmospheric distribution
with some suggestions given towards a possi-
ble solution.

In the present paper attention will be
paid to the solution of the McCready problem
which, together with its implementation in
practice with such aids as the McCready-ring
or the "Sollfahrtgeber", plays a central role
in all sailplane trajectory problems.

This discussion will be presented in
Section 2 where, in addition, the general
dolphin soaring problem will be defined and
its known solution briefly reviewed. In
Section 3, a particular concept, believed not
to have been used earlier within this theory,
the optimal-range-velocity-polar (ORV-polar)
will be introduced and some properties of it
discussed. These properties will turn out to
be such that the ORV-polar, which contains all
the information for the complete solution of
the dolphin-flying problem,can be evaluated in
practice in a relatively simple manner.

In Section 4, the latter aspect will be
elaborated. Next, in Section 5 the theory
will be applied to the case of a square wave
velocity distribution and some numerical
results will be presented for a particular
sailplane of the racing-class type. Finally,
in Section 6 some concluding remarks about the
use of the ORV-polar in theory and practice
will be summarized. The paper closes with
two appendices in which the proof of a mathe-
matical and a geometric property of the ORV-
polar are given. Not considered in this paper
are the dynamical aspects of sailplane trajec-
tory problems®. Problems in which a vertical
variation of the vertical atmospheric velocity
distribution is assumed or problems in which
a realistic Tower 1imit of the feasible flight
level are also neglected. All these aspects
of the sailplane trajectory problem should,
among others, be taken into account before one
can say that the deterministic sailplane
trajectory optimization problem is fully
solved.
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2. PROBLEM FORMULATION, SOLUTION

AND_IMPLEMENTAT LON

2.1 The McCready Problem

Fundamental to all sailplane trajectory
optimization problems is the classical
McCready problem which is concerned with the
question of how fast a sailplane pilot should
fly between isolated thermals of given strength
in order to minimize the time to fly from a
point A (Fig. 1) in one thermal to a point C
at the same height in the next thermal. This
time can be split up into the time of flight
from point A to the first point B to point C
in that thermal. The latter time will be
determined by the net rate of climb zth in the
thermal which is equal to the sum of the
vertical atmospheric velocity ugp in the ther-
mal and the vertical velocity wp of the sail-
plane in circling flight.

If it is assumed that the vertical velocity
when circling is equal to the minimum rate of
descent, or equivalently the maximum vertical
velocity, w ,in equilibrium flight, then
the rate of &110ib in the thermal will be
given by

E2uly z Chal

+ W
th p,max

th

When the difference between the two ther-
mals is L and the sailplane flies in between
the two thermals with a (constant) horizontal
velocity Vﬁ and a (constant) vertical velocity

e

wp, then the time of flight from A to B will
be L/vp and the corresponding altitude loss
~(L/vp)-wp. The total time of flight from

point A to C therewith becomes

For this expression the assumption is essen-
tial that for sailplanes wp will always be
negative.

In case of an equilibrium glide in between
the thermals, a fixed aircraft weight, a
constant air density and a constant gravita-
tional acceleration, the vertical velocity Wp
of the sailplane (relative to the air) will
depend on its horizontal velocity (relative to
the air) according to some functional relation-
ship which is knownas the velocity polar of
the particular sailplane (for given aircraft
weight (or equivalently given wing-Tloading)
and given air density).

w o= w (v )
D PP
A sketch of a typical velocity polar for a
sailplane is given in Fig. 2. Note in parti-
cular that wp(vp) is a concave function with a




well defined maximun and that the function
wp{vpj is not defined for speeds smaller than
some minimum speed (i.e, the stall speed).
Taking intoaccount the functional rela-
tionship (2.3), the solution, i.e., the
optimal value of v,, of the McCready problem,
will be characterized by the necessary
condition for a minimum of (2.2) which reads
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]]
This relation is often referred to as the
McCready-relation.

It may be noted that the distance L
between the thermals is not present in this
expression implying that in theory the
optimal solution is independent of the
distance. In practice, of course, the
distance L does play a role since this
distance appears linearly in the altitude loss
-L wp/vp which should not exceed the original
heigﬁt

The McCready relation has a simple geome-
tric interpretation which is sketched in
Fig. 2. 1In particular, this interpretation
makes it possible to construct the optimal
horizontal velocity vp as soon as the net
rate of climb z¢y in the next thermal is
known by drawing a 1ine through the point
(0,z¢p) tangent to the graph of the velocity
polar. Of course, in actual practice, the
net rate of climb Zih of the next thermal will
not be known beforehand and therefore use will
have to be made of an estimated value of this
quantity.

In case the atmosphere between the thermals
is not at rest but instead has a constant
vertical velocity uy then, of course, the
altitude Toss from point A to B will no longer
be given by - L/vD but instead by

(l/vp)(wp+ua and the total time of flight
(2.2) by

.'"'_h

The McCready relation (<.4) changes
accordingly into

Since length L is not present in (2.6),
the McCready-relation will also apply to any
part of the trajectory where the vertical
atmospheric velocity happens to be constant
and which therefore may be considered part of
a larger trajectory (of length L) with the
given vertical atmospheric velocity over the
whole trajectory. For the geometric
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construction of the optimal velocity, one can
either choose to draw a Tine tangent to the
graph of the velocity polar starting out from
point (0, z¢p - ua) or, equivalently, draw a
Tine from the point (0, ztph) tangent to a
velocity polar moved upwards by the amount

uz. The first construction method is obvious-
1y to be preferred from a practical point of
view; the second may be preferred from a
theoretical point of view.

2.2 McCready-ring and Sollfahrtgeber

Given the relatively straightforward
characterization (2.6) of the optimal
solution, it is not surprising that means have
been sought for mechanizing this solution in
terms of the quantities that the pilot gener-
ally has at his disposal in flight. These
quantities are: 1) the sum (@; + w,) of the
atmospheric descent velocity and tFp sail-
plane's own descent velocity, which sun is
measured by the variometer (= rate af mb
indicator); 2) the velocity v =
relative to the air, which for the usua?
sailplane flight trajectory is approximately
aqual to the horizontal velocity Vps and
3) an educated guess or estimate Z¢p of the
net rate-of-climb in the next thermal.

Best known among the devices for determin-
ing the optimal cruise velocities in flight
is the so-called McCready-ring!?. This is a
movable ring with a matching Elinear} scale
around the variometer on which ring appro-
priate values of the horizontal velocity v
are inscribed at the (negative) scale

locations v “p (determined beforehand from
p a;?
the appropriate velocity polar). Accordingly,
at the zero point of the scale on the ring the
value Vp 4 the velocity for minimum descent
is 1n5cr1geg together with some zero pointer.
When the ring is turned such that the zero
pointer points towards a value zy), on the
variometer then the inscribed ve%ncity values
Vp will be present opposite to scale values
dwp
p P -
dvp
flight, the variometer provides the pilot with
a reading of the value of the quantity
ug + wp(vp) In order to fly optimally for a
given estEmate zth of the net rate-of-climb in
the next thermal, the pilot has to do no more
than to set the pointer of the ring on the
particular z¢, value on the variometer and
then adjust his speed such that the pointer of
the variometer points towards the inscribed
value of velocity actually flown. He then

of the variometer equal to z¢p + v In

will have achieved his actual vertical velocity
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uy + wp(vﬁ} indicated by the pointer of the
variometef equal to the scale value

s
aw
v 2o
chi P dwv . : i) J
p

on the ring.

In actual practice the use of
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zth of the estimated net
next thermal.

