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Abstract 
The instant cross-country-speed of gliders is defined and a formula given which is discussed in detail, 
explaining for instance why the classical theory is failing to provide suitable instantaneous results, why the 
instant cross-country speed may be regarded to be the shadow speed of the glider if the sun rays are inclined in 
the right manner and the shadow is cast on flat ground, or how energy is gained and transformed into cross-
country speed.  Igc-files of two flights are evaluated to test the formula, showing promising results suggesting 
its implementing into modern flight computers for the purpose of helping pilots to improve their cross-country-
speed and flying performance.  

 
Introduction 

The average or cross-country speed is one of the most 
important entities in soaring: it determines the pilot’s 
performance on his cross-country flight.  Normally, it is the 
flown distance divided by the elapsed time.  But, for small 
distances and times such as minutes or seconds this simple 
calculation doesn't work, it fails to provide the so called instant 
cross-country speed with the side effect that pilots just do not 
know how fast they are really advancing at the moment – if, for 
instance, they spiral up to the cloud base at 5 m/sec or head to 
the next updraft with 200 km/h or if they have to deviate from 
the course line to catch a better thermal.  Pilots would certainly 
appreciate any immediate feedback about the instant situation 
and its influence on the xc-speed.  

Therefore, it is the intention of the paper to define and find 
the formula of the instant xc-speed which is able to display the 
instant proceeding of the glider.  According to some 
considerations 4-7  and Fig. 1, this might be the instant speed of a 
virtual vehicle moving along the reference line from start to 
finish, reflecting in a suitable manner the glider's advancing.   

 
Classical Theory 

Let's see if the classical theory is able to provide said 
instant xc-speed or not.  As the classical theory 1-3 is well known 
we restrict ourselves to essential issues only.   

We start with the basic xc-model which considers a single 
glide/climb sequence shown in Fig. 2.  For constant or average 
values of the speeds (with V = gliding speed, airsink = sink rate 
of the air, Vs = Vs(V) = polar sink rate of the glider, Vario = 
value of the vario during gliding = -(Vs + airsink), M = rate of 
climb in the thermal (m/s) or MacCready setting),  the overall 
cross-country speed Vxc, achieved at the end of the sequence,  
is given by the formula:  

 
Vxc = V*M / (M + Vs + airsink) = V*M / (M - Vario)    (1) 
 
We note that Eq. (1) is only valid for negative vario values 

during gliding (Vario < 0).  Vxc will be a maximum if the pilot 

flies with the best-speed-to-fly Vopt which can be found by the 
famous "tangent construction" (Fig. 3) or for V = Vopt by the 
equation: 

 
dVs(V) /dV = (M + airsink +Vs) /V = (M – Vario)/V      (2) 
 
Normally, the sink rate of the air is not constant along the 

gliding path.  Most assume, in this case, Eqs. (1, 2) and Fig. 3 to 
be valid also for the instant values of the parameters.  But this is 
not self-evident as we will see in the following.  To find the 
best-speed-to-fly in this case (see Fig. 4), we divide the gliding 
path in as many parts (Xi, with i = 1, 2, 3…n) as there are 
different values of the sink rate of the air (airsinki) and the vario 
(Varioi) at the gliding speed (Vi).  Additionally, we create a 
virtual glider which at the end of each gliding part is climbing 
back to the reference line by a virtual thermal with M, the same 
climb rate the real glider is achieving in the real thermal at the 
end of the gliding path.  

Analogue to Eq. (1, 2) and Fig. 3, the cross-country speed 
Vxci and the best-speed-to-fly Vopt i of the virtual glider in each 
gliding part Xi is given by: 

 
Vxci = Vi*M / (M - Varioi )                                              (3)   
dVs(Vi) / dVi  =  (M - Varioi ) / Vi                                    (4) 

 
Without going into details, the overall xc-speed Vxc of the 

real and virtual glider is the same and will be a maximum if the 
pilot is flying in each gliding part with the best-speed-to-fly of 
the virtual glider according to Eq. (4). 

Now, because Eq. (3, 4) relate to the virtual glider, they can 
be used to find the best speed-to-fly also for positive values of 
Varioi.  However, the virtual glider will show in this case some 
remarkable features (see Fig. 4b).  It will rise above the 
reference line and then, at the end of the gliding part, will spiral 
down in the virtual thermal back to the reference line.  Of 
course, the coming down in an updraft is only possible for a 
virtual glider which is able to reverse the flow of time (a feature 
which we call "paranormal") - and to achieve by that a negative 
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(!) virtual thermalling time.  This symbolizes the amount of 
time the achieved height gain in the gliding part Xi will reduce 
the total thermalling time of the real glider.  The negative 
thermalling time of the virtual glider (for Varioi > 0) has the 
effect that the xc-speed Vxci of the virtual glider will show now 
"paranormal" high values.   

