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LIST OF SYMBOLS

Axial induced velocity factor

[=7]

Circumferential induced velocity factor

!

Number of blades

Local blade lift coefficient

—

Local blade drag coefficient

=

Local blade chord
Prandtl's factor (equation 3)

See equation (4)

X =h M 0 ¢ O 3\

A constant

dy

m An index (equation 12)

n An index (equation 10)

) l'l'_'_=‘|l'|'.
v Forward speed of the propeller
" = s e ” 1 1. P o

k A constant (equation 10)

A const 1
{ Dimensionless radiu /1
1 1 —y-l | =
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The application of vortex theory to a
nropeller with a Targe number of blades

s that the expressions for the ax
circumferential induced velocity
factors are, respectively, as follows:
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Here, y = tan‘l(CDJCL), and hence

these expressions correspond to equa-

tions 3.2 and 3.3, p.236, Ref. 1. (See

also the List of Symbols and Fig. 1).
Prandt] considered the effect of a

finite number of blades. Since there is

no flow through the vortex sheets
trailing behind the blades in the
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Conditions at a blade element at
radius r.

Fig. 1

slipstream, he suggested, as an
approximate analogy, that the radial
flow near the edges of the vortex sheets
would be similar to the two-dimensional
flow about a series of semi-infinite
flat plates moving through the fluid.

An analysis of this flow leads to the
factor F, where

o= (2/m) cos 1 [cxp(—f)] (3)
and =
£ = (B/2)) (V1+3%) (1-7). (4)

In Glauert's wordsl: ", , F is a
reduction factor which must be applied
to the momentum equation for the flow at
radius r, since it represents the fact
that only a fraction F of the air
between the successive vortex sheets of
the slipstream receives the full effect
of the motion of these sheets."

It then follows that equations (1) and
(2) must be modified by multiplying
their right-hand sides by (1/F). This
seems obvious, in the sense that aV and
a'Qr represent the axial and circum-
ferential velocity components induced at
the blade element by the trailing vortex
system and will therefore be greater
than the corresponding average values.
In detail, this result may be obtained
by following the analysis of Ref. 1.
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TECHNICAL SOARING

Equation (1) then becomes

a _ % cos(gy) 1
1+a B 4 B . D F (5]
cosY sin‘ ¢

and similarly for equation (2).

As Professor E.E. Larrabee has
observed,Z equations 5.5 on p.268 of
Ref. 1 are in error because, as printed,
F appears in the numerator, not the
denominator.

Now, as € » 1 near the blade tip, f > 0
and hence F » 0. So, if all the other
quantities on the right-hand side of
equation (5) are finite, a will tend to
infinity as £ > 1, as also will a'. This
is analogous to the induced downwash at
a wingtip tending to infinity if a
vortex of finite strength is shed from
the tip.

Even if C_ and/or o are arranged to
be zero at the tip, a and a' may well be
indefinite. We therefore enquire
whether ofF can be arranged to tend to
zero, or some finite value, as ¢ » 1.

ANALYSIS
Now f can be written k(1-3), where K is
a function of B and A, and is therefore
a constant for a given propeller
operating at a fixed advance ratio.
For small (1-0),
exp (-f) ¥ 1-k(1-0). (6)
Also, cos"lx > Vﬁ—xﬁ as x + 1, so
COS'l[exp(..f)] + Y2k(1-r) as C~>1.
Finally, f'*—% /2K (1-T) (7)
as ¢ > 1.

Now, putting e¢/R = yx, o becomes

o = (B/2m) (x/T). (8)
. B X
So, giF o —i— - =

as £ 1.
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If «/fF is to tend to zero as ¢ > 1

then y/v/i—¢ must tend to zero as ¢ > 1.
One possibility is to make

x = xa-0" (10)

where K is a constant and n > §. The
"Timiting" tip shape, i.e. with n = ]
is therefore parabolic. For a given
blade chord at, say = 0.9, any tip for
which n >3 will lie inside the limiting
parabaola,

The slope of the tip profile, dy/dc,
is proportional to (1-z)n-1, So, as
z > 1, the tip slope will tend to (-=)
1t n< 1, i.e. the tip will be blunt,
and to zero if n > 1, i.e. the tip will
be pointed. It therefore seems that, on
practical grounds 1 > n >1.

The parabolic tip shape (n =3 ) leads
to a finite value of of/F at £ = 1.0.
For n >, ofF =0 at ¢t = 1.0.

An alternative possibility is to allow
ofF to attain some finite value at the

tip. If the tip is to be blunt, the
conditions to be fulfilled are:
(R T,
et

where T has some finite value
and dX{dC - e,

both as ¢ » 1.

If it is supposed that

X = K(1-0)? g(D) (11)

where g(Z) is some function of ¢, then
the conditions will be met if g(z) and
g'(z) are finite at ¢c= 1. A simple
relationship which meets this
requirement is

g(ry = 2" (12)

The case m = 0 then corresponds to the
previous limiting parabola. If m » 0,
the tip is "blunter" than the parabolic
shape (Fig. 2). The casem = 1
corresponds to a constant value of ofF
over the tip region, whilst if m > 1.0,
o/F increases towards the tip (Fig. 3).
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Fig. 2 Some possible tip shapes. The
values of c/R are scaled so as

to be the same at r/R = 0.9.
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Fig. 3 Relative values of o/F near the
tips of propellers of various
shapes.

REMARKS

IT the blade sections have the same
lift/drag ratio at all values of ¢, the
optimum distribution of circulation
along the blade is such that the
circulation, and hence the factors a and
a', fall to zero at the tip. In the
present context, the Reynolds number may
vary appreciably along the blade, with
corresponding variations in the
lift/drag ratio. The simple analysis of
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Ref. 1 then no longer applies. If the
blade chord near the tip is small, its
1ift/drag ratio is likely to be poor
compared with that prevailing elsewhere
and, qualitatively, it seems even more
desirable to reduce the loading in this
region.

With more highly-loaded propellers (on
motor-gliders, for example, and
certainly on larger powered aircraft),
it seems desirable to reduce a and a' to
zero at the blade tips so as to reduce
the rate of shear at the slipstream
boundary and thus to diminish the noise.

The axial and circumferential induced
velocity factors will only be zero at
the slipstream boundary at all advance
ratios if ofF becomes zero at the blade
tip. These factors will, in general,
have finite values at the boundary if
of/F tends to some finite value at the
blade tip. The characteristics of the
propeller will be calculable, but the
resulting thrust distribution will
probably be non-optimum.

CONCLUSION

In the interests of efficiency and, 1n
some applications, noise reduction, it
is usually desirable that the thrust
grading and hence the induced velocity
factors a and a' should diminish to zero
at the blade tip. This can be achieved
for all working conditions by ensuring

that of/F becomes zero at the tip.

TECHNICAL SOARING

A simple tip shape of rounded form
which satisfies this condition is

g = K[l- :J” (13)

It

where 1 > n > i, The conditions n = 1
and n = } are excluded: the former
corresponds to a triangular tip, the
latter to a finite value of o/F. It
should be possible to choose values of K
and n so that the tip shape fairs
smoothly into the blade shape inboard of
say r/R = 0.9. These shapes are all
"sharper" than the parabola
corresponding ton =},

Tip shapes corresponding to

S
e _ [,z 2]
#ox(i-5 [

where 0 > m, lead to finite values of
of/F at the tip, except when the
aerodynamic terms in the numerators of
equations (1) and (2) are zero. These
shapes are "blunter" than parabolic.

It would seem that shapes
corresponding to equation (13) are
generally to be preferred.
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