1t may be noted that for
ring and the"Sollfahrtgeber"
mation the | to suppl pra
cal implementation of the optimal solution
the value z{y of the estimated net rate-of-
climb in the next thermal. It will be shown
that tf holds for the practical imple-
mentation of more general optimal dolphin-
flight-strategies for which the pilot has to
supply again one characteristic value similar
to ztph which value appropriately will be
called the McCready-ring setting. The deter-
mination of the McCready-ring setting in more
general situations will take up a large part
of the discussions to follow:

2.3 The Dolphin Soaring Problem

In actual practice the McCready-ring and
the "Sollfahrtgeber" are used in a continuous
fashion, i.e., the pilot adjusts (in case of
a varying vertical atmospheric velocity dis-
tribution ua(x), x [0,L], his instantaneous
horizontal velocity vp(x) ideally in such a
fashion that at any point x the McCready-
relation (2.6) will be satisfied

(2.7

(%)

]
3

aw
W v (x) -v (x) £ & (x))
P P p de p

~u
th a

Under the assumption that the relationship
between the horizontal velocity vy and the
vertical velocity wn(vp) given by the velocity
polar (2.3) remains valid when these veloci-
es are varying in time, it can be shown®
that this quasi-static use of the McCready-
relation (2.7) will yield the optimal solution
as lon ‘ iv next thermal (with
the ne | 15 some alti-
The
the
and

in the

the ¢
2 total
“Cready-ring

net rate-of-climb

(2.8)
L L
. T w,}rv-,l‘ y) o+ |l|\x)|
L - dx = L ¢
. I 57 " vo(x) Ltan
. 3 4 )
0 0 P

This problem is generally referred to as the

pure dolphin soaring problem. It is a special
case of e general sailplane trajectory opti-
mization problem which may be stated as (cf.

Fig. 3a)
. dx sh | ALy =
@t ) min =l ‘ Ah
th

fore B 3 ;

w v (x)) +u (x}

P_i - —dx £L tan v7F
f v (=)
P

This latter problem formulation (2.9) differs
from the former (2.8) only through the assumed
presence of an isclated thermal at some point
(not necessarily an end point) of the range.
Ancther way to account for this situation
is to assume that circling in a thermal may be
replaced, for the sake of modeling, by a climb
over an assumed arbitrary small width of the
thermal with a corresponding arbitrary small



horizontal velocity. With this assumption,
the simpler dolphin soaring problem formula-
tion (2.8) may be used to describe the general
sailplane trajectory optimization problem
which, as such, will be referred to as the
generalized dolphin soaring problem.

In the absence of distinct isolated thermals,
and given the usual form of the velocity polar
{cf. Fig. 2),the pure dolphin soaring problem
(2.8) will in general have no solution unless
there is an extensive part of the range over
which the vertical atmospheric velocity uy(x)
is larger than the minimum sink rate, W max >
of the sailplane, i.e., unless over part of
the range {cf. (2.1))

(2.10) z{x) 1= (x)+ W .20

I7 this inequality is satisfied over a
fraction of the range which is too small to
allow pure dolphin flight, i.e., to allow a
sglution of (2.8), then the pilot has still
another possibility to avoid circling in the
next thermal and that is to fly S-curves in
the region where (2.10) is satisfied. The
effect of this "S-ing" is that the horizontal
velocity of the sailplane in the direction of
the course decreases while its vertical
velocity remains the same. The ootion of S-
ing as a possible solution to the dolphin
soaring problem (2.8) was first considered
by Metzger and Hedrick® who took into account
this "S-ing-mode", as they called it, by
defining an extended velocity polar as the
graph of the relation (cf. Fig. 2)

2y wolv }oi=w TE A S Y

iad
) p;max P p,mind

=W (v
¢ P

where wnivp) is the regular velocity polar
relation (2.3) and vppipg 1S the horizontal
velocity corresponding to wp max (cf. Fig. 2).
The basic idea of the extended velocity polar
will play an important role in the discussion
to follow.

For a given vertical atmospheric velocity
distribution ug(x) the generalized dolphin
soaring problem (2.8) is a simple calculus-of-
variations problem? with a subsidiary con-
straint of the isoperimetric type. For the
solutions of such a problem use can be made of
the Lagrange multiplier technique® which, in
this particular case, results in the necessary
condition (Euler-Lagrange-equation) for the
optimal solution

ifv -V .
i ) p,mind

v o(x), x o 10,0 .
r}

woiv ) o+ ou

N a,
) s X

a -
? I(v =y (x))
¢ oD

\
av v ;
F ] P
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or, worked out,
(2.12)

dw
w T Cwd ) = v ()
wp( P\“)J’ _i_]\ 4 4w

2 (g (x)) o= 1 —u (k)
P il

"
e

in which expression A(#0) is the Lagrange
multiplier, which is a constant” in case of
isoperimetric problems. The value A should
be determined from the subsidiary condition

e o _—
3 w“Lv\(x)) + u
{2137 E
5 v (%
J pk )

(x)
a

dx = L tan ~

The equations (2.12) and (2.13) together
completely determine the (optimal) solution
of the generalized doTphin soaring problem
(2.8). For the determination of the unknown
value of 1/), which, in view of the similari-
ty between (2.7) and (2.12) may be interpre-
ted as a fixed McCready-ring setting for the
range under consideration, use may be made of
an iterative procedure consisting of guessing
a value for 1/2, evaluating from (2.12) the
corresponding values of vp(x) and from the
integral in (2.13) the corresponding altitude
gain or loss. Depending on the latter result
1/» is thereafter increased in case of an
altitude surplus and decreased in case of
an altitude deficit.

Although the described iterative procedure
usually converges relatively rapidly, the
method is still too complicated to determine
in practice the optimal McCready-ring setting
1/» for any actual vertical atmospheric
velocity distribution encountered. Therefore,
the optimal McCready-ring setting has only
been evaluated for some special vertical
atmospheric velocity profiles such as the
sinusoidal distribution? and the square-wave
distribution’. The results thus obtained
serve as a guide and provide an estimate for
the proper McCready-ring setting for the more
general situations in practice.

In the following sections a slightly
different approach will be shown to yield the
same results.

3. THE OPTIMAL-RANGE-VELOCITY POLAR

(ORV-POLAR)

3.1 The Concept of the ORV-polar

A good starting point for the discussion
of the ORV-polar concept is the simple obser-
vation that given any range (0,L) with any
vertical atmospheric velocity distribution
ug(x), x €(0,L), there will in general be an
infinite number of horizontal velocity
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histories v,(x), xe(o,L) which yield the
same averageé (horizontal) velocity vay over
the range under consideration. This observa-
tion will be true for arbitrary average velo-
cities vgy » 0 if one allows circling or "S-
ing" (cf Section 2.3) in certain regions of
the range. Of the velocity histories which
yield a particular average velocity vg, the
one (or the ones) of most interest for
optimization purposes is that which result(s)
in the smallest altitude loss or largest
altitude gain over the range aor which
result(s) in the largestaverage vertical
velocity (= smallest average descent velocity)
over the range in question, i.e., the solution
of optimization problem

(3.1)
. I
L 3 b ”
v fw (v (x))-u (x) Vav 7 dx
i a o | ol B = g
(£ I _EF_EE;hTEFL__~— dx | -1 RACY :
EJ P a ¢

This problem is of the same type as the
generalized dolphin soaring problem (2.8), i.
e., a simple calculus-of-variation problem of
the isoperimetric type and its solution may
accordingly be determined with the same
(Lagrange multiplier) technique as discussed
in relation to problem (2.8) in Section 2.3.
Application of this technique to the present
prablem yields the result that the optimal
velocity history vp(x) (for the given average
velocity vy >0 and the given ua(x), x= (0,L)
is characterized by the relation (cf (2.12))

(3.2)

= z{v

w (v {(x)) - v (x)— =
AV 3 : ay

) —u (=)

t Y k D -
where z(vyy) is a constant Lagrange multiplier
value which in general will be different for
different values of the average velocity vy
and where the bar over wy signifies the use of
extended-velocity-polar relationship (2.11)
The actual value of the Lagrange multiplier
z{vay) may, as before, be determined from the
subsidiary condition.

