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slI4t'4ARY

0n a cross-country flight a sailplane pilot
may optimize his average cross-country speed
by adjusting his instantaneous horizontal
veiocity (and thereby his instantaneous ver-
tical velocity) so thdt he flies faster thru
regions with downward moving air and slower
thru regions with upward $oving air. For the
exact so'lution of this optimization probleD
in case of a given arbitrary vertical atmos-
pheric velocity distribution along the course,
a simple npw Lool is introd"ced in lhis pdper
in the foni of the definition of an "optimal-
range-velocity-polar" or, oRV-polar. This
oRv-polar is the plot which provides the
optimal averdge vertical velocity of the sail-
plane over the course as a function of its
average horizontal velocity.The shape, the
properties, the construction and the use of
the oRV-polar are discussed in this paper.
In particular it is shown that the optinal
veloclty histories !,/hich correspond to the
individual points of the 0Rv-polar dre each
dependent on on'ly one qlantity, the so called
"l,4ccready-ring setting." As a result, these
optimal velocity histories may be generated
in practice in a relatively easy way with
aids and/or instruments currently in use by
the sai lplane pilots.

For theoretical purposes the oRv-polar
concept facilitates the understanding of
known theoretical results, such as the rule
that (ignoring the possibility of an ear'ly
landing by lack of height) the optimal velo-
city history over the total range is complete-
Iy detennined by the largest possible net rate
of climb encountered along the coLrrse. Also,
the concept of the ORv-polar makes it easy to
understand that flying S-curves, as proposed
by some authors, when optinal, is never the
only optimal strategy.

For practical purposes the oRV-concept
mkes it feasible to determine the exact

optinal l4ccready-r i ng - se tti ng for any course
with any vertical atmospheric velocity dis-
tribution. For the special case of a square-
wave thernal model, the optimal t4ccready-ring-
setting fliay be determined by a sinple graphi-
cal nethod which requires no more information
than the velocity polar (i.e. , the regular
relationship between the horizontal and ver-
tical velocity) of the sailplane. As such,
this particular optinal l{cCready-ring-setting
can be determined by any sailplane pilot
without the aid of a computer. As an example
of this last use of the 0Rv-polar concept,
the paper also presents the optinai Mccready-
ring-settings for a variety of square-wave-
thermal-model values for a particu'lar sail-
plane type (15-3) representative of modern
racing-class sailplanes,
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A sailplanemay travel over great distances
r/hen the pilot gajns altjtude in regions of
rising air and subsequently transforms this
alLitude inLo distdncp by glidinq thru regions
of sinking or still air. For a gjven sail-
plane in equilibriun flight, there exists a
(usually knor./n) relationship between the hor-
izontal velocity of the plane and its vertical
velocity reldtive to the air and this provides
the pilot with the option of trading altitude
loss for speed over the descent pdrt of his
trajectory. The d€termination of the best
speed to fly to optimize the average velocity
along the course, taking into account the
time spent jn gaining altitude, is an inter-
esting optimization probleri that has been
attacked by a number of theory-minded sail-
plane pilots and optimization specialists

In the earliest formulation of the problen
of the cross-country fli!ht of sailplanes,
the case considered lr/as that of altitude
gdinpd e(clusively in \mdll locdl regions
(thennals) with relatively strong vertical
almospheric velocity wiln givPr 'ixcd nagri-
tude and that gliding takes place through a
region of still air (Fig. l). The probi€ln in
this case consists of the detennination of
the (constant) cruise velocity between
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thennals !,vhich resvlts in the shortest time to
fly fron a point (Pt A, Fig. 1) in one thermal
to a point {Pt. C, Fig. 1) at the sane height
in the follovling theflnal. The solLrtion to
this alg€braic optiflization problell} already
knownto sone Geflnan conpetition Snilplane
pilots before l,lhiII, became conrnon krrowledge
to the sailplane community after the sLrccess
in 1948 of the An€rican orldChampionship
pilot Paul llccready kho invented a simple
device, the Mccready-ring, to implement the
optjmal solution in actual practice. Since
then the problem formulation is usually
referred to as the ccready problen.

In practice the atmosphere bet*een trc
thermals will seldon be completely ai rest
and quite often there will be some vertical
atmospheric velocity distribution along the
course, As 'long as this vertical atnospherjc
ye'locity is constant over parts of the total
course a simple extension of the l4ccready
theory provides the optinal strategy directly.
In case of a varyinq distribution, the deter-
nination of the besL instantaneous cruise
velocity becomes a (sinple) problem in the
realn of the calculus of varjations, the
solution of which can be edsi ly deriveo2. The
inplementation of this solution may be realized
in practice quite simply with the earlier
mentioned J'4cCready-rinq or its recently
deyeioped flechanized version, the so-called
"Sol lfahrtoeber" or soeed directorl0-

lhe character of the optimal solution in
case of a varying vertical atmospheric velocity
distribution is jn general such that one
should fly faster the stronger the downvrards
atmospheric velocity and sloRer the stronger
the upward atmospheric velocity. fhe tra-
jectory of a sailplane thus flying at optimal
crLrise speeds resembles the trajectory of a
jumping dolphin and this mode of flying of
sd'ilplanes at optimal cruise speeds has there-
fore becofle know as 'dolDhin-soarina"'1.

lr a lurber o \iLuation\, For in.ldnce in
case of flights under cloud formations known
as cloud streets, it may happen that in this
Lype of dolphin flight altitude is gaided
instead of lost, in which cdse the pilot no
longer has to use thermals to gain altitude:
he nay fly over 'long distances in straight
fl ight without circling! Especially during
l-he lasl Lcn yedrs, this lvpF of dolphin
soarinq, also nade possible by the advent of
glass fiber sailplanes wjth very high perfor-
mance characteristics, has resulted in a
nunber of record breaking flights. Dolphin
flyjng strategies are practiced frequently
over stretches during regular cross-country
fl i9hts.

The detprmination of ihe optimdl cruise
velocities in cases where there are large
enough regions alonq the course to pemit

relates to minimunl rate of descent

re'lates to minimal value over the
range

relates to MSF (=mi nimal -straight-
flight-) point

relates to solution of an optimization
Problem

relates to ORV (-optimal -range-
velocity-) vector
relates to velocity polar, i.e., to
the sailplane relative to the
surrounding air
relates to synthesis of two or more
oRV-pol ars
relates to the thennal

relates to the ZL (=zero-(altitude-)
loss) poi nt
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cross coLrntry flyinq withoLrt circling has
been the subject ol a nLrmber of studies. In
the earliest of theser,' heuristic argume t:
were used to arrive at good or rouqhly opti-
tul strd egia.. Li'e-. -tJlia. ' -o'.t!,dted
Lhp problem d) a (-imple) p'oblen ;n lne
calculus of variations and arrived at the
correct Inathenaticdl characterizalion of the
opi.imdl solLlron. laese (Ludics dl.o provi-
ded rlles for the computation of the optjnal
solution in any given situation. llost
studies thereafter/'8 applied the theory to
simpl e periodicdl veriical atmospheric
velocity di stri bLrtions emploY-
ing sailplanes with mathematically simple
perfonnance characteristics. only ve ry
recentlyl has attention been paid to a nor-
periodi c vertical atmospheric distribution
$/ill" sone s,ggFirions given towd.os d possi_
ble so'lution.

In the present paper attention will be
paid to the solution of the l'lccready problenr
wh;Lr', logeL'rF wi't its implem"rt.'ion in
practice with such aids as the l,lccready-ring
or the "sollfahrtgeber", plays a central role
in al l sailplane trajectory proble s.

This discJssion hi,l oe pre enLFd in
sectjon 2 where, in addition, the gereral
dolphin soaring problem will be defined and
its knoe,n solution briefly reviewed. ln
Section 3, a particular concept, believed not
to have been used earlier within this theory,
the optinral -range-vel oci ty-pol ar (0Rv-polar)
will be introduced dnd some properties of it
discussed. These properties uill turn out to
be such that th€ oRV-polar, which contains all
the infonnation for the complete solution of
the dolphin-flying problen,can be evaluated in
practice in a relatively simpl€ manner.

ln Section 4, the latter aspect wr'll be
elaborated. Next, in Section 5 the theory
$rill be applied to the case of a sqLrare wave
velocity distribution and some nunlerical
results l4ill be presented for a particular
sdilplane of the racing-class type. Finally,
in Section 6 some concluding remarks about the
use of the oRv-polar in theory and practice
will be sunmarized. The paper closes with
bvo appendices in which the proof of d mathe-
matical and a geometric property of the 0RV-
polar are given. Not considered in this paper
are the dynamical aspects of sailplane trajec
tory problemse. Problems in which a vertical
variation of th€ vertical atmospherr'c velocity
distribution is assumed or problems in which
a realistic lower'linit of the feasible flight
level are also neglected. All these aspects
of the sailplane traiectory problem should,
among othersr be taken jnto account befofe one
can say that the deter inistic saiiplane
trajectory optifiization problem is fully

2. PROBLE]4 FORI"IULATI()N, SOLUT]ON
AND nlFr FNFNiATi(]-N 

--2.I Lle llc,qrc.q qr_8uo_!.lsr

FundaDEntal lo all sailplane trajectory
optimization problens is the classical
I4cCready problen which is concerned t'Jith the
question of how fast a sailplane pilot should
fly between isoldted thermals of given strength
in order to minimize the time to fly from a
point A (Fig. 1) in one thennal to a point C

at the same height ir the next thennal. This
time can be split up into the time of flilht
from point A to the first point I to point C

in that thermal. The latter tifire l,Jill be
determined by lrhe net rate of climb zth in tho
themal which is equal to the sum of the
vertical atmospheric velocity ufh in the ther-
nral onc rnF varri(o, veloLity lvD nl n- sail
pldne in ci rcl inq tliqht.