Example: if the glider climbs with M in straight flight, then 
the xc-speed of the virtual glider (according to Eq. (3)) will be 
infinite (e.g. Varioi  = M, Vxci  =  Vi *M / (M – M)  =  Vi *M/0 
=  +/- ∞ ), and if the glider climbs in straight flight faster than 
with M, then the xc-speed of the virtual glider will be even 
negative (Varioi  > M,  Vxci  = Vi *M /(M –Varioi ) < 0).  This 
indicates that - as the glider is still moving forward in the 
positive direction – it is now moving in the opposite direction of 
time – from present into the past - achieving by this the  
negative elapsed time and negative xc-speed  (remark: -speed = 
distance/-time).  The virtual glider in this case is something like 
a time machine.  If you would sit in such a glider the pointers of 
your watch would move in the anti-clock wise direction.  You 
would get younger.   

An additional example (Fig. 5) may demonstrate this 
feature.  The real glider in this example is thermalling with M = 
2 m/s, but climbs in the second gliding section in straight flight 
with Vario2 = 3 m/s.  Therefore, according to Eq. (3), the 
corresponding virtual glider moves in the second gliding section 
with the "paranormal" xc-speed V'xc2 of minus (!) 160 km/h, 
passing by that the second gliding section of 10 km within a 
time of minus (!) 4 minutes and 45 seconds to achieve at the end 
of the flight the same overall xc-speed as the real glider of 126 
km/h.   

These examples show that Eq. (4) is able to provide the 
best-speed-to-fly if the glider is gaining height in straight flight 
(Varioi > 0), but that the corresponding xc-speed Vxci of Eq. (3) 
will show "paranormal" speeds which our little human mind is 
not able to understand.  A device which would display such xc-
speeds to the pilot would be confusing. 

The next step in our analysis is to increase the numbers of 
gliding parts of Fig. 4 to infinity (i = 1, 2, 3… ) shrinking the 
gliding parts and the virtual thermals to an infinitesimal small 
size (Fig. 6).  This has the effect that the virtual glider now will 
move completely on the reference line.  In addition to that we 
introduce the elapsed time t which enables the study of the 
movement of the real and virtual glider as a function of the time 
t.  This finally turns the xc-model of Fig. 4 into the xc-model of 
Fig. 6 in which the discrete values of the speeds Vxci, Vi, Vsi, 
Varioi, airsinki, are replaced by the corresponding instant values 
V'xc(t), V(t),  Vs(t), airsink(t) at the position x(t), transforming  
Eqs. (3, 4) of the virtual glider into:  

∞

 
V'xc(t) = V(t)*M / (M – Vario(t))                                    (5) 
dVs(t) /dV(t) =  (M – Vario(t)) / V(t)                               (6) 
 
V'xc(t) of Eq. (5) is now the instant xc-speed of the virtual 

glider at the position x(t) of the real glider (see Fig. 6).  Eq. (6) 
enables calculation of the best speed-to-fly which is optimizing 

V'xc(t).  Historically, Eq. (6) had been used to invent the 
MacCready ring and the modern speed-to-fly variometers. 

Now, as V'xc(t) is regarded to be the instant xc-speed 
according to the classical theory3, we want to know if it would 
be able to fulfill our set requirements.  Unfortunately this is not 
the case, for the following reasons:  

1) V'xc(t) according to Eq. (5) provides values of the 
instant xc-speed only during gliding and not during thermalling 
(as the climb rate is set to M) - in the same manner as the 
MacCready ring is only able to display the best-speed-to-fly 
during gliding and not during thermalling.   

2) V'xc(t) will achieve "paranormal" values for positive 
vario values during gliding (Vario(t) > 0), a problem which we 
have discussed already in length (see Figs. 4b, 5).  

3) There is another reason why the instant xc-speed of the 
virtual glider of the speed-to-fly theory cannot be used as the 
instant xc-speed of the real glider.  We know from the 
foregoing considerations that the virtual and real gliders of Fig. 
4 and Fig. 6 start and finish the flight at the same time.  But, 
what happens in between?  The real glider of Fig. 6 moves 
forward with the gliding speed V(t) whereas the virtual glider is 
moving on the reference line with the instant xc-speed which is 
normally less than the gliding speed V(t).  Therefore, at the time 
t the virtual glider will be not at the position x(t) of the real 
glider, but on a position which we denote by x''(t).  At this 
position x''(t) the real glider had experienced some time ago the 
gliding speed V''(t) and vario signal Vario''(t)  (see Fig. 6) and 
therefore (analogue to Eq. (5)) the xc-speed of the virtual glider 
(which is at the time t at the position x''(t) and not at x(t)) is  
given by :    

 
V''xc(t) = M*V''(t) / (M – Vario''(t))                                (7) 
 
This tells us that the virtual and the real glider in Fig. 4 and 

Fig. 6 experience the same conditions (the same gliding speed 
and vario signal) at the same position, but not at the same time.   
In other words: both gliders correlate with regard to position, 
but not with regard to time – an additional feature which we 
must require from the virtual glider (namely the correlation with 
regard to time) if it shall be able to display the proper instant xc-
speed of the real glider.  