L

»

bodx

» \r"l
(3.3) —‘i*‘i :

o Vp ¥

The value of the solution of the optimiza-
tion problem (3.1) is the maximal average
vertical velocity over the range in question
and this average vertical velocity will play
such an important role in the development to
follow that it is given the special name
"optimal vertical range velocity". This
optimal vertical range velocity wgypy may in
principle be determined for any value of the
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average
and the

(horizontal-range) velocity vay >0
optimization problem (3.1) thus
defines a relationship between it and the
average (horizontal-range) velocity vay thru
the expression

N W

orv'Y H B2

av

L
[ dx

v 4w (v_{x))+u (x) v
v (x)
P

g dx
v (x L

|:‘I 1] k)

2 i3

This functional relationship, which may be
plotted (cf Fig. 3b) in a way similar to the
ordinary velocity polar, or the extended
velocity polar (cf (2.11)), will be called the
optimal range velocity polar or ORV-polar (for
the given range and given vertical atmospheric
velocity distribution).

The ORV-polar, as defined by (3.4), yields
the result of the use of an optimal strategy
for any given average (horizontal) velocity.
Since any optimal strategy aimed at minimizing
the amount of time to cross the range in
question always results in some average (hori-
zontal) velocity, it will be of interest to
investigate the relation between this optimal
strategy and the optimal strategy which yields
the point of the ORV-polar for the same average
(horizontal) velocity. It follows immediately
then, that, as a consequence of the concavity
of the original velocity polar (2.3), both
strategies must be identical. The ORV-polar

minimum-flight-time strategies. It is this
observation, which makes the ORV-polar into a
useful and fundamental tool in the theory and
practice of soaring flight strategies. In the
remaining part of this chapter some interesting
properties, as well as the construction of the
ORV-polar in practice, will be discussed.

3.2 Properties and Shape of the ORV-polar

Intimately related to any point on the ORV-
polar is the value of the Lagrange multiplier
z(vay) which determines the optimal velocity
history Up{x), x e (0,L) which produces the
horizontal and vertical velocity range in
question.

It turns out (and that is the key to the
practical usefulness of the ORV-polar) that
these z-values also play a role in the geome-
tric characterization of the ORV-polar itself.
To be precise, it can be shown that as a
result of the definition (3.4) the derivative
of the JRV-polar satisfies the relationship

{3.3)
& . Z(vd ) —w v )
O y N av Crv.  dv "
[&Y J = - (v > 0}
dv av v av
av av



The proof of this derivative property of
the ORV-polar requires some mathematical
reasoning which falls cutside the scope of
the present discussion. The proof is for that
reason deferred to Appendix A. At this point
it is of more interest to remark that the
derivative property implies for the ORV-polar
a relationship which is similar to the McCre-
dy relation (2.4) for regular velocity polars,
to wit the relation

dw

orv
Vv oo——2v )} =z(v_ )
av dv av av
av

(3.6) ‘”orv(vav)

A sketch of the geometric implication of
this relation is given in Fig. 3b.

The derivative property (3.5) illustrates
the importance of the role of the Lagrange
Multiplier values z(vay) for the construction
of the ORV-polar. In view of that role some
inequalities which govern the relation between
these z-values and the average velocity Vay
will be given some attention before more
details about the shape of the ORV-polar are
discussed.

So that the ORV-polar can be defined for
arbitrary (positive) average (horizontal)
velocities smaller than the velocity vp mind
corresponding to the minimum sink rate wp max
of the sailplane (cf Fig. 2), one should
assume the validity of extended velocity polar
relationship of the form (2.11) as discussed
in Section 2.3, Observing that it agrees
with the usual practical situation to also
assume strict concavity of the original
velocity polar of the sailplane, the following
relations (cf Fig. 2) will hold for the
original extended velocity polar (2.11)

dw
7) { - v v ) =W
k¥t . p'xp} p dvp WY P, max
S0 oe v e for v v :
ot I p,mind ~ wp,m;}; P p.mind
and
dw
i e . P N
(3.8 W'IJlHP,T'_I \,y,?— = {\._p’z) =
9
dw
faf (r e ._..L WV ) = v
Pp,l 1yl v Psi Pl 1

Combination of the first relation (3.7)
with the observation that the optimality
condition (3.2) which determines the optimal
velocity history Gp(x), x < (0,L), requires
that

i
w (G () -V (x) =E () = quv) - ul(x)
Bop P : &
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leads for any x & (0,L) to the inequality

Z(V ) = u {}{) L 7 4
av 8 p,max

and hence, to a lower bound for the Lagrange
multiplier value

{39 z (v oW u =: z

av p,max a,max mr
where
(3.10) ua,max = max {ua(:«t) | x e [0,L];

Combination of the second inequality relation
(3.8) with the optimality condition (3.2)
results in a similar implication

):;‘:;

z (v o= {3
z( 5) L -

a2 5(x) > {p,I(XJ

which relates any pair of nonidentical Lagrange
multiplier values to the corresponding pair of
optimal velocities. Since this last implica-
tion should hold for any x ¢ (0,L), the follow-
ing implication is an immediate consequence

(3.11) z(vﬂv,zj = Z(Uav,}
The two relations (3.9) and (3.11), the
derivative property (3.5) and an important
property of the optimal strategy, to be dis-
cussed in the next paragraph, together deter-
mine the general shape of the ORV-polar. This
consists of a linear part (cf Fig. 3b) in the
lower average-velocity range, which is mainly
determined by the Tower bound (3.9) of the
Lagrange multiplier value, and a concave part
which is determined by the relation (3.11).
With respect to the optimal velocity stra-
tegies Vo(x), xe (0,L) which produce points of
the ORV-polar in the Tower average velocity
range, an important observation can be made
which is strongly related to the assumption of
an extended velocity polar relationship as
expressed by (2.11). This observation, which
is also of substantial importance for the
practical implementation of the optimal solu-
Eion, is that an optimal velocity history
vp(x), x&(0,L), can only contain at some point
xe(0,L) a local (horizontal) velocity vp(x)
smaller than v mind When the corresponding
Lagrange multiplier value z(vay) is equal to
its lower bound zp,. and when, 1in addition to
that, at the point x the vertical atmospheric
¥§1?8§ty uy(x) attains its maximum value Ua max
The reason for this property follows from
the fact that substitution of the extended
polar relationship (3.7) into the optimality
condition (3.2) results in the requirement

that when vp(x)ﬁ v

V.., g >V
av, 2 av, |

p,mind
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Z{u-i-l\a') - ua{kJ - wp,ma){

and this equality can in view of the earlier
derived Tower bound for z(vay,]) (3.9) only be
satisfied if at the point xe (0,L)

U’a (x) _ua,max

An interesting practical consequence of
this discussion is the rule that circling or
S-ing will only be optimal when executed in
points x e (0,L) where the vertical atmospheric
velocity attains its maximum valuel®. For the
ORY-polar this result implies that the
optimal vertical range of velocities in the
region of the small average velocities are
the result of optimal strategies which
consist of circling or S-ing in locations
where the extreme vertical atmospheric
velocities are present combined with a
straight flight with an optimal velocity
history corresponding to the Tower bound
Zmp (3.9) of the Lagrange multiplier value.

Accordingly, the ORV-polar in this region
of small average velocities consists of a
straight Tine connecting the point (0,2py) on
the vertical axis with the minimum-straight-
flight or MSF-point of the ORV-poTar (cf Fig.
3b) which point, with coordinates (vay.msf,
wory,msf), is the result of the optima
velocity history corresponding to the Lagrange
multiplier value zyye. This point, which owes
its name to the fact that it is the "first"
point of the ORV-polar (i.e., with the lowest
average velocity) realized by an optimal
velocity history without circling or S-ing,
is without doubt one of the most important
points of the ORV-polar. As such it should
preferably be one of the first points to
determine in practical applications.