If it is assLrm.d that the vertical velocity
when circling is equal to the minjmun rate of
descent, or eouivdlently the 0raximum vertical
veiociry, wn ...,rn eq,ilibri .r rllqnl, rhen
ne raLe oi'i'l'i'D in Lhe ther al i,i oe

given by

(2.1) 2.,, := us6 + wp,rux

illlen the difference between the two ther-
mals is L and the sailplane flies in betlveen
the two themals r,/ith a (constant) horizontal
velocily vo dnd a (,on\tdrt) vprticdl veloLity
"h, lla,r the Lrn" of'li9nL {ro, A to B w'll
ob -/vn nro l'p !or'espordi.q dltit,d' lo<.
-(L/vn).vio. Ihe loLdl rirle or rll9hr lron
onrnt'A ih a thFrFhith be.nmes

L , -...r. ,i.r:,

For this expr€ssion the assumption is essen-
Lidl rhdL lor stsi loldne. dp wi. I al!tdy\ hF

neqarr ve,
ln case of an equilibriuln glide in between

the thennals, a fixed aircraft weight, a

constant ajr density and a constdnt gravita
tiondl accelerdtion, the vertical velocity $o
o the sdilpld'e (relarivF to I'e air) "'lldepend on its horizontal velocity (relatjve to
the air) according to some functional relation-
shjp whr'ch is knoMas the vqLoci tJ plar of
tFe pd,tic,lJ, saitplan. {r6i-qiren "rcrarrweighr (or cquivdlenLly oiven wing-lodding)
dnd given air density).

f =L]\!]'iirP

A sketch of a typr'cdl velocity polar for a
sailplane is qiven in Fig. 2. Note in parti
cular that wp(vp) is a concave function with a

L i :1 1: -il
itlrtr



well defr'ned maxinun and that the function
l{n(vD) is nol deJineo ror speeds smaller rhdn
<bme minimum speed (i.e, the sLdll speed).

Takinq intoaccowt the flnctionai rela-
tionship (2.3), the solution, i.e., the
optimal value of vD, of the l4ccready problem,
will be characteri:zed by the necessary
condition for a minimun of (2.2) which reads

r r! ) , =f Lr , = ,u'',

lhis reldLron is ofLen referred to as lhe
.Creadv-relation.

It may be noted that the distdnce t
between ihe thermals is not present i; this
expression implying that in theory the
optinBl solution is independent of the
distance. In practice. of course. the
distance - does play d "ole qin(e Lhis
distance appears'ljnearly in the altitude loss
t hDlvo which snoLld not ercped rhe origindl

hcr oht-
ihe lilccready relation has a simple geone-

L"c i.1(c-l reLarior which i. 'lerched ir
Fig.2. If particular, this interpretation
mdkes iL po\lible Io LonsLruLL Lhe opLima]
hori2ontdl velocity ;;p ds soon ds the net
-dLA of cl'-lb zth'n lhe re\l 'hemal is
lrown by d' dl"inq a linF Lh.oLql Lhe poinl
(0./tn) l.ngenr to ,he graon o. rhe velo, itv
poldr, 0l course, in dctual prdcrice, Lne
neL raLe ol clirnb /,k of the nerl- thenndl will
nor oe kno!.{n beforeh5rd dnd Ll-e.efore us" wrll
have to be nade of an estimated value of this
quantity.

In case the atmosphere between the themals
is not at resl but instead has a constant
vpr Lical /p o,iry ud ltsen. of rou"se, lha
d, i'J'lc lo \ f-orn point A o B will no lo'9€r
be given by -(L/vD)wn bLrt instedd by
-{r/vo)(woiud) and lhe loral Lime of t lighl
12.2) by

1- 2., - wo u.,

LLr '
lhe ilccreddy reldLiun (..4) chanqes

accordi ngly into
Llr..
_)r

Sirce length L is not present in (2.6),
the l,4ccready-relation v'/ill also apply to any
part of the trajectory where the vert'ical
atnospheric velocity happens to be constant
and which therefore may be considered part of
a larger trajectory (of length L) vrith the
given vertical atmospherjc velocity over the
whole trajectory. For the qeometric
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constrLlction of ihe optinral yelocity, one can
either choose to draw a line tangent to the
graph of the velocity polar starting out from
point (0, /rh - ud) or- equivdlently, draN a

I ire fro rhe poilr i0, zrh) lonqo.l 1o o

velocity po'ldr noved upwards by the amount
ua. The first construction method js obvious-
ly to be preferred fron a practical point of
view; the second may be preferred from a
theoretical point of viellll.

2.2 ltlccready-rinq and Sollfahrtqeber

Given the relatively straightfor\aard
characterization (2.6) of the optinlal
solrtion, it is not surprising that means have
been sought for mechanizing this solution in
terms of the quantities that the pilot gener-
ally has at his disposal in flight. These
quancitie. d-e: I) Lhe sur (trd I kn) or lle
aunospheric aescerr velocity dnd tFe sdil-
pldne's own descenL velocity, which sum is
modsu,ed bv the variomFLer ( ror"_qf_climF
,noicdtor)i l) the vFlocity v - (v6 - wf)
rFlarive lo tne air. u.ich'or Ehe usual
sailplane flight trajectory is approximately
equal to Lhe hori?onta1 velocity voi and
l) dn ed"cdLed guess or estrmdle zlh or lha
net rate.of-climb in the ne^r thermdl.

Best known among the devices for determin-
ing the optimal cruiqe velocrties in ,li9nl
is the so-cdlled tlccreddv-rinql0. This is d

n ovaol e -inq v' j th-JGifaliT1i i near ) .cale
around the variometer on which ring appro-
priate values of the horjzontal velocity vp
are inscribed at the (negative) scale

d$r-
IocaLion\ v v {dprern,ined belorehdnd l-omp di-
the appropriate velocity polar). Accordingly,
at the zero pojnt of the scale on the ring the
vdlue vD-mind the velocity lor minimum descent
i' inscribpd Loqelhcr with sone rero pointer.
l,,lhen the ring is turned such that the zero
pointer pornts towdrds d va:uF /r" Or 11"
vdriomeler rhen rhe inscriDed velricitv values
vD will be present opposite to scale values

ol the vario'recer equal to /.h , u^ dnp In' iup

flight, the variometer provides the pilot u/ith
a readirg of the value of the quantity
ua * HD(vn). In ordpr Lo {ly opLimdll} lo/ a
given bsl"mdre zth o Lne 1Ft rate-o -r ltmo in
the next thermal, the pilot has to do no more
than to set the pointer of the ring on the
pdrticular lLh value on the vdriometer and
Lren adj,st l.is speed such lFdL Lhe poilter o.
the variometer points towards the inscribed
value of velocity actually flown. He then
will have achieved his actual vertical velocity
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r" I v{D(vo\ i'la i.dtea ov 1p ot e, or I'ro
vdriombtel equal to the scdle vdlue

z + v --.4 {v ) on the rinq.ur ? dvP ! -

In actudl prdctic€ the uso of lhe l'4cCready
rinq requjres the pi lot to continuously Dairch
lh. r."di g or 'ro :n-lr. e.. , l- .o" o-
neter (with ring) and the airspeed indicator.
0f course, this is not an ideal siluation and
a number of devices have been proposed to
'd.'1ild e n- u a or '1F Y, ,p.dy ri g i
prdctice. By far the simplesi to use is the
recently developed "50l IL4lLtgeber"l 0 which
is essentially a completely new instrument
which direct'ly proviles a readinq for the
quantity

ds
u +w(v I-e -J(eI

I

l,,iith this instrument, the dnly thing ihe
pilot has to do to fly optinLally js adj!st
his airspeed in such a way thai Lhe pointer of
the'Sollfahrtgeber points towdrds the value
zth of the estinated net rate of climb jn the
next thennal.

It may be noted that for both ihe l4ccready
ring and the"Sollfahrtgeber" the only infor-
mation the pilot has Lo supply for the practi-
cal implenrentitjon of the optimal solr.rtion is
the value zth of the estimated net rate-of-
climb in re e/r Lhprmdl. I willue 5now'r
that the same holds for the practical imple-
mentation of nore general optimal dolphin-
flight-strategies for which the pjlot has to
supply again one characteristic value simildr
to zth whlch vdlue appropriately will be
called the McCready-rinq setting. The deter-
njinaLior of Lhp 14 I rpdoy- ing -etL.nt in . o,e
general situations !,\Jil l take up a large part
of the discussions to fo'llow:

2.3 The Dolphin Soarinq Problenr

In actual practice the l4ccready-ring and
the "Sollfahrtgeber" are used in a continuous
fashiof, i.e., the pilot adjusts (in case of
a varying vertical atmospheric velocr'ty dis-
tribution ua(x), x l][0,1] , his instantaneous
hor'zo.rdl /eloci'y vo/ )ir:ea11v rr c.r o

td-'rior Lh", d dn, po:n' t1" YL,-eddi-
relation {2.6) will be satisfled

(2-7)

(x) frf (vnLx,I = z

Under the assumption that the retationship
b-tdep, rle no-- orrdl vFloci-, !n d.o tt-F
/or '-o vplo .'\ wo vD qiven bv"rhe v.lo, i rpolo. (1..) .elai vdlio wl.n llese vptoLi-
lies are varying jn time, it can be shovrna
that this quasr'static use of the llccready-
relation (2.7) ldil l yield the optimal solution
ds long as at arrival in the next thermal (with
the net rate of climb zth) there is some alti
tude loss \,Jhich should be taken care of. The
froof of this is sinilar to the proof for the
more general problern to be disc|ssed next dnd
is thcrefore not given here.

There are occasions, such as the case of
:o,ro 'r-"' o/e, o ot n^ forc tto d. -

tory, that the use of the Nccready-ring fed
wirr 're propFr vol,,a ot "-r rdrF-ot -ti o r.
;' rne nF, lre.r.ol r" .lL in d dlt r-ae "'
qain instead of aititude loss at arrjval at the
next th€rmal. In that case no circlin! in that
thermal is necessdry and the pilot might
ronsider flying Iaster to reduce this altitude
qain and increase his trverage velocity over the
range under consi{leratr'on. The classical
l,4ccready Xheory no lDnger applies and instaad
a new problern mdy be fonnulated: how to select
tsF i..(d.rrd "ouq hor,,on,dI velo,
'". iLn. oi ."ryin " si19 o"d .in, i q oi, .. r

that the overall average horr'zontal velocit_v ;s
maxjmiT!d,",hrle endr'n! up at d given altitude
gain (or lossl. in mathenratical terms this
leads to the constrained minimizatjon problenl

(2.8)

;--i;
L

0

This problem is generally referred to ds the
ure dolphin soaling lroblem. It is a special

cdse of the !eneral sailplane trajectory opti-
mization problen which nay be stated as (cf.
Fig.3a) 

Lia^ rl(2.rr .* lq,,r z.h ."

!. (v (")) + " (")
-f--l:-- -L dx . L ran

ii ",""'
This'latter problem formulation (2-9) differs
fron the former (2.8) only through the assumed
presence of dn isolated thermal at some point
(not necessarily an end point) of the range.

