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The ““Convex-Combination Approach,”
a Geometric Approach to the
Optimization of Sailplane Trajectories

J.L. de Jong
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(The following is an abridged version of Eindhoven Technical University paper
COSOR 80-10. It covers an update of material presented at the XVI OSTIV Congress,
Chateauroux, France (1978) and new material presented at the XVII OSTIV Congress,
Paderborn, Germany, 1981.

SUMMARY

Three different problems encountered in the sport of soaring are discussed:

First, as an introduction, the classical "MacCready problem" is reviewed; this is
concerned with the determination of the best cruise speed between columns of
rising air under cumulus clouds. Next, a new solution concept is presented for
the “optimal dolphin soaring problem." This is the problem of determining the
best (varying) speed through regions with varying vertical atmospheric velo-
cities. Finally, some new ideas are discussed which make new solutions possible
to the “"optimal zigzagging problem," which is the problem of whether, and if so
how, to make use of favorable regions with upward atmospheric velocities which are
present aside of the track to be flown.

List of Symbols AB/C,... : related to trajectory part AB relative

: length of range to value at C

h : height BSF : best-straight-flight
t : time MCr : MacCready problem solution
u - vertical velocity of atmosphere ZAY : zero-average-velocity
v + (horizontal) velocity of the sailplane L . zero (altitude) Toss
W : yertical velocity of the sailplane a 1 atmosphere
% : coordinate in horizontal direction av T average
74 - absolute rate of climb, MacCready ring setting cl : climb
3 : fly-off angle (in horizontal plane) cr : cruise
s : flight path angle (in vertical plane) max i maximum
] . course direction (in the horizontal plane) min : minimum
- 1 vector mind : minimum descent
mnr : maximum over range
Subscripts opt : optjmum _
ory : optimal range velocity
A,B,C,... : points on trajectory D : polar _
AB,BC,... : trajectory part form A to B, B to A,... r : resulting

ABC,... : broken trajectory from A via B to C th : thermal




1. INTRODUCTION

The determination of the instantaneous
horizontal veleocity which yields the
highest average velocity along the
course, taking into account the time
spent gaining altitude, is the funda-
mental optimization problem in soaring.
The three main variants of this prohlem
are: 1. the MacCready problem, 2. the
dolphin soaring problem, and 3. the zig-
zagging problem. In this paper atten-
tion is paid to all three problems but
the first is discussed mainly for the
sake of its central role in the theory.

2. The MacCready Problem, the MacCready

Ring and the Sollfahrtgeber.

2.1 The MacCready problem.

In any discussion about sailplane
trajectory optimization, two concepts
play a central role: thermals and the
velocity polar. Ve take "thermal" to
mean a column of rising air large enough
for a sailplane to circle in, and assume
that the vertical velocity of the air is
constant. This implies that the
(ahsolute) rate of climb of the sail-
plane is also constant. The term
"velocity polar" means the relationship
hetween the horizontal and vertical
(equilibrium) velocities of the sail-
plane (see Fig. 2). The velocity polar
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Fig. 2: The standard and the absolute {regular
and extended) velocity polar

depends on the sailplane's weight and
the air density; these are usually
The relationship

considered invariable.
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is represented by
(2.1) W o= w?(vJ

where w is the vertical velocity of the
sailplane relative to the air and v is
its horizontal velocity. The difference
between the horizontal and total velo-
cities may normally be neglected.

The basic problem in sailplane
trajectory optimization is the MacCready
problem. This is the question as %o how
fast the sailplane should fly between
thermals in order to minimize the flight
time from point A (see Fig. 1) in one

[y

o C

Fig. 1: The classical MacCready problem

thermal to point C at the same height in
the next. If the horizontal distance
between the two thermals is L, the
absolute rate of climp in the next
thermal is z¢y and the atmosphere
between the thermals has a constant
vertical velocity uy, the MacCready
problem reads

min lT_ L Ab \ﬂh t =
v th
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The inequalities for h and v are
commonly not explicitly stated. When,
as usual, i* i assumed that they are
strictly satisfied, the problem reduces
to the minization of the time Tppe
given by
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By differentiation with respect to v it
can be shown that

{ 1) diw 2y b (w {v) +u )
Bt ——L (v) » ——-k =
oV v

This is the MacCready relation. It
plays a central role in the theory and
the implementation of optimal flight
trajectories.