To sum up:  The classical theory is successful with regard 
to the calculation of the total xc-speed Vxc and the instant xc-
speed V'xc(t) showing an optimum at the best-speed-to-fly, but 
not with regard to the instant xc-speed of the glider which 
would be able to display the instant proceeding of the glider by 
"normal" speeds even at positive vario values during gliding.  

 
Finding the proper instant cross-country speed 
As the classical theory is not able to provide the wanted 

instant xc-speed, we have to go new ways.  
To solve the problem we study again a simple flight (Fig. 

7) comprising two gliding parts.  In the first we assume the 
glider to proceed with the average xc-speed Vxc of Eq. (1) and 
in the second with a value of the instant xc-speed V'xc(t) of Eq. 
(5)  (Remark: this model should be actually equivalent to the 
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classical xc-model of Fig. 6).  We assume also that in the 
second part the glider is gaining height in straight flight.  We 
study now the movement of the real and virtual glider which 
start and finish the flight at the same time.  From time to time 
the positions are linked by a line.  According to the classical 
theory the virtual glider in each gliding part has to come back to 
the reference line first before it can move on to the next gliding 
part (see also Fig. 4).  This has the effect that the virtual glider 
is moving from point 2' to 3' far to slow with respect to the 
advancing of the real glider and therefore, has to expedite 
enormously (with "paranormal" speeds) in the next gliding part 
from 3' to 4' to catch up again with the real glider.  We would 
actually expect the virtual glider to move from point 2’ to 4’ 
with constant speed (see Fig. 8), in the same manner as the real 
glider is moving with constant speed from 2 to 4.  In this case 
both gliders would experience at the same time the same 
conditions - which in other words would establish the above 
required correlation with regard to time.  As the xc-model of 
Fig. 8 is simple and, hence, easy to calculate we get for the 
instant xc-speed Vxc(t) of the new virtual glider:  

 
Vxc(t)  =  V(t) + Vario(t)*k    with                                   (8) 
        k  =  [V / (M - Vario)] = Vxc / M                              (9)    
 
In the first gliding part of Fig. 7 we had assumed that the 

virtual glider is moving along the reference line with the 
average speed of Vxc.  After the flying time t the position x* of 
this glider is given by (see Fig. 9): 

 
x* = t*Vxc = (x/Vxc + h/M)Vxc = x + h(Vxc/M)          (10) 
   

x being the position of the real glider and h its height.  We see 
that the height of the glider has the value of a distance, the value 
being governed by the factor k = (Vxc/M).  Assuming this 
factor to be constant and differentiating Eq. (10) with respect to 
the time, we get again our formula of the new xc-speed: 
 

dx*/dt =  V(t)  + Vario(t)[Vxc/M] = Vxc(t)                   (11) 
 
Vxc(t) seems to be the instant xc-speed we have been 

searching for.  It has the following advantages:  
 1) The instant xc-speeds show "normal" values even for 

positive vario signals during gliding.  
2) It provides xc-speeds also during thermalling for V(t) =0  
 
Vxc(t)therm =  Vario(t)therm*k                                    (12) 
 
3) It correlates with regard to time, as mentioned above  
4)  and, because of its simple set up, it is easy to integrate 

to get the corresponding average values Vxc of the xc-speed.       
Vxc(t), however, has one slight disadvantage:  it does not 

necessarily show a maximum if the pilot flies with the best-
speed-to-fly according to the classical theory – a feature which 
we will discuss later in detail. 

Fig. 10 demonstrates the difference between the instant xc-
speed V'xc(t) of  the classical theory according to Eq. (5),  and 
its analogue Eq. (7), and the new instant xc-speed Vxc(t).  
 

Interpretation of Vxc(t) to be the shadow speed 
If we set the reference line on flat ground and the Sun in the 

right position (Fig. 11), then the shadow of the glider being cast 
on flat ground can be described by the following formula: 

 
V(t) shadow = V(t) + Vario(t)*ks                                   (13) 

 
ks being responsible for the inclination of the rays.   

Comparing this formula for the shadow speed (Eq. (13)) 
with the formula of the instant cross-country speed (Eqs. (8, 9)) 
we see that the instant cross-country speed Vxc(t) can be 
regarded to be the shadow speed of the glider  if  

 
ks = k                                                                             (14) 
 
The interpretation as shadow speed surely helps to get a 

better understanding of the instant cross-country speed Vxc(t).    
 

