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SUMMARY

The effect of center of gravity
position on the additional induced drag
due to the tail 1ift force is considered
for both the circling and gliding phases
of a cross-country flight. The loss of
energy height per hour is then derived
as a function of CG position for soaring
conditions requiring various gliding
speeds, assuming the usual MacCready
theory to apply. The optimum CG
position to minimize the loss of energy
height per hour is found to be a
function of the gliding speed (or of the
corresponding rate of climb). However,
if typical Standard and 15-Meter
sailplanes are considered, it is found
that a single CG position will provide
near-optimum conditions over a
reasonable range of gliding speeds. The
optimum CG position, in the cases
considered, was somewhat forward of the
likely aft Timit. Varying the CG
position in flight to maintain zero tail
load at all times does not appear to be
worthwhile.

INTRODUCTION

It is common knowledge amongst soaring
pilots that a tail 1ift force produces
some extra induced drag, since the tail
is simply a small wing. It is also
common to suppose that down-loads are
more unfavorable than up-loads, on the
argument that up-loads relieve the wing
1ift whereas down-loads increase it. On
this basis, pilots have tended to think
in terms of reducing the down-load on
the tail at high speeds by ballasting
the machine to get the center of gravity
to the aft Timit, or perhaps even
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further aft.

In fact, a consequence. of the mutual
interference between the wing and the
tail is that the direction of the tail
1ift force is of no consequence. Other
things being equal, a certain up-load on
the tail produces the same increment in
induced drag as a down-load of the same
amount.

A good starting point for a detailed
analysis is the splendid article in
SOARING, October 1979, by that famous
aerodynamicist, Robert T. Jones.l He
explains, inter alia, Munk's analysis of
the total induced drag of a pair of
1ifting surfaces in tandem, such as a
wing and a tail, taking into account
their mutual interference. It turns out
that if the tail is producing a 1ift
force then, for the same total 1ift, the
induced drag is always greater than with
zero tail 1ift and, moreover, the
direction of the tail 1ift is of no
consequence. Also, the relative
fore-and-aft location of the surfaces is
of no consequence: the result for a
canard aircraft is the same as for a
conventional layout. (These results
assume that the trailing vortex systems
of the two surfaces are close to the
same horizontal plane: with a T-tail,
all of the results quoted in this
article need slight modification.)

The consequence of this result is that
upward tail 1ift is just as undesirable
as downward tail lift. If we consider a
Standard Class sailplane for the sake of
simplicity, whose center of gravity
position cannot be altered in flight,
then there could be a small up-Toad on
the tail in slow circling flight and an
appreciable down-load in fast straight
flight. Both will produce an increment
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~ than at low speed.

in the induced drag. Percentage-wise,
the increment may well be greater at the
higher speed but, since the induced drag
is then a smaller proportion of the
total drag, the actual drag increment in
newtons or pounds could well be smaller
What really
interests the pilot is the loss of
energy due to the induced drag
increments: in effect, how much further
he has to climb in the course of a
flight. These considerations suggest
that there may be an optimum CG position.

ANALYSIS

From Ref. 1, the total induced drag of
the wing and tail of an aircraft,
assuming the vortex wakes of the two
surfaces are close to the same
horizontal plane, is
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Since W?/mgb? represents the induced
drag when Ly =0, the increment in
induced drag due to the tail load is
obtained by subtracting this quantity
from (1), leaving '

M.g ™ [ng /Trqblz_] [(blf‘bg)z"l] (2)

It should be noted that if the Tift is
nW in circling flight, equation (2) will
still apply if the effect of the vortex
wakes becoming helical is neglected.

Ly must, of course, have the value
appropriate to circling flight.

If the sailplane flies for a time t at
speed V, then the loss of energy height
due to ap, will be

bh, = AD VE/W (3)

The symbol V denotes equivalent
airspeed, so most of the subsequent
equations should stricly include some
sort of mean relative density. The
quoted figures for loss of energy height
per hour will only apply if the flight
takes place near sea-level, but the
conclusions on optimum CG positions are
unaffected by the mean altitude.

It is also convenient to note that, if

Vy is the speed at which the lift/drag
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ratio is a maximum and dg corresponds
to Vg,

Vo W2
Vnin™ 35~ 2 (4)
qol

where F is, strictly, the maximum
1ift/drag ratio with zero tail load.
The effect of tail Toad on Ep will be
second-order so far as the final result
below is concerned. From (2) and (4),
and putting q/q, = V?/v 2

2 .
ap, = (L2V2 28 W) [(b, /b))% -1] (5)
and introducing (3)

2 —
dh, = (LZV2t/2 Em”_zw [(b,/b,) 1] (6)

If the proportion of time spent in
circling flight is P., then the loss
of energy height per hour will be

2
§h /hr = (1800V2/E W) [(b,/by)? - 1]
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where suffix 'c' refers to circling
flight and 'g' to gliding flight.