(i) The absence of L in the expression
jmplies that the optimal solution js
independent of distance. In practice,
it does play a role since it affects the
altitude loss which of course should not
exceed the height of A.

(ii) (2.4) is the basis of the well
known graphical approach (Fig. 2) to the
determination of the best cruise velo-
city vpg from point A to B. This 1is
easily found by drawing a line through
the point (0,z¢y) tangent to the velo-
city polar translated vertically by an
amount uy, or, of course, by drawing a
1ine through (0,z¢p - uy) tangent to

the velocity polar itself.

(ii1) The average velocity vpagc from
A via B to C is given by the inter-
section of the tangent line with the
horizontal axis, and is equal to

= B Zth v
A50 I kwva; +ou )

(iv) The optimal average velocity when
Uy is zero depends on Ztp in the

next thermal (for z¢n20). It is
usually called the MacCready travel
velocity and is denoted by

(2.6 w {z,. ) = “th Ty Bt
L el ‘I“I'C:',I"\ ‘t:'l'l 2 P fz, . ),l MCx
th poOMC,Tth

(v) When uy is not constant but
varies with the distance coordinate
x(C£x =1), the MacCready relation
becomes

U (ulx)) +
dv

(z.7) -vix) w‘(v(?{:‘) + uafx) =52

th

A few remarks may be made:

(vi) Considering the MacCready problem
to be one of maximizing vppc, two

related very simple geometric properties
hold as follows:

Convex Combination Property I: Let ABC
he a broken trajectory (Fig. 3) and let

— =3

Fig. 3: The convex combination properties

Vpg and Vpe be the velocity vectors

in the directions AB and BC respec-
Ejve]y. Then the resulting velocity
vapc in the direction AC is equal to
the convex combination in the direction
AC of those velocity vectors.

Convex Combination Property II: " The
line that connects the end points of
vap and vpe (Fig. 3) is divided by
the endpoint of vpape into two pieces,
the Tengths of which are proportional to
the times t and tAB , spent on the
legs BC anu 8B
This approach, that makes use of the
idea of convex combinations of velo-
cities, and so is called the convex
combination approach, is the essential

basis of the TargeTy novel apbreoach to
optimization problems presented here.

{vii) Using the convex combinations
appreacn iv 1S very simple to solve the
HMacCready problem in the case of A and C
being at different heights. In most
cases, the same vpp will be optimal,

but the time to climb in the thermal
will varv with the heiaght nf C (Fig.3).

(viii) Horizontal wind velocities are

assumed not to influence the optima!
solution to the MacCready problem on the




basis that the horizontal wind is
constant for the whole flight. The
pilot who flies the fastest relative to
the air will also be fastest in the
absolute sense. Similar considerations
will hold with respect to the other two
problems.

2. The MacCready Ring and the
Sollfahrtgeber

Two analogous devices have been de-
veloped for giving the pilot a visual
indication of how well the MacCready
relation is satisfied, by indicating how
to choose his (horizontal) speed.

A MacCready Ring is a movable ring
mounted around a rate-of-climb indicator
with a linear scale (Fig. 4). On the

rata of climb
indicator

Tig. 4: MacCready ring around rate of climb indicator

ring one reference mark is engraved, and
other marks which correspond to velo-
cities to be flown, as sketched in
Fig. 4. The pilot sets the reference
mark against the scale of the rate-of
climb indicator at the anticipated
rate-of- climb in the next thermal.
Thereafter, he flies at the velocity
towards which the rate-of clinb
indicator is pointing on the MacCready
ring.