Features of the instant cross- country speed Vxc(t) 
 
Maximum and optimum instant xc-speed   

Fig. 12 shows the instant xc-speed Vxc(t) of the Ventus cM 
17,6m during gliding in dependence of the gliding speed V(t).  
It is assumed that the glider is thermalling with M = 2 m/s and 
that the k-factor is set to k(2) = 47.  Curves of instant xc-speed 
are drawn for different values of the sink rate of the air (-airsink 
= -2, -1, 0, 1, 2 m/sec).  To be able to compare Vxc(t) with the 
instant xc-speed V'xc(t) of the classical theory (according to Eq. 
(5)) the corresponding values of V'xc(t) are shown in Fig. 13.   

The curves of the instant xc-speed Vxc(t) of Fig. 12 show a 
maximum at the gliding speed V(2) = 162 km/h which 
according to the classical speed-to-fly theory is the optimum 
gliding speed for the MacCready-setting M = 2 m/s and for zero 
sink rate of the air (airsink = 0 m/s).  This is quite remarkable, 
because the pilot achieves the maximum instant xc-speed 
Vxc(t)max if the pilot sticks to the gliding speed of V(2) = 162 
km/h independent of flying through updrafts or downdrafts.  
This seems to stand in conflict with the classical speed-to-fly 
theory according to which you should fly slower in rising and 
faster in sinking air.  But, this is not the case.  Vxc(t) is only 
able to display the correct instant xc-speed.  To get the best 
speed-to-fly we would have to combine both Vxc(t) during 
gliding and Vxc(t) during thermalling, similar to V'xc(t) which 
is continuously combining gliding and thermalling and therefore 
is able to provide the best speed-to-fly.  As a consequence of 
this, the pilot should follow the command of the speed-to-fly-
instruments to achieve the highest overall xc-speed at the end of 
the flight.  Vxc(t), in this case, will not necessarily show the 
maximum, but at least the optimum (best) instant xc-speed 
Vxc(t)opt marked by  dots in Figs. 12 and 13.   
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Instant cross country speed for different values of the climb 
rate M and k-factor 

Fig. 14 shows the instant cross-country speed Vxc(t), 
during gliding, dependence on the gliding speed V(t) for 
different values of the climb rate (or MacCready setting)  M = 
0/ 0,5 / 1,0 /…5 m/sec and k(M)-factor = 166, 95, 69,…27.  It is 
assumed here that the sink rate of the air is zero.  We note that 
deviations from the optimum speed will cause a lowering of 
Vxc(t).  Interesting to see that this is also the case for M = 0 and 
k(0) = 166.   

Fig. 15 shows the corresponding instant xc-speed V'xc(t) of 
the classical theory dependence on the gliding speed V(t) for 
different values of M, airsink = 0. 

 
The instant cross-country speed dependence on the vario 
signal  

Fig. 16 shows the instant xc-speed Vxc(t) dependence on 
the vario signal during gliding Vario(t)glide which gives a 
nearly linear curve.  Also the instant xc-speed V'xc(t) due to the 
classical theory is shown which is approaching infinity at 
Vario(t)glide = 2 m/s.  During thermalling the instant xc-speed 
Vxc(t) is depending completely linear on the vario signal 
Vario(t)therm.  However, no information about the instant xc-
speed V'xc(t) according to the classical theory (Eq. (5)) is 
available in the thermalling mode.  
 

Converting energy into cross-country speed 
The new theory and its formula for the instant xc-speed 

Vxc(t) of Eq. (8 and 12) enable us to study how the glider is 
picking up energy and transforming it into xc-speed.   

 
During thermalling  

The energy of the glider is given by the sum of the potential 
and kinetic energy.  If we use total energy compensated 
altimeters and variometers we are able to express the energy and 
power (energy gain per time unit) in the short form:  

 
energy(t) = height(t)*weight                                           (15) 
power(t)therm = Vario(t)therm*weight                           (16) 

 
Vario(t)therm being the climb rate of the glider during 
thermalling. 

At the same time, because of Eq. (12), the glider will 
achieve by thermalling the following instant xc-speed (shadow 
speed): 

 
Vxc(t)therm = Vario(t)therm*k                                      (17) 
 
We note that during thermalling (see Fig. 17) two things are 

happening at the same time:  the gaining of energy (by 
power(t)therm) and achieving of instant xc-speed 
(Vxc(t)therm).  
 