For a given Vg, the corresponding
rate of sink is " fixed and so is the
appropriate mean rate of climb in the
thermals. Hence, by a simple extension
of the MacCready theory it may be shown
that

P, = [rvg/vo)" + 1];[3ryg/vo,i" -1] (8)

assuming a parabolic drag polar. (See
Ref. 2, Appendix 7.)
The tail 1ift is given by

ch = [CMoipoT/;SE +(h- hoJEnW] fﬂT' (9)

where n is the load factor when
circling, or

Lo = [CMDQ‘QOV; s + (h=h )ck] /Ly (10)

The procedure for finding the loss of
energy height per hour is therefore as
follows for a sailplane of given
characteristics.
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a. Choose a dimensionless center of
gravity position, h.

b. Estimate a likely speed V. and

load factor n in circling fight.
c. Hence find Ly, the tail load in
circling flight, from (9).

d. Choose a gliding speed Vg,

e. Hence find Lpq, the tail load in
gliding flight, from (10).

f. Also find P. from (8).

g. Substitute these values of Lp.,
Vc, Ec, LZ% and Vg in (?)
to find &.hg/hr.

h. Repeat for different values of h,
keeping the same V,; and then
plot &hg/hr a?ainst h.

i. Repeat the whole procedure for a
new value of V,,

These calculationg have been carried
out for a typical Standard-class glider
whose characteristics are given in
Appendix I.

It was assumed that, when circling in
thermals, the speed was 47 kts (87 km/h)
and the angle of bank 35°, giving a
load factor of 1.22.

For a gliding speed of 80 knots
(148 km/h), the losses in energy height
are as follows:

P h h
CG position 8. g! r, metres

Circling Gliding Total
0.25 3.36 51.95 55.31
0.30 0.07 36.49 36.56
0.35 1.67 23.75 25.42
0.40 8.15 13.74 21.89
0.45 19.52 6.45 25.97
0.50 35.77 1.88 37.65

It will be seen that when the CG is
well forward, the energy loss in the
straight glide is predominant whilst,
when the CG is far aft, the energy loss
in circling flight is the greater
component.

Figures for the total loss of energy
height per hour for various gliding
speeds are plotted in Fig. 1. Each
curve has a minimum, and the higher the
speed during the glides, the further aft
is the optimum CG position, as one would
expect. But the significant feature of
the results is that they show that there
is no point_whatsoever in getting the CG
aft of 0.4 ¢ for speeds up to 80 knots
(148 km/h), corresponding to an average
rate of climb of a little over 4 1/2
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knots (2.3 m/s) for this sailplane.
Altering the CG position in accordance
with forecast thermal strengths seems a
somewhat improbable occupation, but if
the CG were fixed at about 0.37 c, the
loss of energy height per hour would be
within a few feet of the minimum for any
of the conditions considered here.

When the sailplane has flaps, the
calculations become a little more
complicated because of the different
flap settings for circling and gliding.,
In equations (9) and (10), Cy. has
different values in the two c8nditions
of flight. Some calculations for a
15-meter sailplane with flap settings,
deduced from Ref. 5, lead to the curves
of Figure 2. The effect of the flaps is
to reduce the tail loads during the
glide, and hence the overall energy_
loss. Indeed, with the CG at 0.04 ¢ and
with a glide speed of 60 knots
{111 km/h), the minimum loss of energy
is quite negligible since, as it
happens, the tail loads in both
conditions of flight are very small.
For this machine, the optimum CG
position moves forward as the glide
speed increases, due to the differing
flap deflections at the various gliding
speeds. Once again, the most aft
optimum CG position is about 0.4 c¢; if
it were fixed at 0.37 ¢, the departure
from optimum would be negligible.

DISCUSSION

The most important conclusion which
emerges from these calculations is that,
in the case of the Standard class
sailplane, the optimum CG position is
reasonably well aft, but by no means
extremely so. Very aft CG positions
lead to an excessive loss of energy due
to the up-Toad on the tail in circling
flight. In the case of the flapped
15-meter machine, the effect of the
flaps is to alter the tail loads in the
favorable sense. The engergy loss is
generally very small indeed and can be
almost zero. There is no point in
flying with excessively aft CG position.
It is worth saying that, in performing
these calculations, no attempt was made
to obtain results which would satisfy
those with fairly conventional views on
desirable handling characteristics. The
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"typical' sailplane was chosen and the
calculations were performed once only.

These considerations also lead one to
conclude that the tail size of the
‘typical' machines considered
(corresponding to a tail volume of 0.57)
is close to the optimum: the optimum CG
position does not depend on the tail
area but, with the CG at this position,
the tail area would appear to be enough
to provide adequate static margins.