The preceding discussion is also of impor-
tance for the appreciation of the S-ing mode
strategy put forward by Metzger and Hedrick®
and discussed in Section 2.3. To be precise,
it may be deduced that one can always replace
an S-ing strategy by a strategy consisting of
circling at some location x where ug(x) =
Ua may Combined with a straight flight with
horizontal velocity Vp.mind Over the other
parts of the range where the relation ua(x) =
Uy max Nolds. This result implies in particu-
laf the important practical conclusion that
the S-ing-mode, if optimal, is never the only
optimal strateqy. For theoretical purposes
one can thus ignore the S-ing mode and instead
restrict oneself to two flying modes, to wit
a) the pure dolphin flying mode consisting of
straight flight without circTing and b) the
regular) McCready flying mode consisting of
stretches of straight flight interchanged with
circling in locations with extreme vertical
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atmospheric velocities. It will be clear
that the point of the ORY-polar which serves
as border point of the regions where either
of these two different flying modes is opti-
mal, is the minimal-straight-flight or MSF-
point defined above.

3.3 The Use of the ORV-polar in Theory
and Practice

The ORV-polar as discussed in the pre-
ceding two sections was defined to provide
all information to optimally travel over a
given range with given vertical atmospheric
velocity distribution with any desired
average horizontal velocity. Thanks to the
derivative property (3.5) of the ORV-polar,
the procedure in case of a given ORV-polar
and a given average velocity is a simple one:
with the derivative property relation (3.6)
the Lagrange multiplier value z(v,,) can be
evaluated immediately (in practice possibly
even by graphical means) and this Lagrange
multiplier value determines via the optimality
condition (3.2) the (optimal) velocity
history of the straight flight portion of
the optimal trajectory.

In practice, the Lagrange multiplier value
z(vay) found may, as a result of the similar-
ity between relation (3.2) and relation (2.7),
be used directly as a McCready-ring setting
for use in connection with a McCready-ring or
"Sollfahrtgeber" (cf Section 2.2). The pilot
may thus generate the optimal velocity history
in the usual way. In connection with this
observation, the words Lagrange multiplier
values and McCready-ring-settings will be
used interchangeably for the z(vay) values in
the rest of this paper.

In order to make use of the ORV-polar it
is not necessary to specify ahead of time the
numerical value of the average velocity to be
considered. To the contrary, the ORV-polar
itself provides a very useful means for de-
termining for any given optimization objective
the correspoiding optimal average velocity
vav to travel over the range under considera-
tion. In particular, the availability of an
ORV-polar for a given range with given
vertical atmospheric velocity distribution
makes it possible to determine the optimal
average velocity v, (and therewith, as dis-
cussed, the Lagrange multiplier value z(v,)
and the optimal velocity history v,(x),

x e (0,L) to travel in an optimal way over the
range considered at any overall glide or
climb angle that is feasible under the pre-
vailing conditions.

Of most interest in practical situations
is, of course, the optimal average velocity
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(with corresponding Lagrange multiplier value 4. THE CONSTRUCTION OF THE ORV-POLAR

and optimal velocity history) for crossing the o T N

range with no altitude loss or gain. The 4.1 General Procedure

average velocity which yields this result is -

given by the intersection point of the ORV- The ORV-polar for a given range and verti-

polar with the horizontal axis, which point cal atmospheric velocity distribution could

for that reason is called the zero (-altitude) in principle be determined by solving for

-loss or ZL-point. The corresponding average each average (horizontai) velocity vay the

velocity 1s denoted as vay, 7] and is deter- optimization problem (3.4) by which the ORV-

mined by the condition that (cf Fig. 3b) polar was defined in Section 3.1. In prac-

(3.12) w__ (v ) =0 tice, however, simpler precedures may be used
: orv' av,zl which are based on the special properties of

the ORV-polar discussed in Section 3.2.

In particular, use may be made of the
property that for average velocities smaller
than the average velocity corresponding to the
minimum-straight-flight or MSF-point, the QRY-
polar consists of a straight Tine connecting
the point (0,zy,,.) on the vertical axis and the

The optimal velocity history which corres-
ponds to the ZL-point on the ORV-polar is just
the solution of the generalized dolphin soar-
ing problem (2.8) for vy = 0. The corresponding
Lagrange multiplier value with which the
optimal velocity history may be generated
(cf (3.2)) and which itself is given by

(cf (3.6)) MSF-point with coordinates (vay mst.Wory,msf)-
For average velocities equal to or greater
(3.13) iz than the average velocity corresponding to
s ae wly fopm s 2 oIV iy ) the MSF-point, the points of the ORV-polar may
opt av,zl Crseloav o av,zl be determined by evaluating the integrals
L
is called the optimal Mc -eady-ring-setting [ dx
for the range in questio:  For most practical (4.1) Hz) = | =G
purposes the knowledge o' this optimal McCready g P
ring setting is as good . the knowledge of d
the complete ORV-polar. an
Depending on whether e ZL-point is situa- L v () +u (x)
ted on the straight Tine or McCready)segment (4.2) th(z) = P a dx
of the ORV-polar or the irved (or dolphin- ’ J VP(X)
flying) part of the ORV- ‘lar the corresponding 0
optimal trajectory repre :nts either the ; . ; ; , ;

i - e in which expressions optimal velocity histor-
McCready-flying mode for rhich ies vh(x) are to be substituted, which are
(3.14) Zoot = Z generated for fixed values of the Lagrange

pt mr R : : : j
multiplier z z zy, using the optimality condi-
or the pure dolphin-flyi | mode for which tion (3.2) with z replacing z(vay)
(3.15) =z >z aw
opt @35 B GO S G (9 5 B S G0

A fast way to determi : which of these two PP I 2
modes apply is to evalua = the optimal-vertical
range-velocity wopy msf Orresponding to the The corresponding points of the ORV-polar
MSF-point {(cf Fig 55] of the ORV-polar. When- then follow directly from

ever this optimal vertic | range velocity _
the straight Tine segmer of the ORV-polar and and

McCready-f1yi € 1 ies, i.e.
the McCready-flying mode ipplies, i.e., 5 s ) = ahieliTh

(3.16) w ory

<0~ = z__ {McCready mode)
,msf t . G
.orv s ) 1p. B The actual calculation of these quantities
Otherwise the ZL-poi  Ties on the curved can be easily performed on a digital computer
segment of the ORV-pola nd the pure-dolphin as socn as some polynomial approximation of
flying mode applies the velocity polar
(3.17) o e 0~z ait ¥ g (pure dolphin imax .
mode) (4.6)  w (v EF ] e, V.
Lo i - PP ol P
Conditions (3.16) and (3.17) thus illustrate Rl

the importance of the ki +ledge of the location

of the MSF-point in acti | practice. and a polynomial approximation of the McCready
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curyelfril

e

. ic
(1 - k) Ckvp
min

is available. Necessary for the evaluation of
the optimal velocity history from the optimal-
ity condition (3.2) is the inverse of this
last function
(4.8) v

=z (z) =t v (z)
P p P

Several methods may be used to determine
an approximation for this inverse function,
which will be assumed to be given in the dis-
cussions to follow.

The prefered procedure for the determina-
tion of the ORV-polar thus consists of select-
ing successively increasing values of z3z zy,
starting off with z = zp,. and to determine
for each of them the corresponding point of
the ORV-polar. In case a point of the QRV-
polar corresponding to a particular average
velocity vy, is desired then some iterative
procedure to determine the Lagrange multiplier
z{vay) which produces the given average
velocity will in general be required. Only
in the case where the average velocity in
question is smaller than the average velocity
corresponding to the minimum-straight-flight
point can use be made of the local Tinearity
of the ORV-polar to circumvent an iterative
procedure,

4.2. Adaptation of an ORV-polar in Case of
Thermals

The usefulness of the ORV-polar for practi-
cal optimization purposes is very much
enhanced by the ease with which existing ORV-
polars may be adapted in case thermals are
present at an initial and/or end point and,
even more general, the ease with which ORV-
polars over subsequent ranges may be combined
with ORV-polars over larger ranges and, in
the ideal case, even to the ORV-polar pertain-
ing to the total range covered by the sailplane
on its cross-country flight. The two typical
situations: 1) the adaptation of an existing
polar to account for a thermal at an initial
and/or end point and 2) the synthesis of two
similar ORV-polars over subsequent ranges,
will be discussed in some detail in this and
the next section.