Another way to account for this situation
is to assume that circling in a thennal may be
replaced, for the sake of modeling, by a climb
over an assumed arbitrary small width of the
thennal with a correspondjng arbitrary small

L

0

a (v (x)-v
PP



horizontal velocity. l'{ith this assumption,
'10 \.r plo dolpl'n odr irg probl"m _o, ula-
I on (2.8, md! DF u Fd Lo dp\L.ioa t"p qpnerd'
sailplare trajectory optimi zati on problen
which, as such, vJi'll be referred to as the
cenerrlized dolDhin sodr inq problem.
"-r; r + ao a:; ar d-:;fic riA;ted I h'' na l'-,
dnd qivp. "e .\ud, -orm o' '.p vplo, . r ool"r
{". iq. 2).LhF pura dolDai' 'odring lrool'1
(2.8) will in qeneral have no solution unless
there is an extersive part of the range over
$/hich the vertical atnospheric velocity uu(x)
i: l.,oFr lh"n rhe nin,m,r \i.t r".. p.m,^.
o'llF \.ilpl.n". i.".. ,l" o{pr pc'i ^fthe ranse (cf . (2.1))

LZ.LL, z,{) := u._'xr'"p.n"* '

If this inequality is satisfied over d

fraction of the ranqe rvhich is too snrall to
allow pure dolphin flight, i.e., to allow a

solution of (2.8), then the pilot has still
another possibr'lity to avoid circling in the

o"o t16r i . lo 'ly -. ir\"q in
the regr'on where (2.10) is satisfied. The
effect of this "S ing" is that the horizontal
velocity of the sailplane in the directior of
the course decreases l'vhile its vertical
velocity remains the same. The ootion of S-
inq as a possible sol!tion to th€ dolphin
soarinq proble (2.8) was first considered
by lvp.!e- d o lea";Ll" nho 'oo\ i'_o oL,o n

tn: -i1q- .od. , d" t1"v cd I led i ' , \y
o- -nind-"n a, enaed u"!q! l p!Lq: o h'
qraph of the reldtion (cf. Fiq. 2)

1.)\i ;1,(".) ,=.p,.o* i1'vp ' vp,ri..1

v-. . -d,p
w er^ o vo/ s L'- '-guld_ veloLr'v oold'
r"t,rion (". tr and vnm.n. i. l"p ho, i on Jl
/eloL ily Lor rp'pono h9 t6 "..'nu. 

(, I iq. 2).
'h- bds,c idcd o t e p.,enoed valoc:,y pold-
w:ll pl"r' a- i,oor"dn 'ole ir Lho o'<cu,'ion
to follow.

co- d qive- ver,icdl dcno-pheric velo( irv
disL, ioution ,"(.) ,he qFne"dlized ao,pnin
sod_inq problen (2.8) is d sinrpl" , olcul ._o'-
variations problem2 with a subsidiary con-
straint of the isoperimetric type. For the
solutions of such a problen use can be made of
the Lagrange multiplier technique5 which, in
Lhi. p,rrli.uld. rd<e, ra<ults in ,ha necps d"y
co, airion (Lule--Ldg'dnqp-co-dlior) lor lre
optimal solutjon i-("t, " ,0,,.

i Lv ) r u lrr.
" ll'v =r Lx,,

iL
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(2.12)

w (v (x) ) , ,.r -f L" ,.r,,,r = I u-,1)

i" dhiLh a^pre,.ior r/0\ i le .dqrdnqF

'Ll,inli"., whi"1 is " Lor'rdn in "a e oi
isoperimetric problems. The value I should
be determined from the subsid'iary condition

L^
12 . rJ)

v (v (x)) + u la)

0
v (x)

-he FqLd'ion! \1. -?\ "nE 
(?.11l LoaethF.

Lo qp lF lely oe_e'-.1i"e rhe loplinal' sol-':oa
of the generalized dolphin soaring problem
(2.B). For the determination of the unknolJn
value of 1/1, which, in view of the similari-
ty between {2.7) and (2.12) may be inL€rpre-
ted as a fixed l4ccready-ring settifg for the
range under consid€ration, use may be made of
dn i'Frarivp p.oleou-p co.. srirg or qu"s.,n9
o v,r'lue to- -/ , pvalud, inq ro, (2. t.1 thA
.orr..ponoinq vdl,e or vo("1 dnd ro lnp
ir'Fqral in ( -ll) he co..e\oondi'q d l'. rude
gain or loss. Depending on the latter result
1/l is thereafter increased in case of an
altitude surplus and decreased in case of
an altitude deficit.

Although the described iterative procedure
usually converges relatively rapidly, the
method is still too complicated to determine
in Dractice the optimal McCready-ring setting
l/ o, d.ry dr'udl vp,rir". dlro pheric
velocity di stri buti on encountered. Therefore,
the optimal ltlccready ring setting has onlv
been evaluated for some special vertical
a'mospheric valoc t/ oro il"\ su.h d' he
sin,,,ni.", disr' ibuLion dnd tne saidro-w,rvp
disrrib!tion7- The results thus obtained
serve as a guide and provide an estimate for
the proper llcCready-ring setting for the more
general si t!atiors in Practice.

In the follol./ing sections a slightly
different approach will be sholvn to yield the

3. TI]E OPTIMAL.RANGE-VELOCITY POLAR

( offi- poflFl-
3.1 The concept of the 0Rv-polar

A good 'ldrLing poi.t lor Lhc oiscu<sion
of the oRv-polar concept is the sinple obser-
vation that given any range (0,1) \aith any
vertica'l atmospheric veloci ty distribution
ua(x), x e(0,1), there },,lill in general be an
infjnite number of horizontal velocity
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r' lL /,' (..1 ' j^' ' i' la 'n-
r,. ( ",,o .1) / lo "j .r,/ ov"r

lhe rdnge undor consideralion- Thi5 observ,r
tion will be truo for arbil.rdry ave!_a!e velo-
cities vav ) 0 ia one allows circ'ling or "S-
ing" (ci Section 2-3) in certain regions ol
lhe range. 0f th€ v€locity hisLorr'es which
rrelo a pdrti.ulJr dverdqe volocity vdv lhe
one {or rha o'p ) of nio\r 'n'e,es, Io.
optimjzation purposes is that which result(s)
in the smallest altitude loss or largest
altitude gain over th€ range, ar which
result(s) in the larqestaverage vertjcal
velocity (= smallest average descent velocity)
over the range in question, i.e., the soluLion
of optimi zati on problem

(3.1)

u t! (\)) u.\ al
P p ,-

This proble is of the same type as the
generalized dolphin soarinq prcblem (2.8), i.
e., a simple calcLrlus-ot-vdrratron problenr of
the isoperinretric type and its solution nay
accordingly be determined wjth the same
(Lagrange multiplier) technique as discussed
in relation to problen (2.8) in Section 2-3.
Application of this technique to the present
problem yields the .esult that the optimal
velo.ir, histo'v vLt, (lor rr" liv"n.\p age
velocity vdv 0 and Lhe given u.j((). (0,1 )
is characterized by the re'lation (cf (2.12))
(3.2)

&
ur,{)-v.)--("^)

ll

uhere z(vav) is a constant L.grdnge multiplie.
val!e which in leneral will be different for
different vdlues of the averaqe velocity vdv
drd lihere 'he bd ovF- wn \rgnr, 6 1, i - o
a\LFndoa.vptor',r-po r. ialrrio jnip (1. '
The actual value of the Lagrange multiplier
z(vav) nray, as before, be detormincd fron the
subsidiary condi tion -

(j.jl f

oi-,d!- (rori/or Lrl--d1.al rc oL.rv vdr 0
,'4 rra o,,i,n,,dl o' pro.larn (..1) Ln-s
defines a rolatiofship between it and the
average (horirontal-ran!e) velociLy vav thrLr

rJ ).=

This functional relationship, l,rhich nay be
plotted (cf Fr'9. 3b) in a way siflilar to the
ordinary velocity polar, or the extended
velocity polar (cf (2.11)), wr'll be called the
optimdl range velocity poldt or 0iv-polar {for
the given range and given vertical atmospheric
velocity di stri buti on ).

The oRv-polar, as defined by (3.4), yiplds
the result of the use of an optjmal strategy
for any given averdqe (hori?ontal ) velocity.
'i"cp dny optrndt srrdreq\ drFd ar :nir rirg
rre d, o-r' oa I ire Lo c"o \ (l-F .drgp i,
question always results in some average (hori
zontal) velocity, it r,rill be of interest to
'investigate the relation between this optimal
strategy dnd the optimal strategy which yields
the por-nt of the 0llv-polar for the same averag€
(horizontal ) velocity. It follows immediately
then, thdt, as a consequence of the concavity
of the original velocity polar (2.3), both
strategies inust be identical. lhe ORv-polar
thus also provides the r€sults oJ al l_!!!:ible
lltaiqqljlg!! !t!rtLs,!I!199]-C!, I t i s thi s
observation, which firakes the ORV polar into a
usefLrl and fundanentdl Lool jn the theory dnd
practico of soaring flight strategies. In the
rernaining pdrL of this chapter so e interesting
properties, as well as the construciion of the
0RV-polar in practice, vrill ba discussed.

3.2 Propertiqs and !!gzc- -oL!.!C !8v_:_pS-l.q1

Intinrately reldted to any point on the ORV

polar is the val!,o of the La!ranle multiplier
z(vavr unir. dFrFnnrnes lhp oD' nDl velocrly
I <!or / io l. (0.. ) wl'i,h p.oo""e\ 'ne
no"j/ontdl dno verri(dt ve,o(j,J range in
ques ti on.

It turns out (dnd that is the key to the
practical usefulness of the 0RV-polar) that
these z-values also pldy a role in the geome-
tric characterizalion of tha oRV-polar itself.
To be precise, it can be shown that as a
result of the definition {3.4) the derivative
of the IRV-polar satisfies the relationship
(i.i)

t-

:;l;t
41,

L

0

v., r ,1"

ii,

L

0

I

The value of the solLrtion of the optimi2a-
tion problem (3.1) is the maximal avorage
vertical veiocity over the range in question
and this average vertical velocity lvill play
such an important rol€ in the d€velopnent to
follow that it is given the special name

'ootimal vertical ranoe velocitvL . This

d (v ix))+u

optimat vertical ranqe velocity lrorv
principle be detennined for any value



The p.661 oi ll,s aFrivorive p-opijlJ !
t re ORv-poLor, "qui' e,-iomF maihimi-l
reasoning which falls outside the scope of
the pr€sent discussion. The proof is for that
reason deferred to Appendix A- At this point
it is of fiore interest to remark that the
derivative property implies for the oRV-potar
a relationship which is sinjlar to the l4ccre-
dy re'lation (2.4) for regular velocity polars,
to wit the relation

dw
.o, ---9-|vrv r /(v ,

A sketch of the geometric implication of
this relation is given in Fig. 3b.

The derivative property (3.5) illustrates
the inportance of the role of the Lagrange
Ilultiplier values z(vav) for the construction
of the 0Rl/-polar- In view of that role some
inequalities which govern the relation between
these z-values and the average velocity vav
will be given some attention before nore
details about the shape of the ORV polar are
d iscussed.