In the case of the Standard machine,
one is tempted to wonder whether it
would be profitable to alter the CG
position in flight. For example, if the
gliding speed between thermals were 70
knots (130 km/h), the energy losses due
to tail loads could be reduced to zero
by circling with the CG at h = 0.3 and
gliding with it at h = 0.5. The saving
in energy height per hour, relative to
the minimum loss with the CG fixed at h
= 0.35, would be 35.7 ft (10.9 m) and,
since the average rate of climb for this
gliding speed is 2.9 knots (1.5 m/s),
the saving in time would be about
7 seconds per hour or 0,02%. To produce
this CG shift would involve moving a
mass of 8 kg through a distance of
nearly 5 m along the fuselage, doubtless
by pumping water ballast. Also, with
the CG6 at h = .0.5, the machine would be
slightly unstable. To restore some
stability, a slightly larger tailplane
would be required, thus increasing the
profile drag. Also, the CG shift would
require a greater change of elevator
angle between the two conditions of
flight, compared with the fixed CG
condition, again increasing the profile
drag. Moving the center of gravity in
flight appears to be a profitless
occupation.

CONCLUSTONS

To minimize the mean rate of loss of
energy arising from the additional

*Rough calculations for a T-tail
sailplane suggest that additional
induced drag in circling flight is
likely to be more, and in straight
flight less, than the values found by
the above calculations. The optimum CG
postion is therefore likely to be
further forward than suggested above.
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induced drag caused by tail 1ift forces,
the optimum center of gravity postion is
found to be a function of the gliding
speed between thermals (or of the
corresponding rate of climb in the
thermals). However, if typical Standard
and 15-meter sailplanes are considered,
it is found that a single CG
positionwill provide near-optimum
conditions over a reasonable range of
gliding speeds. The optimum CG postion,
in the cases considered, was somewhat
forward of the likely aft Timit.*

Varying the CG position in flight, to
maintain zero tail load at all times,
does not appear to be worthwhile.
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APPENDIX 1

Characteristics of a Typical
Standard-Class Sailplane

Wing span, by = 15 m
Wing area, S = 9.67 m2
Mean chord, € = 0.64 m (assumed to be
substantially the same as c).
Aerodynamic center postion, hy = 0.21
Tail area, ST = 0.99 m
Tail span, bp = 2.5 m
Tail moment area, 17' = 3.57 m
Pitching moment coefficient,
Cm. = -0.1
Chan98 of downwash with incidence,
d /d = 0.2
Mass = 295 kg (i.e. W = 2894 N)
Lift curve slope (without tail),
= 5.73/radian
Lift curve slope of tail (elevator
fixed), 1 = 3.72/radian
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Hence,

F = 0.0532, ¥ = 0.571, V7 = 0.542.
(See Appendix 2).

The stick-fixed neutral point position is

h, =h, + vTraI/a)[l—(de/da)]

(Refs. 3 & 4), and hence has the value
of 0.492.

(Assuming reasonable values for the
other tail and elevator coefficients
givgs_a stick-free neutral point
position hy' = 0.456. However, the
use of springs in the circuit would
bring h,' close to hp.) Likely CG
limits would be 0.25 h  0.4.

APPENDIX 2
Symbols

a Lift curve slope of the glider
(without tail)
aj Lift curve slope of the tail
(elevator fixed)
b Span
c Mean aerodynamic chord
Om Pitching moment coefficient of
©  the glider (without tail) about
its aerodynamic center
D Drag
0;j Increment in induced drag due to
the tail load
Em Maximum 1ift/drag ratio
he Energy height
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hc Distance of the center of gravity
aft of datum

hoC Distance of the aerodynamic center
of the glider (without tail) aft

_of datum
hac  Distance of the stick-fixed
_ neutral point aft of datum

hn'c Distance of the stick-free
neutral point aft of datum

T Distance between aerodynamic
center of the glider (without
tail) and the areodynamic center
of the tail

L LA

n Load factor

Pe Proportion of total fight time
spent circling in thermals

q Dynamic head

S Wing area

ST Tail area

t Time

v Equivalent airspeed

V1 Effective volume coefficient stick
fixed, given by V'/(1+F), where

V' = Splyd /Se and F = [STaI/Sa] [1-(de/d)] .

W AT1-up weight of the glider
Angle of incidence
Downwash angle at the tail

Po Standard sea-level air density

Suffices:

0 Refers to the max (L/D) condition,
in conjunction with V and g

1 Refers to the wing | In conj. with

2 Refers to the tail J D, b and L.

£ Refers to the circling condition

g Refers to the glide condition

between thermals O
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