The determination of the change of the ORY-
polar when a thermal at one end is to be taken
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into account is of much conceptual interest.

As a result of the thermal at the end point
the maximal value of the sum of the vertical

velocity of the atmosphere and the vertical
velocity of the sailplane over the "enlarged”

?ange will in general no longer be equal to
3.9)

Z =W

mr a,max

pymax

but instead will become equal to the net
rate-of-cTimb in the thermal (2.1)

Z =W + u
th p,Mmax ti
where utﬂ is the vertical atmospheric velocity
in the thermal. Following the rules discussed

in the preceding sections, the new ORV-potar
will contain a new straight Iine connecting
the point (0,z¢h) on the vertical axis with a
new MSF-point ch preceding sections) on the
original ORV-polar, which point is character-
ized by the fact that the corresponding La-
grange multiplier value satisfies

z(va\r,msfj - e LZmr’zt.h} T

th

The optimal strategy for each point on this
straight Tine segment consists of circling
within the thermal followed (or preceded) by
a straight flight with an optimal velocity
history corresponding to the Lagrange multi-
plier value or McCready-ring setting equal to
zth (3.12). For average velocities larger
than the average velocity Vav,msf Of the MSF
point the original ORV-poiar is not altered
if the horizontal dimensions of the thermal
may be assumed to be very small relative to
length of the range.

It is clear that the condition of the new
ORV-polar in this last case agrees with the
traditional graphical construction of the
solution of classical McCready problem (cf
Section 2.1). This similarity is not acci-
dental: The ORV-polar of a sailplane flying
cver a range with completely still air is
precisely the original (extended) velocity
polar of the sailplane and seen in that light
both constructions are identical. The main
point to be observed here is that the same
construction as before may also be applied to
more general ORV-polars which for the sake of
this and similar constructions in the next
section may be treated as if they were no
more than regular (extended) velocity polars.
This aspect in particular is a very strong
point in favor of the use of the ORV-polar-
concept in the theory and the practice of the
optimization of sailplane trajectories.

4.3 The Synthesis of Two or More ORV-polars




Of much interest for theoretical as well as
practical purposes is the procedure for the
synthesis of two or more ORV-polars to yield
one resulting ORV-polar which corresponds to
the combination of the ranges. The keys to
this procedure are two observations which
directly relate to the porperties of the ORV-
polar discussed in Section 3.2. The first
observation is that the Tower bound on the
McCready-ring settings corresponding to the
new ORV-polar will be the largest value of the
net rate-of-climb over the range (cf (3.9)),
i.e., the sum of the maximum value of the
vertical atmospheric velocity over the range
and the maximum value of the vertical velocity
of the sailplane. Evidently, this maximum
value will be equal to the maximum of the
minimal McCready-ring settings zp i of the
cantributing ORY-polars, i.e.,

e Lz
T

The second observation is that at any point of
the resulting ORV-polar there will correspond
an optimal velocity history + (x, 0,iL, ]
which may be determined by F B
the substitution of one Lagrange multiplier
value z = zpps in the optimality condition
(3.2). Again it will be immediately clear
that such an optimal velocity history will be
nothing else than the sequence of the optimal
velocity histories over the subsequent ranges
corresponding to the same Lagrange multiplier
value.

A direct consequence of these two observa-
tions is that for all values z of the Lagrange
multiplier or McCready ring-setting larger
than or equal to the minimal McCready ring-
setting zye ¢ the corresponding point of the
resulting ORV-polar can be found by combining
the average horizontal velocities Vay, ]( ) and
optimal vertical range velocities Worv
corresponding to the particular value of z
following the straight forward expressions

x e [

4103w =1 2 i g
§ ’ ﬂv>SLZJ A { = (Z) d E v \;TJ av (2
i=} "aw,i j=1 av,]
and
w 1.. 1) L.
11) 2) 1= ; ‘.J_( : z)
Gt gy 608 LG u)f L Yorv,it®
1=1 ‘aw, i=1 av,j

which expressions for the case that m = 7 reduce to
(4.12) ; ; ) v z)
vavz(z)xavl(Z} I‘Z‘av](?) \av,,( !
v {z) 1= + -
L z) + W v r -
aves |Vd\.f2(_) L2 avl(Z) I‘1 av,)(z) M LZ av](‘{}

v_ztﬂ
v (z)
av, |

- (Llﬂ'}_‘) vav,ichva
L w

I a\.r,éz) 1
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l,iv 7(?,'1 w
| Yy e ) oBV,2 .
kel 3 wurv, g L v {z) + L v (zy orv,! (z)
| av,2 Foaw, 1 v 1
L. (
2 av,tkz)
Y iv T2y + L. [€3) or\ 2¢2)
1 awv,2 2 av,|

Values of z smaller than the overall mini-
mal McCready-ring-setting zye ¢ (4.9) which
generated optimal velocity hidtories over the
original parts of the resulting range no
longer do so. For average velocities smaller
than the average velocity vay(zmp,s) for
minimum straight flight over the resu1t1ng
range the corresponding points of the result-
ing ORV-polar lie on the Tine connecting the
point (O,zmr,s) on the vert1ca1 ax15 and the
new MSF-point (Vav{Zmpr s (zpp,s) For
the practice of optimai do1pﬁ¥n f1wght this
last result implies the nowadays well known
rule!? that circling in order to gain missing
height should in theory only be done at the
location where the vertical atmospheric velo-
city reaches 7ts maximum.

The expressions (4.0)-(4.13) for the result-
ing average velocities and the resulting
optimal vertical range velocities correspond-
ing to a particular z =z Znp imply that the
resulting range velocity vedtor with coordi-
nates (vay,s(z),worv,s(z) is a convex com-
bination of the original range velocity
vectors. In the case that m = 2 this implies
in particular that the resulting range vector
lies on the Tine which connects the points on
the original ORY-polars corresponding to the
same z. A sketch of this geometric interpre-
tation of the synthesis of two ORV-polars is
given in Fig. 4. Of much interest for a
possible practical use of this interpretation
is the observation that the lines which con-
nect the points (0,z) on the vertical axis
with the corresponding points on the original
and resulting ORV-polars cut off pieces from
any vertical lines which differ from each
other by a ratio equal to the ratio of Tengths
of the original ranges (cf Fig. 4). This
geometric property, the proof of which will
be given in Appendix B, paves the way for
simple graphical methods for the construction
of ORV-polars which result from the combina-
tion of two ORV-polars corresponding to two
subsequent ranges.

5. A Practical Application: The Determination
of the Optimal McCready-ring Setting in
Case of a Square-wave Vertical Atmospheric
Velocity Distribution
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5.1 The ORV-polar for a Square Wave Thermal
Mnd&]
Although it is in principle possible to

determine the ORV-polar for any range and any
vertical atmospheric velocity distribution,
the actual calculation will in general be
restricted to some simple models In actual
practice a sailplane pilot will never know
the exact vertical atmospheric velocity at
some locations before he arrives there.
Therefore, it 1s much more useful for practi-
cal purposes to merely provide the pilot some
guidelines based on simple models and to leave
it to him to interpret the actual situation
in the light of his knowledge about the
optimal solutions for those simple models.

A particular model which is of interest is
the general square wave vertical atmospheric
velocity model, which, as advocated by Reich-
mann!?, does not necessarily satisfy the mass
balance relation (i.e., the mass of air going
up along the range does not necessarily equal
the mass of air going down). In actual prac-
tice such a square wave model will approxi-
mately apply in case there are cloud streets
roughly along the course of the flight. It is
the maneuvering of the pilot in such circum-
stances which tips the air mass balance into
his favor.