So that the 0RV-polar can be defined for
arbi trary (positive) average (horizontal)
velocities smaller than the velocity vp,nind
corr-lponding 'o th" J ir:n.n. . ir rd,p lyh , -
ot rne 5ailpiore \'f lig.2), one .no"ldP'"'"'
assume the validity of extended velocity polar
relationship of the form (2.11) as discussed
in Section 2.3. 0bserving that it agrees
with the usual practical situation to also
assLrne strict concavity of the original
velocity polar ofthe sailplane, the following
relations (cf Fig. 2) will hold for the
original extended velocity polar (2.11)

!v
Lr.7) ir"r ,, --Jt(vI =!

ll,8). . rv- -t - vf, -ll 
c, ) >

d!
-F_,.0...,r -,.. lr. .o.t -,,- '.,t

Combination of the first relation (3.7)
wirl rhe ob.e,vc_tor h"t rhe op'. .dlity
Lordi.ior ().. ) whi.n date' ineq .nF optr,dt
velociry hisro ! vo{ 1, (0,t l, requi"F\
that

dw-;,, , -'-r':
'ot,o
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leads for any x. (0,1) to the inequality

z(vav) - ".(x) .,trp,.a"

to a lower bound for the Lagrange
value

z(v ). N

mul ti pl i er

{1.9)

(3.10) ua,mx := @x iur(x) x . fo,Lti

Combindl;on ol tlF sarond inequdt cy rcld io,
(1.8) u;Lh lne ooLirdliLv conoit,on (r.2)
results in a simjlar implication

'u-,.t' ' '-r.r'_uo.-t* '.p,rt^
l,{hich relates any pair of nonidentical Lagrange
multiplier values to the cofesponding pair of
optimal velocities. Since this last implica-
tion should hold for dny x E (0,1), the fo|orv-
ing implication is an immediate consequence

(l.r1) ,(vav,2) > z(vav,l) -'.u,2 ]j,u,r

The two relations (3.9) and (3.11), the
derivative property (3.5) and an inportdnt
property of the optimal strategy, to be dis-
cussed in the next paragraph, toqether deter-
rnine the general shape of the oRv,polar. This
consists of a linear part (cf Fig. 3b) in the
lower average-velocity range, which is mainly
detenrined by the lol]ver bound (3.9) of the
Lagrange multiplier val!e, and a concave part
!{hi(F r\ dpteflni'pd b. trF "","ri01 ( . tr.

I.y''rh respacr lo.he opriJ"l velo.i / I.c
c"qie. vD(^,. r0. I u,.i.h proorce pornr . ol
ihe {JRV-Fol.r i' rn" loB"r d/Frdge r'FloLit}
range, an important observation can be made
v{hich is strongly re'lated to the assL.mption of
"n e''endFd veloLiLv pola-."l.tio..t-ip "\expressed by (2.11). Thjs obs€rvation, which
is also of substantial jmportance for the
prdc icdl irolenp. arion o' rno op, rordl \ol"-
lion. is rhdt an oprimdl vplo,i', 1ir{or./io("). ,. (0,1 t, cin oniy cor,ar; dL some ooinLr (0,1 ) d lo.rl (hori?o.'di) vFloLrL/,n(),)
'mdllerrr"l vp, ind vrher rle.o.re5oondrnq
Lagrdlqe 'nul' plrFr va ue /(v"v i( FqJal ,o
irs lower bo,nd zr. and "r"r,_ir daotrion -o
Lhat. dl rha poi". " Lhe ve,, icdl a rc plpri(
v"loci'r uo(,) al,d:n\ ir, na\..l,n vdlua ud,ma
G.10 ) .

The reason for this property fol'lows from
the fact that substitution of the extended
polar relationship (3.7) into the optinatity
condilio l'.2r re\,JL)'n'1F require Fr(
that lvhen v-(\) vp - p,fit nd

32
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2(v l-urxl-u

ind this equdlity can in vie1./ of the
d€rivel lo$/er bound for z(v".,) (1.9)
!dtisfied rf at the point r; (0,1)

earl ier
only be

An i.lere\linq prac,i."l .onsequp ce or
rl-i. di\c,s5ion i. lhe ' ,le thdt circtino or\-irq uill only bp oprim.r ,vnp, evaLured i4
points x e (0,1) where the vertr'cat atmospheric
vejocity attains its maximum valLre10. For the
0RV-polar this result implies that the
optimal vertical rdnge of vetocities in the
region of the small averdge velocitjes are
the result of optimdl strategies l'Jhich
consi,'o r irclino or \-,nq ;' Jocario,
wh"rF Lhe p r rpn,p verr icdr or brplFric
velocities are present combjned with a
straight flight with an optinal velocity
hi5(o'y corro,poroinq ro'1e .owFr borna
/n. \'.9t ot hp ld9;6ngp "rLlLiplra' vdlue.

ALcord'nql!. rhe oRV-ooldr rr rri -egion
of snrall average velocities consists of arraiol. lin" Lo,iFLLi q le forn' \0,,h,r o,
rfp ve,-iLol o,i. ldi,r r-a - i , , ' ,m- s , . . i q 1 l

I lL9!,1 o r"l l pglL oi Lr, 0pv-oo-i; (.i'is.
rb) whi.r poinr. ui'1_oo,a,nJ'F (vdv-rnlt,
worv. , ). . n" re ,l. o. rt" or ' ollelo;i v hi.roi. ,o,"p.no.di,q ro,h" L,grdn!,
multiplier vdlue zmr. This point, \"/hich owesits name to the fact that it is the,,first
point of the oRV-polar (t.e., l.,ith the lowest
average velocity) redlized by an optinal
velocity history vJithout circling or S-ing,
is r,/ithort doubt one of the nrost jmportant
points of the oRV-polar. As such it shoutd
preferably be one of the first points to
deternine in practical appl r'cations.

The preceding discussion is also of inpor
tance for Lhe appreciation of the 5-in! mode
strately put forward by J,4etzger dnd lledrickB
drd di.L.'.Fd in ,, rion 1-J. To o- pr.Li ",it may be deduced thdt one can dlways reptace
an S-ing strategy by a strdtegy consisting of
Li rl'nq dr .o p lo.d, io \ Hna " .-t./
ud-m", o,L,irea I'i" d .,r"iqr' liin,r. ,t
hoi'.ii"r,l velo, i v \o-nind over' F o,,6.
porr' o rh- n. "lo' on L"(.)
'" n,^ holds. -', P ,l i. 

' r". :, pi. ,. .-
ldi 'ro inpo .d ' .r'c,,r"Ji .on. l! iLn dl
'he \,.rq_ oo". I !p L c.. i. -/ , l. o, t,,
opi ir o I .,'"ljgl. ror '1-o or " ol pu, po o .

one can thus ignore the S in9 nrode and instead
restrict oneself to two flvinq mod€s. to |rit
a) rna pL'F aolprin tlr,_n! oo- orsi.rirq ot''rdiqts, 'l qhr w'rhou, i' linq "no ) 1.
regular) J,4cCready flyinq node consisting o:F
stretches of straight flight interchanged with
circling in locations with extreme veriical

atmospheric velocities. It lrli ll be clear
that the point of the oRv-polar which serves
as border point of the regr-ons where eitherol lhF\p i{o aitfFrel, tlyirq ooe. i. opri,ndl. i lhp r ninol-.'-. 0', tliqhr or 14.t -point defined above.

3.3

The 0RV-polar as djscussed in the pre-
,adirq rwo sFLrion\ lllds opti-pd Lo p-oviap
dll info.nrdtjon .o op,irndlly I.dvet ovA- d

I vFn .noa with qiven ve- r,dt a1r,o.preri.
velocity djstribution with any desired
average horizontal velocity. Thanks to the
derivative property (3.5) of the 0RV-polar,
'hc p,ocFd.rp i- . d.F o' I qivFr oRV-pold,
ond d qrvar dvFrdqp vFlocil), i d ,irptF o"e:L'i'n rre aFrivariv- orop"r,! y"161ion , '.o,rhe -.q,"nqe mul"iplipr vol,p z(v-,., can o-avdl,dreo i rediaralv (in o-."1i,;"Do ioly
eve' bJ qrdohiidl rpdn.) dra rhi( ldq'dngF
r,ulfiol 6, vdtvp de.-vninF. vid rhe opri dl.ri
coldirion ( . ) ,he lr rir.or. v-ro.ir)
hi\lo.v o'rle t-Jiqrr 'liqh, po.',on ol
the optinal trajectory.

I1 p ""i,F. 'n" Ld.'"noa rul,ipliar r'.,1a
/({"vl 'ourd Frdy. .( d rF ,l. o' .h" ,. ,d.-ity betr'Jeen relation (3.2) and retation (2.7),
b. u ^a ajr-. 'J, .. J ,41{ .eody_rinc e, ;19ror ,\F i.r .orne, ,o ;ir; ;-;C;ntltn!r-ol' otl dl,r.aoe. /,. \p! io, .2r. tia pilor
mdv ,n,q qF-"'d - 'ro oo, rr " ""ju, i'y li ror)_n hi u\,d wa). In , on, p, r ror wi tn rh \
observation, the words Lagrange nultiplier
vdl.Fc dld Y, L.F"dy r.nq- o' L nq. wjl I b6
u -a inL"'.rdnqpabl, to, 'h",{;,,,J \" ,F. i,
the rest of this pdper.

. I o,dpr'o dr" , e o ,rF Oqv Lot"r iL
r. rol r.,e,..rv io IA,;ly oh-Jo ot '' p .ne
1u e, iLol vo .F or ne dvr., o rFlo y 'o be,on ,c| o, o rr p o, r r af) 

- 
16 0D!,. po rr

itself provides d very usefut nrears for de-
terminr-ng for any given optjoizdtion objective
the correspoiding optiital dverage vetociLy
vav to travel over the range under considera-
:or. .n oo,'i,dl,r.'r" J\dit.D ti, o d,(JRV-p^lo' o' " qiv",' fdrc" witn qi\Ll

verti cal atnospherr'c velocitv disiributjon
makes it possible to deternLine the optjmat
d/p c.l6 ,dtor rv \"v ",d r,, r-ri,-. c. ot -.u .,d. h- td,rdnaa ..t.;ot.". /",r^.r/"\.
cnd ,h- ottindl v.lo, i \ ni .o.) /"(.,, "'
' /0-r 'o , d/"1 tn.n op,i .I !r;y ov-. i,p
range considered at anv overall qljde or
c'limb angle that is feasible under the pre-
vajling condi tions.