During interthermal cruising 

To keep it simple we start with a special case.  We assume 
that the sink /climb rate of the air is zero.  A netto vario would 

show zero (nettoVario(t) = 0).  This has the effect that the vario 
signal during gliding is only influenced by the polar sink rate of 
the glider Vs(t): 

 
Vario(t)glide =  - Vs(t)                                                             (18) 

 
Because of our foregoing considerations (see Eq. (16)) the 

energy loss of the glider per time unit is given by: 
  

power(t)glide = -Vs(t)*weight                                        (19) 
 
The interpretation of this is as follows.  The glider stores energy 
in form of height and weight.  This is comparable to the fuel 
cars are storing in their tank.  Now, similar to a car that burns 
fuel in its engine to overcome drag and to produce forward 
speed, the glider “burns” height in its invisible engine to 
produce the gliding speed V(t) and (according to Eq. (8)) the 
instant cross-country speed:  

 
Vxc(t)glide = V(t) – Vs(t)*k                                            (20)  
 
To control the power and, therefore, speed of the car the 

gas pedal (throttle) is used.  In gliding the pilot controls the 
gliding speed V(t) which via the polar sinking rate Vs(t) 
determines the energy and power transfer into the instant cross-
country speed Vxc(t)gliding.  Calculating the instant cross-
country speed, for different values of M and k(M)b, dependence 
on V(t) displays the features of the glider's invisible engine 
which works best if the pilot flies with the MacCready speed 
(see Figs. 14 and 18).   

We are now fit to study the common case in which the 
vario signal is determined by the polar sink rate of the glider 
Vs(t) and the sink rate of the air airsink(t).  For a better 
understanding we use now instead of airsink(t) the signal of the 
netto variometer which we indicate by nettoVario(t).  It is 
therefore  

 
Vario(t)glide =  -Vs(t) + nettoVario(t)                            (21) 

 
and the power transfer during gliding: 
 
      Power(t)glide = -Vs(t)*weight + nettoVario(t)*weight   (22) 
 
accompanied by  the instant xc-speed according to Eq. (8): 
 
       Vxc(t)glide =[V(t)-Vs(t)*k] + [nettoVario(t)*k]             (23) 
 
Influence of the netto vario on the instant xc-speed 

We see from Eq. (23) that an additional xc-speed 
[nettoVario(t)*k] is  achieved, if the glider is flying through 
rising air,  and from Eq. (22) that at the same time the glider is 
picking up additional energy determined by  
nettoVario(t)*weight.  These effects are independent from the 
gliding speed V(t).  See also Fig. 12 and 18. 

An example may demonstrate the effect.  If the netto-vario 
shows a climb rate of 1 m/s in straight flight and if the k-factor 
is at M = 2 m/s for instance k(2) = 50 , then we get an additional 
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cross-country speed of  Vxc(t) = 1x50 = 50km/h.  In case of a 
rising air of 2 m/s we get additionally 2x50 = 100km/h.  On the 
other hand, if we fly in sinking air of minus 1m/s then our 
instant xc-speed will be reduced by -1x50 = -50km/h, and at a 
sink rate of  – 2m/s by  -2x50 =  -100km/h.   

 
Examples 

To test the formula of the instant cross-country speed, the 
igc-files of two flights were evaluated.  They can be 
downloaded from the OLC-home page.9  Both flights were 
flown from Wr. Neustadt, Austria on the 30th of April 2004 by 
Herbert and Martin Pirker 9, 10.  See Fig. 19.  The two igc-files 
of the flights were optimized by the cross-country evaluation 
program “SeeYou”8 and afterwards the appropriate data (1 set of 
data for each minute of the flight) were transferred from the 
SeeYou parameter list (Fig. 19) to an Excel-table (not shown).  
In the following, with the help of this Excel-table, the instant 
xc-speed which we designate here with Vxc(t)1min was 
calculated.  Instead of the gliding speed the "task speed"8 was 
used which is also sensitive against deviation from the course 
line.  To smooth the function Vxc(t)1min, the data were 
integrated by a time constant of Tc = 10min, Tc = 30min and 
designated as Vxc(t)10min, Vxc(t)30min.  For the integration 
the so called RC-integration (used normally to integrate the 
vario meter signals) was applied.  

In the Excel-table also the cross-country speed 
Vxc(t)SeeYou,30min is added which SeeYou8 is calling 
“Vt,t=30min” and which you get if you divide the distance 
flown in the last half an hour by 0,5h and which is also 
displayed in the “list of parameters” of Fig. 19.  This enables to 
compare Vxc(t)30min with “Vt,t=30min” of SeeYou and to 
discuss the difference (see Fig. 21).   

Also, the following cross-country-speed was calculated: 
 

Vxc(t)total = Taskdistance(t) /  t                              (23) 
 

Taskdistance(t) being the distance of the task flown since 
crossing the start line,  t being  the elapsed time.   This enables 
the drawing of diagrams and barograms of the cross-country-
speeds and height dependence on the elapsed time t.   
 
Flight by Herbert Pirker (30. 4. 2004)  

Fig. 20 shows the height (barogram) and the xc-speeds of 
this flight.  It indicates in detail: 

 White: Height (barogram).  The scale on the left side 
(ordinate) must be multiplied by 10 to get the proper meters.   