For the square wave model to be considered
it will be assumed (see Fig. 5) that the range
consists of two partr of lengths Ly and L on
each of which there is a constant vertical
atmospheric velocity present with strengths uj
and up for which the additional arbitrary
assumption is made that up = uj. (Of course,
under the prevalent assumptions, the optimal
solution would not change if Lj and Lo would
consist of a number of distinct pieces adding
up in length to L1 and Ly.) The ratio
L2/(L1+L2) which may be considered the fraction
of the range over which the hypothetical cloud
street extends will be called the extension
factor and will be denoted by the Tetter e.

The determination of the ORV-polar corres-
ponding to this square wave vertical velocity
distribution model is relatively simple once
it is observed that the ORV-polar may be .
thought of as the result of the syntheses of
the two directly available ORV-polars for the
parts L and L, of the total range (cf Fig. 6).
Each of these consists of a translation in ver-
tical direction of the original extended
velocity polar, i.e., in formula form one has,
respectively

5.1 w i= +u, = <
( ) uw,lfvav) up,max % | av -V

=W (V) +u if v =V
p av

and
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Particular po1n§s (vau 1{(2)s Vorvy 6{5) and
(vav,2(z), Wory,z(Z)) of the original ORV-
po]ars correspdnding to values of z which
satisfy respectively z > z; and z = z, may be
determined directly frow the inverse function
vp(z) of the McCready function (cf 4.8) of the
original extended velocity polar following

the straight forward relations

v {z) :=v (z - u)
(5.3) av, | P 1
W Z) =W {V (2 - u u
— ( pt Y,
and
v (z) :=v (2 - u,)
LJ-‘*) HU,2 P 2
zli= z - +
urv,ft 4 wp(vp( u2)) Y2

In this context it should be noted that as
a result of the vertical atmospheric veloci-
ties being constant, the equivalent expres-
sions (cf 4.8): vay 1(21), vay, 2(z2) and
Vp(Wp max) do not répresent unique velocities
but nstead the whole range of velocities
between 0 and v ;
| The coordTnaEes ogthe MSF-point of the new
ORV-polar may readily be determined once it
is observed that for the square wave model
under consideration

C5.5% Z = max |2, ,Z,. = Z,
mr i =
and that for the"minimum-straight-flight"
trajectory

(5.6)

v =¥ (z_=-u,) , V Az, ) =

.'.-J\.F,I(ZZJ preg 1 av,2" "2 p,mind

Substitution of the expressions (5.3) and
(5.4) evaluated for z = z, into the previous-
ly derived expressions (4.12) and (4.13) for
the coordinates of an ORV-polar produced by
synthesis of two ORV-polars immediately
results in the desired quantities

L L v Z y {z, -
(5.7) v - ¢ 1 N '.-'\E,m'_nd Vi 2
B av,ms L W ; + LV (2, —u
| p,mind R i 1
and
(5.8)
L . lw v (2 - 1+, vz - :
; .1 Ypomind - p\pla ) r il H Ly vtz —u e,
orv,msi
¥ L ; L (2, -
I Vp,:‘.und Vi u;. 2 uI)




Coordinates of points of the new ORV-polar
which correspond to Lagrange multiplier values
z larger than zg. = z» follow in a similar
way from the expressions

(L, o+ Lv (z-u v (z-u)

1 2 'p b A5

(5.4 v {2) = i
o L ow(z —u )+ L,viz-ul
I g 2 2 op 1
and
(5.10) wcﬂ§2)=
o(r—u ATW Y (e L+ Low fz-u o jiw (¥ (E-u_jjeu ]
L]\}':Lz LE}"‘JJ{"F‘LZ ul))+L ]_+ 2\'p( l) E I 73 2

Lov {z-u ) + L_v (z-u 3
lp Z 2 g 1

1t should be noted that with the geometric
property (cf Fig. 4) of the Tines connecting
the common point (0,z) on the vertical axis
with the corresponding points on the original
and resulting ORV-polars, as discussed in
Section 4.3 and proved in Appendix B, it is
quite simple to construct the resulting ORV-
polar by purely graphical means for any given
values of uj,up and e = Lp/{LyfLy). A par-
ticular app%ication of this will be discussed
in the next section.

5.2. The Optimal McCready-Ring-Setting for a
Square Wave Thermal Model

As discussed in Section 3.3 the guantity

of most interest in connection with the ORV-
polar for practical purposes is the optimal
McCready-ring setting zg,. (3.13) which was
defined as the McCready—B1ng setting which
generates the ZL-point of the ORY-polar, 1.e.,
the intersection point of the ORV-polar with
the horizontal axis. The way to determine
this optimal McCready-ring setting depends

on whether the ZL-point lies on the straight
Tine segment of the ORV-polar or on the curved
segment thereof and this in turn depends on
whether the MSF-point (cf Section 3.3) Ties
above or below the horizontal axis or, eguiva-
Jently, whether the optimal vertical range
velocity Wory s f corresponding to the MSF-
point is positive or negative. In the case

of a square-wave thermal model this Tatter
velocity is given by (5.8) so that the deter-
mination of the optimal McCready-ring setting
depends on the inequality

(5.11)
lep,mind[wp(vp{zﬁ_u!))JrulI " szp(zg—ug}zz # 4

As long as this inequality is satisfied the
optimal McCready-vring setting is equal to

50120 z =z, =u,t

W
opt 2 2 p,max
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and the corresponding average (horizontal)
velocity equal to (cf Fig. 3)

e
v (et e
av,zl Z . TW - av,msi

2 Torv,mst

(5. 139
which expression with (5.7) and (5.8) results
in
(5.14)
oot il z
o A2 2 o vz, w )
pr2 1

uav,zl Ly 32_[wq(vp(22"ul))+u14 2

3

The corresponding strategy in this case will
be of the McCready type, i. e., one should
travel over part Ly ch Fig. 5) of the range
with the velocity vy(zp-uj) corresponding to
an expected net rate of c%imb zp (under the
cloud street), and over part Lo of the range
with horizontal velocity v mind:

Finally, one should reggfn e missing
altitude by circling at the end of the range
with net rate of climb zp. The strategy of
flying straight over part L, of the range at
the horizontal velocity vy ming followed by
circling at the end of the range is of course
equivalent to "S-ing" over part Ly of the
range with an average velocity vay{zp) which
follows from setting Worv(zz} as given by
(4.13) equal to zero, 1.e.,

(5.15)

v qkzj} Foam
av, = L

A graphical illustration of this and the pre-
ceding expression (5.14) is presented in Fig.6.
In case inequality (5.11) is not satisfied,
then the optimal McCready-ring setting has to
be determined as the value z > zp for which
the optimal vertical range velocity (4.13) or
(5.10) is equal to zero, i.e., the solution
of the equation

(5.16) Lov (z-u _)lw Qvl(z—ul)}+u]| +
: g p :

p Z
I v (z~u }w (v U—Uq}ﬂx{'= 0
2 n l poop 2 2

For the solution of this equation some itera-
tive procedure will be nexessary in general.

The optimal strategy in this case will be of

the pure-dolphin-type.

5.3 Plots of Zop

g Vs e for Square Wave Thermal
ModeTs |

. Given the means for solving for the optimal
McCready-ring setting in case of a square wave




v (z-u_)(w (v (z-u_ ))+u
P 2 p p 1
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vertical atmospheric velocity model with
given values of uj,us and e = Lp/LtLo, a
very useful piece of information for actual
flying practice may be generated in the form
of a plot of the optimal McCready ring set-
tings Zopt, @S @ function of the extension
factor e FDr various combinations of uy and
up. Plots of this kind have already been
produced by Metzger and Hedrick®, however,
given the theory of the ORV-polars as dis-
cussed, the information necessary for these
plots may be generated without an iterative
procedure and, if desired, even by simple
graphical means. Because of the practical
importance of this implementation of the
theory, the generation of plots of zgpt vs e
will be discussed in some more detail below.
The numberical results for a particular sail-
plane will be given in the next section.