0f most interest jn prdctical situations
is, of course, the optimal average velocity

The ljse of the oRV oolar in Theor
and Practice



(with corresponding Lagrange nrultiplier value
and optimal velocity history) for crossing the
range with no altitude loss or gain. The
average velocity which yields this result is
given by the intersection point of the 0RV-
polar with the horizontal axis, which point
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4. TIIE CONSTRUCTION OF THE ORV-POLAR

4-1 Generai ProcedLrre

The ORv-polar for a given range and verti-
cal atmospheric velocity distribution co!rldir pr'n.ipl" oe cerpl"ninaa b/ solv:nq for
eacl- dvFrdgF (horr,,01Ldl)veloci'/ rdv r1a
optirnization problem (3.4) by which the 0RV-
polar \,as defined in Section 3.1. In prac-
tice, however, simDler precedures may be used
which are based on the special properties of
the oRV-polar discussed in Section 3.2.

In particular, use may be made of the
property that for average velocities smdller
than the average velocity correspondinq to the
minimum-straight-fliqht or l4SF-point, the ORV-
polar consists of a straight line connecting
cha poinr (0.h.) on Lfe verticdl d. i\ dnd tr^e
t45l -po;nL uitr coordind ps (vdv,,,1.,f.worv.ns|).
lor averagP velocrtres Fq,dl lo or qreata.
than the average velocity corresponding to
the IISF-point, the points of the oRv-polar may
be deternined by evaluating the jntegrals

'or 'ho'rFd.onis.ollpO """,,aro (-,rl iLrd")
:]!!9 or Zl-point. The corresponding average
v"lo, i J i oFnolpd d\ vd/.rl dnd re oera,-
'i1ea bv,ne,onoiLior Lh" (Ll liq. .b)

(3.12) worv(va,,,zt) = o

The optinal velocity history which corres-
ponds to the ZL-point on the ORV-polar is just
the solution of the generalized dolphin soar-
ing problem (2.8) for y = 0. The corresponding
Laqranqe multiplier vdlue LJith which the
oo, ift I vFtocirv.istorv, oy oF gFrprotFa
lc ( .2)) drd vr'6i,h il ^l i\ given oy
(cf (3.6 ))
(3. 13 ) ds

.p. 4!./J

is called the qpqlnra Ll\,!cfor the range in questjor
purposes the knowledge o
ring setting is as good

the complete 0RV-po'lar.
Dependi ng on whether

ted on the straight line
of the 0Rv-polar or the
flyinq) part of the oRV-
optifiral trajectory repr€
Itlccready-f lying node for
{.t- r4) opr rnr

or the pure dolphin-flyi
{3.15) z z' opr mr

A fast way to determi
nodes apply is to evalua
rdnge-veloci ty worv.nsf
MSF-point (cf Fig. l) of
ever this optimal vertic
w61y.nq1 is nonpositi.ye,
the <trdiqht I ine seqmer
the lr4ccready-flying nod(

13-16) w ^.0-' orv.msr -

'.e.adJ rirrgj:lqllj_ltg
For most practical

this optimal lr4ccready
, the knowledge of

e ZL-poi nt is situa-
or l4ccready ) s egme nt
fved (or dol ph i n-.lar the corresponding
rnts either the
rhich

, node for which

: which of these two
:i the optimal -verticai
)rrespondi ng to the
lhe 0RV-pol ar. l{hen-
I range velocity
the Zl-point lies on
of the oRv-polar and

tPpl ies, i.e.,

)pt= zmr (Mccready mode)

(4.2)

(a.3) w (v (x)) - v

Ila'14.t) T(,)= ;-Gr
bP

vuu(z) = L/T(z )

worv(z) = 
^h(z)/T(z)

0therwise the ZL-poi lies on the curved
segment of the 0Rv-pola ,nd the pure-dolphin
flying mode appl ies
(1.-z) w _., O -: ., tuu.F dolphi,*' 

,nooe)

Conditions (3.16) and (3.17) thus i]]ustrate
the inportance of the k .Jledqe of the location
of the i4SF point in acti I practr'ce.

lt (v (x)) + u (x)
rh(z) = 

.] 
-i-l-v-1;r-,3- dx

in $hic1 e"pre\sio.s op'.mdl valociLy r-jstor-
ies vn(/) are Lo be s,bsritLLed. whicl, dre
generhted for fixed values of the Laqrange
rulriolier /. rmr usi'r9 rFe opti'rdlit' (ordi-
tion (3.2) with z repldcinq z(vav)

(x)J(vtx))=z-u(x)

The comesponding points of the oRv,poldr
then fol low directly from
(4.4)

(4.5 )

The actual calculation of these quantities
can be easily perfomed on a dr'gjtal computer
as soon as some polynomidl dpproxination of
the vel oci tv po'ldr

(4.6) " r' , = i
PF"!lkl

and a polynomial approximation of the IlcCready

34



TECHNICAL SOARINC, !(]L. V], NO. 4

v -l (! )

= L tt _ r.)crr^
l=k

is available. Necessary for the evaluation of
the optimal velocity history fronr the optimal-ity condition (3.2) is the inverse of this
last function
(4.8) u = t' l.) =t u t,)ppp

severdl erhod< , dy bF ,\ed to cp{efln ne
an approxjmation for this inverse function,
which will o. dssrmeo.o De 9ivp, in 1F d s.
cussions to foI low.

Tle orFlerFa p.oced,re.or tFF opter'nd-
tion of the 0RV-polar thus consists of select-
ing successively increasing values of z: zmr
sldrting ofr wilh,/' zmr dno Lo ootp,mrie
'or FoLl ol rhon rhe co"r-\ponajnq po,nL ot
Lhe ORv-pol.r. l" Ld,e a poir I oa .n" ()RV.
polar corresponding to a particular averdge
velocity vav is desired then some it€raLive
p.oced""e lo detennin. ,he Laqrdnqe m,lliplie.
.,(vdv) uhirn orodrLe\ Lnp qivpn dverd!p
velocity will in general be required.- 0nly
in Lhp co.e dnerF cre dverdqe velo( itv in
quesrior 's )1alle- 'nda rh" dveraq" v^loci y
corre5ponding I o ttse 1in ir un-s I rd i6nr-'l iSnL
point can use be made of the local linearity
of the 0Rv-polar to circumvent an iteratr've

4.2. 4!!!!q!!!
Thernal s

-The -cFr.l1e\< or rhe oRV-pola. o. prdlfi
ca I o0t rn_ /d I io" pJ-posFs i\ ver y m-! r

enidnLed by cr^e edse witF wliLl F, i(r-nS ORV-
polars may be ddapted in case thenidls dre
pres€nt at an initial and/or end point and,
even more general, the ease with 1,,lhich 0RV-
polars over subsequent ranges may be comblned
with 0RV-polars over larger ranges and, r'n
lhe :deal .d(F. even ,o 'ne ODV-potdr pp, ,. n-
iao lo rha Lordl rd.qe Love.ao by tn- 9dilpld16
on i' .-05(--ounL-y rl_ar lhe ,yr'o r/p-. d t

,iLudriol<: ,l tne da"pratio- o.an e.i!i,q
polar to account for a thennal at dn initial
and/or end point and 2) the synthesis of two
similar oRV-polars over subsequent ranges,
will be discussed in some detar'l in thr's and
the next section.

The d€termination of the change of the 0RV-
polar when a thermal at one end is to be taker

into d. ou'' i . o' "r."1 Lon epr .ol r,,6JF. '.A ' " .l o rr, r1-,rdl o r,F end ooi.l
vdl,, o. rra ,"1 o rl.e v-.,t.dl

v€locity of the atmosphere and the verticat
velocity of the sdiiplane ov€r the "enlarged"rarge wiil ln generat no longer be equal io
(3.9 )

mr f'nax

but instead will become €qual to the net
rate-of climb in the themat (2.1)

th p,max ah

wher" uLn i\ Lhe verli(dl dLno,pne,iL vFlo,:t)
i,l The rre.r.l. Followrnq rhe r"le. oi\cu5sedin the preceding sections, the new ORV,polarwill coatdrn d new s.rdiqhl .ine co,nc.t.n9
rhe ooinL r0.ztnr on the rFrr ic.l ".is wr,a d
rFlr l1)l -poi1r (.r pr".edi, q \e, I ior. I on tne
ohiglrdl oPV-oold-. w1i,r poinL i .io,.cre,-
i,/ed b, 11. ia, r Lnd- rrF (o,,esponajn9 td-
qrdnqe mul ti Dl i €r val ue satisfips

" 
(un,,*r) = nax tz..,z.n} = 2.1,

The opLifldl srrdreqy ror adch poi.r o, rhi.
.!.ai9Fl line seqmpn'.o.:is- o- ci-cli,q
within the thermal fol lowed (or preceded)-by
a straight flight \,lith an optimal vetocity
h:sLory.o'rF\oonaing 'o Lhe . oqr a"q" nulii.
Dl ier \,dl ,F o- l4ccr"ad,-.in9 (prting aqudl ro
/tn t1.l?l- ror ovo.doe vetoci,iF. tdrler
il.dn tha dvp-doe /"1o, ity vav.mst o Lhe y\
o0ri lle origirdl OPV poior is not dlte,ea
if the horizontal dimensions of the thermal
nay be assumed to be very small r€lative to
length of the ra nge.

It is clear that the condition of the new
OPv-oolar i" rh: la.r Ld\e dqr"Fs t{.r rne
lrdd:riondl g.phrcdl Lor<,r,(rion or rne
,oluLion ol Llds\icdl tr',rreaar o"oblen (ci\a(iion 2..1. r s i itd"ir) ie not aLL,-
denrdl: Th" oPV-polar o. o <ditptd,F ttyinq
ovFr d ranqe irh "o1ple'ety .ril I di. r\
p.FLise,r ,ne o, iqirdl (erLpndeo, v-locr'y
polar of the sailplane and seen in that light
bo h Lor.r"uLtions d"F ioenri,"l. In" nrainpoint to be observed here is that the sane
con.r.uction ds bptore , ay "t-o De dpplied to
0re qanpr al OqV- pold' \ wr ich or '"F \o^e or

thr's and similaf constructions in the next
.6cJron a/ bF r.edted d\ i. rnpy wa-e r.,r
orF _hd" ,aquld. lF,rFrd"al vptoci,! pold,\.
F \ d\oF, I -n oa' Lr, .ldr i. d verv . t,onq

o0,r I r1 fovo, of lhe u5a or '1e oPV-po d,-
Lon(epl i rhe rhaor/ ana tha p, dc, i_p o' I he
opt'1i,,dLion o. \d'lp dnF r'diec o, ie

4.3 The Synthesis of Two or t4ore ORv-polars



0f much interest for theoretical as well as
practical purposes is th€ prccedure for the
synthesis of two or nore ORv-polars to yield
one resulting oRV polar which coffesponds to
the combination of the rarges. The keys to
this procedure are two observations which
directly reiate to the porpertr'es of the ORV-
polar discussed in Section 3.2. The first
observation is that the Iower bound on the
l,4ccready-ring settings corresponding to the
ne$/ ORv-polar will be the largest value of the
net rate-of-climb over the range (cf (3.9)),
i.e., the sum of the maxinrum value of the
vertica'l atmospheric velocity over the range
and the naximum value of the vertical velocjty
ol trp .a'lplJna. lviaenLly, tri( rnd'imLr
value will be equal to the naximum of the
rni"'rl lvLLre.oJ-.:nq .erLirg- hr.ior tle
contributinq 0RV poldrs, i. e.,
(4.e) "n..s ,= oix tznr,il

The second observatjon is that at any por'nt of
the resulting 0RV-polar there will correspond
dn optimdl.\elo.i'v.hi. o , ,. ",whi.h may be detefirined by
the substitution of one Lagrange nultiplier
value z > zmrs in the optr'mality condition
(3.2). Aqain it wr'll be immediately clear
that such an optinal velocity history !r'i11 be
nothing else than the sequence of the optimal
velocity hl-stories over the subsequent ranges
corresponding to the same Lagrange nrultiplier
value.