Grey, thin line:  Vxc(t)1min shows the instant xc-speed for 
GPS-fixes taken at intervals of 1 minute.  The curve of this 
speed varies extremely according to the meteorological 
conditions and inaccuracies of the used data (1 fix per minute 
instead of every second, height stored in the logger by meters 
instead of cm, height also not total energy compensated).   

Black:  Vxc(t)10min shows the xc-speed integrated by the 
time constant of 10 minutes.  The smoothed curve provides the 
pilot with quite valuable information on the xc-speed.   

Grey, thick line:  Vxc(t)total indicating the already 
achieved total xc-speed at the elapsed time t.  The curve shows 
that with increasing flying time t the function becomes quite 
insensitive against changes of the instant cross-country speed.  
  
Short description of the flight  

Start in Wr. Neustadt.  Poor rate of climb at the hill “Hohe 
Wand”.  Therefore, low xc-speed (40km/h) at the beginning.  In 
the following, ridge lift and high xc-speeds (about 140 km/h) up 
to “Dachstein” (task distance about 200 km).  After that, low 
cross-country speed again (down to 40 km/h) because of 
missing ridge lift, poor lift and some zigzag in the course.  At 
the turn point (Schmittenhöhe, Zell am See, app. 270km) a 4 
m/sec thermal causes a peak in the black curve of the xc-speed 
(110km/h).  Flying back to the mountain area “Dachstein” and 
the eastern turn point (Küb, task distance 500km) and back 
again to “Dachstein” (task distance 700km) enables high speed 
racing (up to 150km/h) due to ridge lift.  Turning back towards 
the east to fly home shows some reduction in the xc-speed due 
to rain and strong downdrafts before arriving at the ridges of  
“Hochschwab”, and the exploiting of the last updraft at the 
eastern end of the mountain “Rax” followed by landing in Wr. 
Neustadt.  The variation and changes of the xc-speed are 
demonstrated quite well by the black curve Vxc(t)10min which 
avoids exaggerated peaks at an acceptable retardation.   

Fig. 21 enables a comparison of the instant xc-speeds 
Vxc(t)10min, Vxc(t)30min and Vxc(t)SeeYou,30min.  The 
difference between the black curve of Vxc(t)30min and the 
white one Vxc(t)SeeYou,30min (= cross-country speed 
according to “Vt,t=30min” of the evaluation program SeeYou8) 
seems to be not big.  Yet, Vxc(t)SeeYou,30min (white line) 
shows, not quite correct, an inadequate decrease of its values 
during thermalling and inadequate increase during gliding.  
Both functions Vxc(t)30min and Vxc(t)SeeYou,30min, 
integrated by the same time constant of Tc = 30 min, show in 
comparison to Vxc(t)10min a far better smoothing of the curves, 
but at the expense of  an extremely delayed response  to changes 
in the cross-country-speed.   
 
Flight by Martin Pirker (30. 4. 2004) 

In Fig. 22, displayed are the same functions (height(t), 
Vxc(t)1min, Vxc(t)10min, Vxc(t)total) as in the foregoing Fig. 
20.  With regard to the height (white line) the numbers on the 
ordinate have to be multiplied by (3/4)x10 to get the height in 
meters.  
 
Short description of the flight  

Start in Wr. Neustadt.  Ridge lift up to mountain region 
“Dachstein” (200km), afterwards use of thermals up to the turn 
point at “Gerlos” (330km) and back again to “Dachstein”.  In 
the following, more or less ridge lift until the end of the flight.   

As you can see by the black curve of Vxc(t)10min, Martin 
manages to achieve in ridge lift as well as in thermals with 
heights up to 3000 m a relatively high and constant xc-speed,  
enabling him to fly 1027 km with his Standard  Libelle.10    
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2 Edwards, A.W. F., "On the origin of the "MacCready" theory", 
Free Flight, Issue 5, 2006- Oct/Nov, letters etc, page 5, URL: 
http://www.sac.ca/freeflight/archive.html 

Conclusions 
 The instant cross-country-speed Vxc(t) of the glider has 

been defined which may be regarded to be the shadow speed of 
the glider, if the sun rays are inclined in the right manner and 
the shadow is cast on the reference line (or, for simplicity, on 
flat ground).  Features of the instant cross-country speed Vxc(t) 
are discussed and the transforming of energy into cross-country 
speed revealed.  Examples of two igc-files of flights show that 
the formulas provide reasonable results.  However, the used 
data were not accurate.  Better height and vario data, combined 
with a higher access rate, make it likely to get accurate values 
and smooth curves with a response time of seconds.  This all 
suggests the implementing of the instant xc-speed into modern 
flight computers to enable fast and accurate flight analysis 
during and after flight.   