For given fixed values of uy and u, the
plot of the optimal McCready-ring setfing
Zopt @S a function of the (cloud street)
ex%ensioﬂ factor e will in general consist of
two parts: a constant McCready-ring setting
corresponding to a McCready-type optimal
strategy for small values of e and a roughly
linearly increasing part, corresponding to
pure dolphin-type optimal strateqy for higher
values of e. The value of the former constant
optimal McCready-ring setting is given by

; o
opt 2 p,max 2

Points of the increasing part of the plot
may be generated in a straight forward way by
solving equation (5.9) for given values of
ui,uz for e given z instead of for z given e.
This is feasible by straight forward evaluation
of (5.16) written in terms of e

(l-e)v vz—u_)[w (v (z-u )})+u ] +
P 2 P P 1 |

e vp(z-ul)IWp(vP(Z"U2)+”2] =0
which leads to the explicit expressicn
(5.17)  elu ,u,,2) =

1_l

- = = 2 - ( (z-u )4u
vp(z ul)[wp(vp{z uz))+u2J vp(? uz)[wptvp\z ui) i

Evaluation of this expression for zy., = zp
with the appropriate substitutions ?5.2) and
(5.5) provides immediately the corner point
or break point ec(uj,up) of the zgpt vs e plot
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5.18 1 = o
(5.18) euku],dg) Lkul,uz,z?; =
v ; (w (v (z_=-u )+u
o p,mludL p''p' 2 ]) .
RS [w (v (2 -u7yJ+u ]
p 2 172 pymind” p p* 2 1’ 1

It may be noted that the value given by
this formula provides the minimal cloud street
extension factor for the realization of a pure
dolphin-flight strategy (for the given values
of u; and up).

The maximal value of the optimal McCready-
ring setting z, t for given values of u; and u,
will of course Eesult when e = 1, i.e., when
the cloud street extends over the whole range,
The value of it may formally be found by the
solution of the equation that results when L =
0 is substituted into (5.6), i.e.,

W ‘(z) = ()

(5.19) wp&vp(z-ujlj +u, sty 2
The solution of this equation 1n principle
requires, just as in the other cases of fixed
values of e, an iterative procedure. In this
special case, however, this iterative proce-
dure amounts to no more than the generation of
the inversion of velocity polar relationship
(5.20) 9

prvp(z uz)) = u
Consequently, this particular maximal optimal
McCready-ring setting may in practice be
determined by the same graphical procedure as
discussed in Section 2.1.

It may be noted that the initial point, as

well as the final point of the plot of Zypt
vs e are exclusively determined by the vawue of
the Targest of the two constant vertical atmos-
pheric velocities over the range, i.e., the
value of up over the second part Ly (cf Fig. 5)
of the range. The value of u; of the vertical
atmospheric velocity over the first part of the
range does, in combination with the value up
determine the Tocation of the corner point
ec(uqsup) of the plot of 2 ¢ ve e and there-
with the average slope of %He plot in the pure
dolphin flight region past the corner point.
An example of this behaviour is given in Fig-
ures 7-8 which present the numerical results
which were calculated for a particular sail-
plane type.

As a final observation it may be noted that
the plot of zppt ve e in case of a square wave
vertical atmospheric velocity distribution
model was evaluated with as only information
the velccity polar wp(v ) and the inverse
vp(z) (4.8) of the regu?ar McCready function.
No integration procedure or other complicated
procedures were required and this in particular
implies that the same effort by any sailplane




pilot who has the two mentioned pieces of
information available. With the use of the
geometric property discussed in Section 4.3
and proved in Appendix B the data for the

zopt ve e plot may even be generated by a pure
graphical method in much the same way as in
the years past the data for McCready rings
have been generated by a great number of
pilots.

5.4 Numerical Results for an LS-3 Sailplane

In order to provide a numerical example of
the results presented in this chapter, calcu-
lations of the optimal McCready-ring settings
Zgpt @S a function of the cloud street exten-
sion factor e in case of a square wave thermal
mode]l were carried out for an LS-3 sailplane
which is a representative specimen of the
modern "unrestricted 15-m class" or "racing
class" of sailplanes. The numerical data for
this particular sailplane was taken from cal-
culated velocity polars (corresponding to wina
loadings or respectively 33 kg/m?
furnished by the manufacturer. From each of
these velocity polars 20 readings were taken
and fed into a computer program for least
squares polynomial approximation. For the
velocity pg]ar corresponding to a wing loading
of 33 kg/m* the following polynomial turned
out to be a reasonably accurate approximation
(with a maximum relative error of 1.58%)

and 45 kg/mé)

2 =]

w (v ) = - 0.144534 (vpxao)_ + 2.138253 (v J40)
P oI

~ 7.847412 + 14.014615 (v ;40)
- 11.318253 (vpfﬁo) + 4.389605 (v ;40)

where vy and wp are both expressed in m/sec.
S1m1?ar1y, the velocity polar corresponding
to a wing loading of 45 kg/m2 turned out to be
reasonably accuratey (with a maximum relative
error of 1.57%) approximated by the polynomial

9 =
w (v ) = - 1.45118 (v _/40) 2+ 9.510116 (v_/40)
P p p p
~22.681673 + 27.045180 (v_/40)
: 5
~15.558411 (v /40)" + 4.223420 (v, /40)

where again w
m/sec.

Using these polynomial approximations of
the velocity polars two different sets of
plots of zyyt ve e were evaluated for each of
the two wing loadings considered. Figures 7

D and vp are both expressed in

and 8 provide the detailed results for a
number of different values of vertical atmos-
pheric velocity up over the second part L, of
the range and no vertical atmospheric velocity
(i.e., up = 0) over the first part Ly over the
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range. Also shown in the same plots are the
results for different values of the vertical
atmospheric velocity uj over the first part of
the range. The plots are shown in Figures 7
and 8.

6. CONCLUDING REMARKS

The idea of studying the set of solutions
of the optimization problem maximizing the
average vertical velocity for given average
horizontal velocities over the given range
with given vertical atmospheric velocity dis-
tribution has been proven profitable for both
the theory and the practice of sailplane
flight trajectory optimization problems. The
resulting theory, with the ORV-polar as funda-
mental item, not only unified the current
theory on the solutions of the McCready prob-
lem and the generalized dotphin soaring prob-
lem, but also provided a simple means to
determine the optimal strategy for the general-
jzed dolphin soaring problem in actual practice.

0f most importance for the theory was the
discovery that the tangent to the ORV-polar in
some points cuts off a piece of the vertical
axis which is just equal to the Lagrange multi-
plier value or McCready-ring setting by which
the optimal velocity history corresponding to
the particular point can be generated. Not
only did this property determine the general
shape of the ORV-polar, it also formed the
basis for the easy construction of the ORV-
polar. As shown,the property proved particu-
larly fruitful for the construction of the
ORV-polar by means of an adaptation of a
given ORV-polar for a thermal at some point of
the range or by means of a syntheses of two
known ORV-polars. In this context also,a
direct 1ink was Taid between the well-known
McCready-theory and the ORY-polar theory
presented here.