A djrect consequence of these two observa-
tions is that for all values z of the Lagrange
multiplier or ltlcCready ring-settjng larger
,l"n or "audl 'o rhp 'ni, "l rLCre.dv -in9-
setting znlr-< the corresponding point of the
resultinq ORV-polar can b€ found by combinjng
trp a/e oq- o, izonLdl valo, i -. v,., ;rz) and
oorir .1 v;'''co1 rangc veto-iti". "iiulirz)o ., pordirq ro rhe pa ' ,lar vol.p rj
ollowi'rF'hp .', di9nI o' do' d e\p F' ion

'Ir '-,,
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Values of z snaller than the overall mini-
.l YL,'edoy--ina.-pL.nq,,mr-\ (4.9. wrrr l

qenprdrFd opt ir al veloLity hi;Eo, ie_ over 'ne
original parts of the resulting range no
longer do so. For average velocities sfialier
rh.r Lhe dvp'"q. velocity vdv(hr.() tor
ri':m,m sLrdiqhl rl qr L ovpr the ie<-l'in9
range the corresponding points of the result-
ing oRV-polar lie on the line connecting the
polnl (0.lrr..l on hp vFrtical aiis dno rhF
new Y5f oorni (.,av(,,mr-s1.w....(,rnr.\J)- lor
rhe Dract'cc of opli di colahlr fliqhr rhis
last result implies the nowadays well known

'ulF thar (ir'linq i. o"de" ro gdin missing
height should in theory only be done at the
location where the vertical atmospheric velo-
cl'ty reaches its maximum.

The expressions (4.0)-(4.13) for the result-
ing average velocjties and the resulting
optimal vertical rarge velocities correspond,'ng ro a pd- tc,ldt z. zn.. .. ply Ll.dt he
re(ullr'lq onqe velo.itl, vbZlor uitl^ coo-di
nales (v6u.slz).we,"v. rr) r. o corvF^ com-
birdrion of rhe o.iqrndl rdnga veloc ty
vectors. ln the case that m - 2 this implies
i. pd-l:c"ldr tna, rh" re\ulLing rolge vFLto,
I iFs on LFe lirc l{1i.r co.ner ls tnp poinl on
the original oRV polars comesponding to the
same z. A sketch of this geonetric interpre-
rdtion o_ Lhe sv.rha.'s ol llYo 0Rv-pola-" .s
qiven in Fiq. 4. 0f much interest for d
possible practical use of this interpretatton
is the observation that the lines which con-
neL rrF po nLs (0,/) o' ,hp r'erlical d ic
l]{ith the coffesponding po'ints on the original
and resulting 0RV-polars cLrt off pieces from
any vertical lines which differ from each
other by a ratio equal to the ratio of lengths
of the original ranges (cf Fig. 4). This
geometric property, the proof of nhich will
bF oivpn in Aopeno \ B. odves lhF wav to,
'lnolF g_aphi,.r met'ods '0" rl-e cor L-u('io'r
of 0R\/-polars which result from the combina-
tion of tvro 0RV-polars corresponding to two
subsequent ranqes.

5. A Practical Applicdtion: The Determination
o' lhF 0pri al YcrrFdoy-r'nq \prtinq'n
Case of a Square-1./ave Verqlcal Atnospheric
Velocity Distributio_11
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5.1 Th.r 0liri !olnr for d 5q!a.," lave lh€nnal
tlodel -

Althouqh it ic in !rifciple possible lo
det€l.lrife th€ 0RV-poldr lor any rafqe and any
v€r!ical atnrospheric velocity nistribul.ion,
the dctual cdlc!lation will in a(:noral bc
restrr'cted to sore sr'nrple modcla. In actudl
practice a sailplane piloi vJr'll ncver know
the exact v€rticnl ahnosoheric velocity dt
somo locations before he arrives there.
lherefore, it rs much nrore uset!l for practi-
cal purposes io mer€ly provide the pilot sone
guidelines based on si ple nodels dnd to leave
it to hin to interpret the actual situation
in the light of his knowledge about the
optimal solutions for those simple Dodels.

A particLrlar model which is of interest is
the general square wave vertical ,rtmosph€ric
velocity nDdel, v{hich, as advocated by Reich
ndnnl0,does not necessarily satisfy the mass
Dalanc" rpla,io, (i.p.. th" nd s or ai- gotng
up along the range does not necessarily equal
the nass of air going down). In actudl prac
licp such d \qud-p wdve mooc' '/rll dpp'o,j-
mately apply in case there are cloud streets
roughly dlong the course of the flight. It is
rhe 1a.p-ver rn9 ol rhe pilo i'r su.n c,-cu_.-
stances which tips the air nrass balance into
his favor.

For the sqLrare wave nlodel to be considered
it will be assumed (see Fig. 5) thali the rarge
consists of two parts of lengths LL and L2 on
each of which there is a constant vertical
atnospheric velocity present vJith strenglhs ul
d.d "2 to" wl'ich rhe dod:riol|| arbi rd-y
ossJnrp, io i, rd- lndt u2 - , (0r .o,rse,
under the prevalent assunptions, the optimal
solution ould not change if Lt and L2 wolld
consist of a nunrber of distinct pieces adding
LP i. l'nqrn to, drJ -2.) 'e 'd-iol2l(11,- J "1ich tuy ba ior <raer6a Lhp r.c(rion
of the range over which the hypothetical cloud
street pxlplds wi ll bp cal lad Lre -. en,'on
rdcLor dno wil_ be deroted bv 'tc lalr4 e.

The detennjnatior of the oRv-polar corres-
ponding to this square wave vertical veiocity
distribution model is relatively simple once
it is observed that the oRv-polar may be
thought of as the result of the syntheses of
the two directly available ORv-polars for the
parrs L2 dnd 12 of Lhe rotal range (cl li9. 6).
Ldch oi Lhese aonsists of d trdnslaLion in ver-
tical direction of the original extended
velocity polar, i.e. , in fornula forn one has,
respectively

oo. , .ld. p4 rrs (/",,1{zJ, vorv-r,,,j "na
'\ d. -i / ).n..'./ /)) nr';ii o';or;:i'dRv-
0lc' 10..' /dnl Iq ' vdl ,(. o ,, kni 1

\"i'. -.:u',)it-l\ / / ra/ -/.ntutb-,ly i or'1t j,vp .e Lnct.on
np(z' o rne NLL''rdv 'un, r r^n (cr 4.b/ or Lhp
o.rqrndl e.rendad ve_oc:.v poldr tol,ovl-n9
thc strai ght forward relations

t5.l)

(i.4)
r /\ (, - Lpf

1n iris context it should be noted that ds
a result of the verijical atmospheric veloci
liFs o"i1q .on\tdnl. rhF -quivalen e,pre\-
srons (cr 4.d): vou.1(zi). v,u-,(u2. rnd
vp(v{p..d^) do not rdn.aqpnt -' iqup velorit.p
but in< pdd rhp whole rdnqe o. valo( i t i<s
between 0 .nd v- -. ,

The -oorO,naHi"]'bl rhp rr' -poinr o. tFo rew
0Rv-polar nay readr'ly be detennined once it
is observed that for the squdre wave flDdel
!nder considerati on

,l r =

and that for the"mi njrnun-straight-f'li ght
trajectory
(5.6 )

| /^ ..) , ; .(zp ) ) l' r"o

.b t:'-tion o 'ne F p-ession. (c.J) d,o(5.4) evdluar"d 'ot z r, .nto the prevrous-
ly de-rvcd eyore\q'ors (4:12) and (r.t?) fo-
the coordinates of an 0RV-polar produced by
synthesis of two 0RV-polars i medjate'ly
results in the desir€d quantities

and

and

Lt "p'",na'Lz ull"r "l)



Coordinates of poinlis of the new oRV-polar
which correspond to Lagrange multiplier values
/)dqPt-1d, /- _ lo.lo* na i'1.
wdy f.orn the e/ pr€ssl0ns

1L !p(z u2) +

, Lr!e(u ui) + L-r?(z-ur)

It sho!1d be noted that with the geometric
p.opp- r/ (L_ lrq. l) o lha ri.p Lonnecri'q
'he co|mon poin (0, ) on t'" vF'l icol " i

with the corresponding points on the original
and resulting 0RV polars, as discussed in
Section 4.3 and proved in Appendix B, it is
q,;r- (_.plF ,o coFq,rJ.i tle'e" lring oDV-

uoldr o, o,'pl/ qldp.i"al-odns lo" ony ivFn
vdlues or ,,.L, anap l l(l L) APd.
'. ,1.' .pp1i";tion o t.'i './ill oe d' ussed
in the next section.