3Irving, F., The Paths of Soaring Flight, Imperial College Press, 
London, 1999, Chap. 8, pp. 65 – 74, ISBN 1860940552. 

4Pirker, H., "Tacho für den Streckenflieger",  Aerokurier 2/2001, 
pp. 84. 

5Pirker, H., "How fast are you flying now?" Gliding and 
Motorgliding International,   Features June 2004, URL: 
http//www.glidingmagazine.com/FeatureArtikel.asp ?id=424  [News 
May 27 2004]. 

6Pirker, H., "Dem Geheimnis Reisegeschwindigkeit auf der Spur", 
URL:  http//www.streckenflug.at  [Archiv 2005-07-04 ] or 
http://www.streckenflug.at/popup.php?xi=download/ 
reisegeschwindigkeit.pdf&xy=J  [04.07.2005]. 

7Pirker, H., "A Proposal for a New Variometer System”, XVII 
OSTIV Congress, Paderborn, Germany, 1981. 

 8SeeYou – Flight planning and analysis Software, URL:   
http://www.seeyou.ws/  [09.09.2006]. Acknowledgments 

9The On-Line Contest (OLC): URL: 
http://www.fai.org/gliding/olc  [28.03.2006] and 
http://www.onlinecontest.org  [2006]. 

The author thanks Michael Gaisbacher, the Austrian Aero-
Club and Werner Amann for their interest and support.   

 10Pirker, M., "1027 km In A Libelle", Gliding and Motorgliding 
International,   Features June 2004, URL:  References 

1Ragot, F., “Best  Speed  Story“, Technical Soaring, Vol. 28, No. 
1 / 2,  April 2006, pp. 1- 84. 

http://www.glidingmagazine.com/FeatureArticle.asp?id=421 [News 
May 14 2004]. 
  

VOL. 32, NO. 3 – July - September 2008                                                                                                          TECHNICAL SOARING                  80

 
 

α  

start  
point 

finish 
pointreference line 

Instant gliding 
   speed  
      V(t) 

Vxc(t) 

V(t) 

Instant cross- 
country speed  Vxc(t) 

Figure 1   Definition of the instant xc-speed. 

 
Figure 2   Basic xc-model.  

   
Figure 3  Tangent construction for finding optimum gliding 
speed (best speed). 
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Figure 4   Advanced xc-model for finite numbers of gliding 
sections X1, X2, …Xn.  Figure 4a (top)  With height loss in each 
gliding section Xi.  Figure 4b (bottom) With height gain in Xi 
(Varioi >0) causing a negative (!) thermalling time in the virtual 
thermal.     
 

  
Figure 5   Example demonstrating "paranormal" xc-speeds of 
the virtual glider in case of positive vario signals during gliding. 
 
 

  
Figure 6  Xc-model analogue to Figure 4 with an infinite 
number of gliding sections (cannot be shown), the positions and 
speeds being defined as a function of time t. 
. 

 
Figures 7   Movement study of the virtual and real glider 
ccording to the classical theory. a

 

 
Figure 8   The new virtual glider moving from 2' to 4' in the 
same manner as the real glider from 2 to 4. 
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Figure 9  Moving in average with Vxc along the reference line 
by gliding with (V, Vario) and thermalling with M.  
 

 
Figure 10   The instant xc-speeds of the virtual gliders in 
comparison (V'xc(t), V''xc(t), Vxc(t)).   
 

  
Figure 11  Shadow speed of the glider on flat ground. 
 
 
 

 

  
Figures 12 (top) and 13 (bottom)  The shadow speed Vxc(t) 
during gliding (Fig. 12) in comparison to the instant xc-speed 
V'xc(t)according to the classical theory (Fig. 13) dependence on 
the gliding speed V(t) for different values of the sink rate of the 
air during gliding (airsink = -2, -1, 0, 1, 2 m/sec) and climb rate 
in thermals of  M = 2 m/sec. 
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Figures 14 (top) and 15 (bottom)   Shadow speed Vxc(t) during 
gliding   (Fig.14) in comparison to the  instant xc-speed V'xc(t) 
according to the classical theory (Fig. 15) dependence on the 
gliding speed V(t) for different values of the thermalling climb 
rate M and corresponding k-factor at zero sink rates of the air 
during gliding, calculated for Ventus 17,6 cM. 
 

 
 
Figure 16 displays dependence of the vario signal during 
gliding, the shadow speed Vxc(t)glide and the instant xc-speed 
V'xc(t) according to the classical theory, and during thermalling 
the shadow speed Vxc(t)therm (for M = 2 m/s and k(2) = 47). 

 
Figure 17  Thermalling climb rate Vario(t)therm causing  
energy gain and shadow speed at the same time. 
 

  
Figure 18  Energy transfer into xc-speed during gliding. 