For the theory of sailplane flight trajec-
tory optimization the simplicity of the ORV-
polar-concept was shown to be very useful.
With it a number of rules for optimal dolphin
soaring earlier mentioned in the literature
could be explained very readily. This related
in particular to the rules that: 1) the
optimal strategy for dolphin soaring is, as
in the case of the McCready-problem, deter-
mined by one and no more than one McCready-
ring setting; 2) possible missing height
should be regained by circling only at those
points of the range where the vertical atmos-
pheric velocity has its maximum over the
range; and that 3) one should use a higher
McCready-ring setting whenever an overall
height gain might result in a cloud street
situation. A nice aspect of the ORV-polar
theory was furthermore that it provided a
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direct and easily computable answer to the
question of what McCready-ring setting to use,
namely the value at which the tangent to the
ORV-palar in the intersection point of the
ORV-polar with the horizontal azis cuts off
from the vertical axis. Still another rule
for optimal dolphin soaring which also
followed immediately from the ORV-polar was
the rule that an "S-ing" strategy, when
optimal, is never the unique optimal strategy.
This rule yields the conclusion that from a
theoretical point of view, "S-ing" strate-
gies do not have to be considered.

For the practice of the optimization of
sailplane trajectories, the ORV-polar concept
was should to provide a means by which for
simple thermal models, such as Reichmann's
square wave model, the optimal McCready-ring
settings may be determined by a simple gra-
phical procedure resembling the procedure by
which the McCready-ring data are usually
obtained. In particular, plots of optimal
McCready-ring settings (cf Figures 7-8) versus
the cloud street extension factors may be
constructed with the aid of no more than a
graph of the velocity polar, a ruler and a
pencil, i.e., by any pilot who is capable of
determining the data for a McCready-ring.

Of course, the ORV-polar theory is by no
means the final answer to the sailplane
flight trajectory optimization problem. The
great number of simplifying assumptions, such
as for example the complete knowledge of the
vertical velocity distribution ahead of time,
the independence of the vertical atmospheric
velocity distributions and the aerodynamic
equilibrium of the height and the assumption
that circling will not result in a smaller
vertical velocity, are all sources for dis-
crepancies between the optimal strategies in
theory and practice. However, as usual, the
theoretical results do provide more insight
as to what should be done in a nrartiral
situation. The extra insight may prove a
further detailed study of the ORV-polar con-
cept without one or more of the simplifying
assumptions worth while in the future.
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APPENDIX A:
PROOF_OF THE DERIVATIVE PROPERTY (3.5)

In Section 3.1 the optimal vertical range
velocity wopy was defined as a function of the
average (horizontal range) velocity Vay as the
value of the solution of the optimization
problem (cf (3.4))

(4.1 1 L
L {Va\f rw_J[V (X))'*ua(x}d‘{ Tav [ dx -
wur\rtva‘a" CmER JI v {x . L) v (x) 5
0 0

In this appendix it will be shown that the
derivative of this function wgpy(vgs,) with
respect to its argument vy, is given by (3.5)

where z(vay) is the value of the constant
Lagrange multiplier for the constrained opti-
mization problem (A.1).

Starting point of the point is the observa-
tion that the definition (A.I) for vy, > 0 is
equivalent to

v, P oG 6o T L,
worv{vav] g max { J v (x dx | | (x) = Vou
0 G o P
and hence also to
(A.3) I L
Mgy f SO G () sl | [ax
wrw\f(vav) S Ak L | V (% o W N RCTI
& o av o P




In connection with this last expression one
may define the functional

(A.3)

@[vp[xJ,"!:VW] : J

0

L » ({ =
) Ir\-'P(vp(x}) u (x) z—dx . £k
= vp(x) Vav

and observe that the optimal vertical range
velocity in terms of this functional is given
by

v
av 2 1
= 4 LV;,(X,VaV)-z["av}.V 1

(A.4) w T S

(v ) =
orv av

where vy{x;v,,) and z(vay) are the optimal
velocity history and the Lagrange multiplier
respectively corresponding to solution of the
optimization problem (A.1). The expression
(A.4) found is no Tonger an optimization
problem but instead an expression involving a
functional which is dependent on a parameter
Vay: Assuming smoothness, and differentia-
bl*ity properties as usual in the calculus-
of-variations® the expression may be differen-
tiated following the rules of the calculus of
variations with as result the expression

z(v_ ),v

: ] - .
on(uav) muge ¢;vp(x,\a ) e

oy v
v i Hv]s
3 av . aF B 3 {(xsv__)dx
(A.5) v = j[ va—-\-r; (\p(':r,,vav).z(vav)) 3\.3v av
0
L
( dx -.i_)ﬂi-—-%%-
= ('. \,P(x;vavi vuv dvav vav

(1]

in which

ar ; e
va(x.vw).z{u“).) 1=

¢.
Vp(x;vavj a—\;P- (vp(x;vav))—wp(vp(x;vw}—ua(xJ%(vuv}

v (x;v
P an

In view of the optimality of the solution
vp(x;vay) it follows that as well (cf (3.2))

for all x ¢« [O,L°

aF ) . :
sv—p(vp(x.vavi,z{\av)) 0

as
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So that the expression (A.5) reduces to

dw
orv
dv
av

1 .
{st} = I—#va{x;vav}z{vav),vav, e

or with (A.4)

orv

{v 3} =
dv av v
av

which is precisely the relation to prove.

APPENDIX B:
PROOF OF A GEOMETRIC PROPERTY OF THE ORV-POLAR
CONSTRUCTION FOR A SQUARE WAVE THERMAL MODEL

In Section 4.3 expressions (cf (4.12 & 4.
13)) were derived for the average (horizontal)
velocity vay,s and the optimal vertical range
velocity wypy ¢ (corresponding to some value
of the McCready-ring setting z) which result
in case of the construction of an ORY-polar
as the synthesis of two known ORV-polars
over the two parts L; and L, of a range of
length L + Lo

T, T2
‘B.1 = + m—
3 ) Vav,s T1+T2 av, | l]+'12 av,2
and
T I,
1 2
2 ) W = et W + —
(3. %) orv,s T ,+T, orv,lI T]+f2 orv,?2

It was noted thatthese expressions imply
that the resulting optimal range velocity
vector is a convex combination of the original
optimal range velocity vectors and as such in
a plot of the ORV-polar (e.q., Fig. 4) will
Tie on the Tine connecting the two original
optimal range velocity vectors. In addition
to that it was noted that the lines through
the point (0,z) on the vertical axis and the
end points (vay ssWory s)s(Vay 1sWopy,1) and
(vay 2Wopy.2) (corresponding to the $ame
vailacof zj’cut any vertical Tine in the ORY-
polar plot into two pieces, the Tengths of
which relate to each other following the same
ratio as the lengths of the paths Lj and L
of the range. This property of the geometry
of the ORV-polar construction will be proved
in this appendix with a simple proof from
planar geometry (which was supplied by Dr. D.
Kijne of the TH Eindhoven).

A geometric picture of the property to be
shown is presented in Fig. B.1. It may be
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hoted that it will suffice to show that the
lengths of the Tine pieces AE and ED satisfy
the relation

=) &
&
]
r | o
[ 2%

)

E

]
Given the formulas (B.1) and (B.2) it follows
that the lengths of the line pieces AS and SB
satisfy

LS|

P _1\2

If in Fig. B.1 the auxiliary line BF is drawn
parallel to SE then it follows that

as well as

Combination of these two ratios immediately
yields the desired result

T L

AE AE EF _ 2 av?2 2
T L - =

=D El ED 1 av, 1 1
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w
orv,B

w
orvs

W
orv, A

Fig. B.1: Geometric property of ORV-polar
construction by syntheses of two
known ORY-polars over subsequent
ranges



Fig. 1 The classical McCready-problem
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w
p.max

w ﬁ;ﬁhn

Fig. 2 The (extended) velocity polar of a
sailplane & the graphical constuc-
tion of the solution of the
McCready problem

Fig. 3a The generalized dolphin soaring
problem
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Fig. 3b The ORV-polar for the range in Fig, 3a
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Fig. 4 Sketch of the construction of an ORV-
polar by synthesis of 2 known ORV-
polars over subsequent ranges
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Fig. 5 Sketch of the dolphin soaring problem
1n case of a square wave thermal model] Fig. 6 Graphical construction of the relevant

optimal average (horizontal) velocities
in case of a square-wave thermal model
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