5.2. The optilral }4c0readv-Ri nq- setti nlfi]:q
Square lrJave Thermal llodel

As discussed in section 3.3 the qudntity
.f Dnst interest in connection with the oRV-

Dolo lo_ p "L l(d purpo a i- l"p oD '10_

",t.",dy,rin! s"r.ing /^nr ',. ,) w1i, r"s
oelrned d. rh" 14-. -.ady:rinq atr ing rhi' h

qernr d,F\ L-, /l poi' o rha 0qv-pol.r. .4..
i". inrpr.e. l;on Doinr ol|h.0RV-pol.r "i-ht.e o, i/o1rdl d i . lh. wdy
this optinral l"lcCready-ring setting depends
on whether the ZL point lies on the straight
line segment of the ORV polar or on the curved
qeonent thereof and this in turn depends on

wh;ther the 14sF-point (cf section 3.3) lies
doovp o' rFiod Lne .orilonld 

" .< 6,. eq,iv.-
e" _,. w F'ha' tn' onrinrdI !6r'i-al 'd oo

v"lo.'t/ dor/.msr 'o're\oonci g .o L1F v
po n i, po i l vp 0 ogd lve. Ll rra case
o d .qLd-F do\o ''er dl odPl .l-i l" L'
va,o, i , i. qiv"n o7 15.8) (o rrdr .h'doter-
mination of the optimal l4cCready r'ing s€ttjng
depends on the i nequal i tY

(5.11)
r \,2 LIz 0

As long as this inequality is satisfied the
optinal l4ccreadv-rinq setting is equal to

i.t2 ,.p, ,_.,.'r0,,.^
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and the corresponding average (horizontal ) ,

velocity equal to (cf Fiq. 3)

which expressjon with (5.7) and (5.8) results
in
(s. r4 ) LI*r2 "z . \/1)L ---l! (\ (z^- 

',1)-u n / L

t,1 pl) \

The corresponding strategy in this case will
De o_ lha l,4c(rpocy ly! e- i. F.. ore crro'ld
Lrdv"l o,,er p.r, I I f, Fiq. ') of rre '"noe
wi-h l1F r'eloc|y tD( .-ut)cor.e.pond nq to
dn e,pecrea nPr .dl; ol cIirb,,2 ("rdar rh"
cloud street), and over part L2 of the range
!rth horizontal velocitv v- -- ,.

I ind lly, ore ,'or,ld;eq5ln'fil" rssinil
altitude by circling at the end of the range
!1ith net rdte of climb 22. The strategy of
f'lyinq straight over part L2 of the range at
rhe lo.izon'", v' lo :rv vn-nirno lo,losed bv
c:rLl n9 d Llp e'rd o lhb 'onae i1 o Lou"
"qui?d1"nt ,o "t-irg ove pd' L oi he
,arqo w ri dn dv"roqe /elociry vdv{/ ) lihiLl
rol.owq ,on "' nq w.rr(t2\ a aiv'a DY

{4.11) equdl to zero, i .e. ,
(s. 15 )

v.","(2,) = _ 
Lr . ". ,. v (z^ u,l
LL r 

I 
( r 

! 
I z 

I 
_ u 

I 
) I +u I l,'

A g,aplicdl il.u 'r.riol ol thi. dld L'F o'p-
, ed'nq e p"es.ion t .14) ' pr. Fr 'a i1 c'q.6

In case inequality (5.11) is noi satisfied,
then lhe optimal McCready_ring setting has to
bF detemLined as the value z > z, for which
the optimal vertical range velocity (4.13) or
(5.10) is equal to zero, i.e., the solLrtion
of the equation

l| I , F

l!' L L f

tive
The
the

the solution of this equation sonre itera-
procedure will be nexessary in leneral.

optimdl strat€gy in this case will be of
pure dol phi n-type.

Plot o I - v< P lor q,drP Jdvo -ho'mdl

Models

Given the means for
l,4ccready-ring selting i

for the opti rial
of a squdre wave

sol vi ng
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veItr'cal atnosph€ric velocii.y model \"/i th
given valres of,rt,u2 and e = L2lLl1L2, a
very useful pjece of r'nfon ation for dctLral
fly'ing prdctice Day be !enerated r'n the fonlr
of a plot of the optirndl l'lccready rin! set
'in!, ,,.., d. a 'un(t'o, of 'hp c,rp1. io,r
Iocr^ ,_fo v-/_o,, comDi.Jrions o ,l d'd
!2. plots of this kind have already been
produced by I4etzqer and Hedrickd, however,
givcn thc theory of the oRV-polars as dis
cussed, the infonnatiOn necessary for these
plots mdy be generdted without an iterai.ive
procedure and, if desired, even by sr'Iple
graphical means. Because of the practicai
inportance of this implementatlon of the
lh"orv. 'he 

q-rerdlion ol o1o, , ol 2oot ,/. e
will bp dis(Lssed in some more deLdil hclor{.
The numberical resLrlts for a particLrldr sail-
plane will be given in the next sectr'on.

For qiven fi\ed values of ur and u, ,he
plot o' Lne oprimdl IlcC"Fady-r i.q \"rIr"q
zonI d\ d !unctron of l1p (cloud ( rept)
ellension ldcLor e wrl I in gFneral Lonsr i of
two parts: a constart McCready-ring setting
corresponding to a l4ccready-type optirl]al
strategy for small values of e and a rolghly
linearly increasing part, correspondiflJ to
pure dolphin-type optimal strategy ior higher
values of e. The value of the fomer constant
optirnal l4cCreddy-ring setting is gr-ver by

(s. 12 ) oPt 2 p,mr 2

Points of the increasing part of the plot
may be lenerated in a straight fon{,ard l(ay by
solvinq €quation (5.9) for given valu€s of
u-,u' fo- e q:ve" inslFdd of 'J.7 9i\"r e.
This is feasible bv straiqht forward €valuation
of (5.16) v/ritten in terms of e

(r erv \2 u^lfq tv \2-u.)r+!tr:pp

e vP(z-u 
1) 

lvP(vP( z-u1)+u2I - 0

which leads to the explicit expressiii

(5.17) e(ul'u1'z) =

vD(,-!2):'D (vp(,-ur ) )+u r 
I

vprz-ul vt vp z 2..- r_ - | ,/z-L? lst vFlz--t _Lt

FvdlLa ion ol "hi\ ",ore(.:owilh rha dpprop"iafe s,bstitutions (5:l) dnd
(5.5) provides imiediately the corner polnt
o. b'edr poir t eg(u1.u2) or rn" zop( vs p olot

5.lti)

-")ntr
It nay be noled th,rt th€ value giv€n by

this fomula provides lhe ninimal cloud street
extension fdctor for the realization oi. a o!re
dolpnil- 'iJh, . t:d'ooy tlo- rlp giv"n vdlu"s

The maxi al valu€ of the optimal l"lccready
'ing se' j'g /^-r 'o qj\-') v- lues or u, dnc utwrllor cou.se"Fdsu{l w,rpn e ', i.e.,'whan '
the cloud stre€t extends over the whole ranga.
The value of it may formally be found by the
solution of the equation that results when L1 =
0 is substituted into (5.6), i.e. ,

\..tuJ r (v \--r,,1 - u, = r-. .(" 0
lp

The solutron of this equation I'r principle
requires, just as in the other cases of fixed
vdlues of e, an it€rdtive procedure. In this
special case, howevar, this iterative proce
dure afiLountS to no more than the generation of
the inversion of velocity po'lar relationship

(5.20) ve{vi(z-u2)) - - u2

Consequently, this particu'lar Jnaxinal optimal
l'4cCready-ring setting may in practice be
determined by the sane graphical procEdur€ as
discussed in Section 2.1.

It nay be noted that the injtial point, as
wcll as rhe , irdl ooirt ,, rhe plot ot /,
v5 F d, F F\cl ,.rve'J apLFrri.ed b, rr. vilu" or
the largest of the two constanL vertical atmos-
Dl^Fric volocitie\ ovcr tre dlge. r.a., thp
valLre of u2 over the second Dart L2 (cf Fig. 5)
o''he rdnqe. lhe /ul"e ol u, ol cnc vcrL'cdl
,rtroqpher .. vplo.iil over lhe'i r\L pd ' o/ rre
range does, in conbinatr'on lvith the value u2
determine the location of the corner point
ec( ,,1) o'ltsp plol or /n., vo p ara Lle'e.
vr'i'n ttse./e'd9c s,opF o' IFd plor ir rhe p,re
dolphin flight region past the corner point.
An exanrpie of this behaviour is given in Fig-
ures 7-8 which present the numerical results
'rhich $rere calc!lated for a particular sail
plane type.

As a final observation it may be noted that
the plot of zoDt ve e in case of a square $/ave
vertica'l atmosirherjc velocity distribution
odel as evaluated with as only information

rhe vclccity polor w"(v") dnd Lha inver\e
'!ol/) 14.8\ o' rtrc rigular vcCreddy 'un.tio..
\o 'nteg-ar ron procFdure or other complicateo
proc€dures were required dnd this in particular
implies that the sanre effort by any sailplane



u (v ) = o. l4c5l4 (\ /401 ' +pr)
7.nt/112

pilot who has the two mentioned pieces of
infonnation avar'lable. l,/ith the use of the
geometric property discussed in Section 4.3
and prov€d in Appendix B the data for the
/oDt ve ' olor ay even be lFnerdrFd by d p,re
qr;pr'.o F.hoo rn nuLl rFe "drn" w.) o) i,
'lP Jear. pd5r 'ne dota "o. F.' reaa, 'i'rgs
have been generated by a great number of
pi I ots.

5.4 Nu erical Results for an LS-3 Sar'lplane

In order to provide a nunerical example of
the results preserted in this chapter, calcu-
lations of the optimal l,4ccready-ring settings
zo.i as a function of the cloud street exten-
sibn factor e in case of a square wave thermal
model were carried out for an LS-3 sailplare
which js a representative specimen of the
Inodernrr""rp.'.iLtpd l\-r (id\," or "d' i'S
c'lass' of sailplanes. The numerical data for
this particular sailplane was taken from cal-
-,ldrFd vFlo( i,y pold.< (.or.F'po'rdi.q lo winq
lo"ai'q\ or -FspFLrivFly ,J Iq/ / dna a\ lq/n/)
furnished by the manufacturer. From each of
these velocity polars 20 readings were taken
and fed into a computer program for least
squdres polynomial apprcximation. For the
vploL;ry pqld. -orrespondino to d wi,q lo"dinq
o \q/mz ne ol lowirq polyno, idl - pd

out to be a reasonably accurate approximation
(with a maximum relative error of 1.581)

/40)'
/ 40)

ll
/4a)'
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range. Also shown in the same plots are the
results for different values of the vertical
arrospFeric velocilV -t ovFr lle rirst pdrl of
rhe rdnqe. Ihe plol . ;re (nov/r in I iqures 7

and 8.

6. CONCLUDING REI4ARKS

The idea of studying the set of solutions
of the optimization problem naximizing the
averdge vertical velocity for given average
horizontal velocities over the given range
h,ith given vertical atmospheric velocity dis-
tribution has been proven profitable for both
the theory and the practice of sailplane
flight trajectory optjnization problems. The
resulting theory, vrith the oRv-poldr as funda-
nental item, not only Lrnified the current
theory on the solutions of the Mccready prob-
lem and the generalized do+phin soaring prob-
len, but also provided a simple means to
detennine the optimal strategy for the general-
ized dolphin soaring problem in actual practice.