 

  
Figure 19  Flights of Herbert and Martin Pirker displayed by 
the evaluation program of SeeYou. 

-100

-50

50

100

150

250

-6
0

200

300

350

400

-4 -2 0 2 4

instant Vxc gliding
V'xc MacCready 
instant Vxc circling

K(2) = 47

Vxc(t)therm=94 km/h

Ventus cM 17,6 

Vario(t) therm

gliding 

Vxc(t)glide 
Vxc(t)therm 
 thermalling 

M = 2 m/s

0 -2 

Vario(t) gliding

-4 2 m/s 4 
0 

-100 

200 

300 
km/h 
400 

V’xc(t) of classical theory 

V(t)   = 162 km/h 
Vs(t)  = 1,44 m/s 
Vxc(t) = 94 km/h 
V'xc(t) = 94 km/h 

see Fig.14
see Fig. 12 

-40
-20

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250 300

V(t)    km/h

in
st

an
tV

xc
(t

)
km

/h

M= 0,0 k=166 Vxc max= 0 km/h
V= 101km/h
M= 0,5 k= 95  Vxc max= 47km/h
V= 119km/h
M= 1,0 k= 69  Vxc max= 69km/h
V=135km/h
M= 1,5 k= 56  Vxc max= 83km/h
V=149km/h
M= 2,0 k= 47  Vxc max=94 km/h
V=162 km/h
M= 3,0 k= 37  Vxc max=111km/h
V=185km/h
M= 5,0 k= 27  Vxc max=136km/h
V=225km/h 

For different k(M),  
nettoVario(t) = - airsink(t)= 0  

-100

-50

0

50

100

150

200

250

0 50 100 150 200 250 300

airsink= 2 m/sec

airsink= 1 m/sec

airsink= 0 m/sec

airsink= -1 m/sec

airsink = -2 m/sec

Vxc opt at Vopt

For different values  of 
nettoVario(t) = -airsink(t)  

Vario(t)glide  =  -Vs(t)                +  nettoVario(t) 

Energy transfer into cross-country speed  
during gliding: 

                                 
 
 
Power(t)glide = - Vs(t).weight +  nettoVario(t).weight 

 
Vxc(t)glide =  V(t) –Vs(t) . k(M) +  nettoVario(t) . k(M)  

Vxc(t)therm 
(shadow speed) 

Vario(t)therm 
power(t)therm 

height, 
energy 

Sun rays

-40

-20

20

40

60

80

140

100 200 300
0

100

120

0

k = 166  M =  0 ,0  V x c  m ax =  0
k m /h V =  101k m /h

k =  95  M =  0 ,5  V x c  m ax =
47k m /h V =  119k m /h

k =  69  M =  1 ,0  V x c  m ax =

Vxc(t)glide 
shadowM 
speed 

M = M’ 
airsink = 0 
M’ =airsink +M 

3 

2 
1,5 

300 km/h    V(t) 

V(t) 
0 

0 

100 
km/h 

   k  M 5 Pirker   27 5,0 
  37 3,0 
  47 2,0 
  56 1,5 
  69 1,0 
  95 0,5 
 
 166 0,0 1 0,5  -40 100 200 0 

0
0

20

40

60

80

140

160

50 100 150 200 250 0

100

120

30

M= 0,0 
M= 0,5
M= 1,0 m/sec
M= 1,5
M= 2,0
M= 3,0
M= 5,0

V’xc(t) V'xc(t)
classical 

theory 

0 

M 
5 km/h 

100 3 

2 

1 

0 

TECHNICAL SOARING                                                                                                          VOL. 32, NO. 3 – July - September 2008 83



 

2004 04 30 Pirker Martin Std.Libelle 1027km 91km/h 

-100

0

100

200

300

400

500

1 39 77 115 153 191 229 267 305 343 381 419 457 495 533 571

flying time t in minutes 

H
ei

gh
t *

 3
/4

 * 
10

 m
 , 

  X
C

 - 
sp

ee
d 

 (k
m

/h
)

Height*3/4*10m

Vxc(t) 1 min

Vxc(t)10 min
Vxc(t) total

K = 35

Fig. 22

3000 m

thermaling

Vxc(t) 1minVxc(t)10min

Elapsed time t [min]
Vxc(t) total

0

-100

200

100

300

Km/h

Height, 

barogram
Ridge lift

Figure 22  Barogram (white) and instant xc-speeds achieved by 
Martin Pirker on his flight. 
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Figure 20  Barogram (white) and  the instant xc-speeds with the 
time constants of 1 minute (grey), 10 minutes (black) and the 
total xc-speed (grey, thick line) achieved by Herbert Pirker on 
his flight. 
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Figure 21  Instant xc-speeds with the time constant of 10 
minutes (grey) and 30 minutes (black) in comparison to the 
instant xc-speed calculated by SeeYou (white). 
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