0f most importance for the theory was the
discovery that the tangent to the oRv-polar in
some points cuts off a piece of the vertical
axis !,\lhich is iust equal to the Lagrange m!lti-
plier value or Mccready-rinq setting by which
the optimal velocitv history corresponding to
the particular point can be generated. Not
only did this property determine the general
shape of the ORv-po]ar, it also formed the
basis for the easy construction of the oRV-
polar. As shown,the property proved particu-
larly fruitful for the construction of the
oRv-po1ar by means of an adaptation of a
given oRv-polar for a thermal at some point of
the ranqe or by means of a syntheses of t!,vo
known oRV-polars. 1n this context also,a
direct link l,las laid between the well-known
llccready-theory ard the 0RV-polar theory

For the theory of sailplane flight tra.jec-
tory optimization the sinplicity of the 0R!-
polar-concept was shown to be very useful.
l{ith it a number of rules for optimal dolphin
soaring ear'lier nentioned in the ljterature
coLrld be explained very readily. This related
in particular to the rules that: 1) the
opcinal strdLpg' lo- dolphir 'oor'nq i,. o.
in the case of the llccready-problem, deter
nrined by one and no more than one l4ccready-
ring setting; 2) possible missing height
should be regained by circling only at those
points of the range where the vertical atmos-
pheric velocity has its maximun over the
range; and that 3) one should use a higher
Itlccready-ring setting whenever an overall
height gain might result in a cloud street
situation. A nice aspect oi the ORV-polar
theory vlas furthermore that it provided a

2. 138253 (vp

l4 .0l a6l5 (v

- lt.rl8 5l (vp/40)2 + 4.189b0. 1vP

wh-,a vD,rro uo drc oo'h a/prF"saa i, ,/,ec.
5iril.rlv. ilp volocitv ooldr co,,F\po d;nq

'o d winq lo"dinq at t' I9/q. fLr'pd orri lo bF
reasonably accuratey(vlith a maximu[ r€lative
error of 1.571) approximated by the polynomia'l

iw ) = - I.45ll8 (v /40) 2+ 9.510116 (v-l40)-l
p"p' -- p p

-2-.oolo7, 7.' 'q180 \r /0)-
'r,.-18 ll \v -a | - ./) ,o 't-ffo'''pP

wre F dqdi' wo dnd vp J'F boll F ptF pa ;l

llsing these polynomial approximations of
the velocity polars two different sets of
plots of zoDt ve e were evaluated for each of
the two winb loadings considered. Figures 7
and 8 provr'de the detailed results for a
number of different values of vertical atnos-
pheric velocity u2 over the second part L2 of
the range and fo vertical atmospheric velocity
(i.e., ul = 0) over the first part L1 over the
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direct and easily computable ansu/er to the
qLrestion of what l4ccready-ring setting to use,
ndmely the valLre at which the tangent to the
0RV-polar in the intersection point of the
0RV-polar with the horizontal azis cuts off
from the vertical aris. Still another rute
for optimal dolphin sodrr-ng which atso
followed in ediatelv from the ORV Doldr sds
the rule that an S-ing'r strategy, when
optifial, is never the unique optimal strateqy.
This rule yields the conclusion that from a
-heo'er ical ooi, o, viFw. "5-inq" sr..re
qies do not hdve to be considered.

For the practice of the optimization of
sailplane trajectories, the oRV polar concept
l,vas should to provide a neans by which for
simple ther^lnal nodels, such as Reichmann's
square wave nodel, the optimdi l4cCready,ring
,e+tinqs nay be deLFni.ed Dv d \imp,e 9,d.0hl(al p"ocedu-F re,elblina rlrF p-oL"oura by
which the Mccready-ring data are usuatly
obtained. In particular, plots of optirnal
lilccready-ring settings (cf Figures 7-8) versus
the cloud street extension factors nay be
constructed with the aid of no more than a
graph of the velocity polar, a ruler and a
pencil, i.e., by any pilot who is capable of
delprliring rhe ccLa or o vc-laddv r.n!.

0f course, the 0Rv-polar theory is by no
means the final ansv{er to the sailptane
flight trajectory optjmization problenr. The
great nunbor of simplifying assumptions, such
as for example the complete knowledqe of the
vertical velocity distribution ahead of time,
the independence of the vertical atmospheric
velo(iLv aict-:b,rior . d.d 'np deroayndri.
equilibrium of the height and the dssunption
that circling will not result in a snaller
vertical velocity, are al l sources for dis
rreoancieq bFrweer rhe oo'j,"1 \.rar"9i-q i,
theo-v."d ord""icF. l-ouevar, d. r,,dl, rFa
theoretical results do provide more insight
as to what should be done in a rr,'ti'il
situation. The extra insight nay prove a
further detailed studv of the oRV polar con-
cept without one or more of th€ simplifying
assumptions worth while in the future.

1971, pp. 191-Jgl.
Fl-90lc. 1.1., rdl.ul"s of Vd-rdLion\,"
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APPENDIX A:

PROOF OF THE DERIVATIVE PROPERTY (3.5)

-Jn .6Llio' .l che orl .J ve',;c.l ".r!evelo.rlV r{,,r1 wds dFli Fd dc d.unc :on ot ne
dveraqe /ho. zortdl ,a.9e) velocrtv vdv d\ rhe
valuF o tFF so .L'o, ot .1F opLimr/d' lor
probl em (.f (1.4 ))

v {r (x))ru (a)

Ir this appendix it 1t/il'l be shown that th€
dFrivati/c o Lt's un.'io. raorv(vo\rto rhre\Op, ro ts o.qumor, rav i given oy (..")

(A.2) a'*('.") =

where z(vav) is the vatue of the corstant
Lagrange nrultiplier for the constrained optj-
mi zation problem (A.1).

rdrrirq oo:nL of .n- poirr i. rhe ob\Fr,,d
'ion thdl ,lp de'ni'io" (A..J tor v"v 0 i
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So that the expression (A.5) reduces toIn connF(rio4 wirn Lris lasl e^presstu,r ui.e
may define the func tional

l" i, ,"r, . . t'r -.
I !r(x)

the optimal verti cal ranqe
of this functional is gi;en

(r'1) ""-(v.,) ' +. (vp(x;wav),u (vrv),va!l

otve(x),z,v6,1

and observe that
velocity in terns
by

jlr <"""r = ]nL"or,,".,r<"",r."";

or l,/i th {A.4)

& v (w )-:(! )

Tr

%","'rJf %",r ,",,rt*Tz'"'z

t,
T t+T2 ow,2

lrhich is precisely the relation to prove.

APPENDiX B:
whe"e vp((tvav) anc z(vuy) are che optrmdl
ver0ciLy htsto'y ard the -dgrdrge rultiplier
respecLively corresprndinq to sotution of the
optimization problem (A.l)- Ihe exDression(A,4) lound is no lonqer a1 opri-lizltion
p"oblem b,c insre.d d. exore\\io. invoiving alunctiondl whicl^ i\ cependen,or a paratjFrer
vdv. A!suming smoothness, and differcnLid-
br lity properties ds usual in the calculus_
of-varidlions5 the expression mdJ be difleren-
liated 'ollowing LFe rrles ot .ne calcul ,s of
va.iations witl. as result rhp e\press;on

tugra{v",, - i oivoG;","),:r"av).'a.-

PROOF OF A GEOI.IETRIC PROPTRIY OF THI ORV-POLAR

CONSTRUCTION FOR A SQUARE XAVE THERI1AL IIJODEL

ln Secrion 4.J e\pression) lct 14.12 & 4,
l l)) were dprived lor the averdge (hori/onral )velociLy vdv,s and the optindl vertical range
vet0crty worv.s (rorrespondinq to sone vdlueo' the lvcCready-ring serti'rg z) hhicn result
rn case of the coasLruclion o, dn oRv-poldr
as the \Jntnesis of Lwo knohn ORV-poldr5
over the Lwo parts I I and L2 ot d rangp of
length Lt + L2 '

(B.l)

and

= 
t, 

"orv,s Tt+T? orv, I

In view of the optimality of
vp(xivav) it follows that as

3L' r,,' ,..r" ,' . o

la,l;-G:r--v -"

It $ds noted thdEtlese expressions irply
that the rFsJl!irq ooL'atal rdnge velociry -

vector is a convex combination of the original
optimal rdnge velociLy vectors and as such jn
d plot ot rhe oRv-pot6r (e.g., jig. 4) wiIie on thp line connecting ihe r"6 original
opLimal rdnqe velocity veito-s. In ad;iLion
to that jt_l'as.noted that the ljnes through
the point (0,2) on the vertical axis and ihe
end points (vqy,s,we1y, 

s ), (vav, t,wgrv,1) and
ruav.2,!orv.2l (corresFondin9 to the sdme
varue 0r /J cut d"y verticai tine in the ORV_polar plor i'rto two pieces, tne lenqtns o"
l,lhich reldte to each other follourini the (dne
rdtro as the lengths of the pdlhs Ll dnd tzol the ranoe. Tr^is proDerty of the'qeoaeL"y
of the oRv-polar consrrJcti;n win b; proved
in this dpoendir wiLn d simpte proof 'rornplanar geometry (rhich tras \upplied by Dr- D.
Xijne of the TH Eindhoven).

A geometric piclLre o. the oroperty ro be
shov{n is presenled ir ti9. B._. It ray bp

*-,"

the sol uti on
well (cf (3.2))
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hoted that it wil I
lengths of Lhe line
the relation

Given the
that the
satisfy

If in Fig.
paral1e'l to

suffice to show that the
pieces AE and tD satisfy

-!Ir = 
t:

s Lt

fonnulas (B.l) and (8.2) it folloHs
lengths of the line pieces AS and SB

Is T2

ls'1 {
8.1 the duxiliary line BF is drawn

SE then it follo!,ls that

'Arl lrs 'l
iEFl=1s5T-{

as wel I as

lc! L "a",2
FT-"",J

Conbination of these two ratios ifinediately
yiel ds the desired res!1t

Fig. B.l: Geometric property of oRv-polar
construction by syntheses of tl4o
known oRV-polars over subsequent
ran9es

AEAEETT:.-sD-' -i!-' r E
Lz

"l

f.
I

I
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I
I

Fig. I The classicat l'{ccready- prob I et

Fig. 3b The ORv_polar for th€ range in Fig. 3a

Fig. 2 lhe (extended) velocjty pola. or a
sailolane & the graphicai constuc_tion of the solutio; of the
l,lccready problem

Fi9.4 Sletch, of the construction of an oRv_yurdr oy synthesis of 2 lntun npv_
po rars over subsequent ranqes

Fig, 3a The general i zed
problen

dolphin soarinq
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o

fjg. \ 5tetcl- or tne dotphjn .odrirg probler
tn La9e ot a squarp ave rheindl mooel

1

@

(lnls

I

Fig. 6 Graphical construction of the retevant
opr imal dveraqe (hori,,ontdl) velocitiesin case of a square-wave thermal model
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