The disadvantage of the MacCready ring
is that one has to compare at any moment
the actual velocity with that indicated
by the pointer of the rate-of-climb
indicator at the ring. This implies
reading two instruments simultaneously -
always more difficult than reading only
one. Hence, the development of the
"So11fahrtgeber" or "speed director," in
essence a modified rate-of-climb
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indic~*~=, with the quantity
-v(x) Mp (vix)) + ua(x) + wip(v(x)).
dv
It does this by superimposing on the
signal for the ahsolute rate-of-climb
another signal proportional to the
equivelent vertical velocity
-v(x) 9wy (v(«)), either mechanically or
dv
electronically. The pilot has only to
take care that the pointer of the
Sol1fahrtgeber points towards the
expected rate-of-climb in the next
thermal. If it points to a higher value
the pilot should fly rmore slowly; if
towards a Tower valu ,he should tiy
faster,

For either device the pilot has to
guess the rate-of-climb in the next
thermal; if he has quessed correctly he
will fly optimally if he just adapts his
speed according to the command given by
the device. To emphasize its importance
the quessed value is given a name - the
MacCready ring setting. If the pilot
exactly follows the commands of the
MacCready ring or the Sollfahrtgeber,
the optimality will only depend on the
proper value of the MacCready ring
setting.

3. The generalized dolphin soaring
problem and the optimal range
velocity polar

3.1 The generalized dolphin soaring
problem

If the vertical atmospheric velocity
varies over the range, the optimal
strateqy will in general be to fly fast
through down drafts and slow through up
drafts. The resulting trajectory shows
some resemblence to that of a jumping
dolphin and accordingly is called
(quasi-stationary) dolphin soarini Fig.5.
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Where cloudstreets cover part of the
trajectory, proper use of the MacCready
ring or the Sollfahrtgeber results in an
altitude gain instead of a loss. In
that case no circling in the next
thermal is necessary and the pilot can
fly faster and increase the average
velocity. A new problem may be formu-
lated: '"When the vertical atmosphere
velocity varies, how to select the
instantaneous horizontal velocity such
that the average horizontal velocity is
maximized for a prescribed altitude gain
(or loss)." In mathematical terms, this
Teads to the constrained minimization
prohlem

L Looow (vix)) o+ o (%)
dx ja) :

(3.1) min{ J T
vixlt /g wix

v dx = L tan*(}

o

This is known as the pure dolphin
soaring problem. The general optimiza-
tion problem may be formulated as
(cf.l2:2))

L E M’li
(3.2)  min { [ ~ L L
vix) 0 d i th,i
1 z Low (wvix)) + ua()g)
ah, + drx = L tan v
;1 L) v (x)

l Ah, 2 0, v _,_ <
1 min

v 2V }

(3.2) differs from (3.1) only through
the assumed presence of isolated ther-
mals. Alternatively, one can assume for
the sake of modelling that circling is
replaced by a straight climb over the
width of the thermal and that wy is
constant for velocities below Vpind.
so that

for v& v

ﬁp(v) i=w (v ) i

P mind
(3.3)

g wp(\.‘) "ow >

VoL
mind

The relationship is called the
extended velocity polar (Fig. 2, dotted
Tine). With this concept the optimiza-
tion may be formulated as a pure dolphin
soaring problem (3.1) and is referred to
as the generalized dolphin soaring
problem. The solution, by Lagrange

multiplier technique, is simple but
lengthy, and has only been evaluated for

some special cases such as the sinus-
oidal distribution (Ref. K-1) and the
square-wave distribution (Ref. M-1).

The results however serve as a guide for
the MacCready ring setting in many
practical cases.

3.2 The optimal-range-velocity polar or
orv-polar

Given any range (0,L) and any vertical
atmospheric velocity distribution, there
will in general be an infinite number of
horizontal velocity histories v{(x) that
yield the sarme average horizontal velo-
city vay. This will be true for small
vay 1T one allows circling or flying
S-curves., The velocity histories of
most interest are those that result in
the smallest altitude Toss or largest
gain, or, equivalently, the largest
average vertical velocity or smallest
descent velocity (i.e., the solution of
the problem)

T e fwla)) + ou_ (x|
(3.4) max[g I p a dx

vix)

2

This problem is of the same type as the
generalized dolphin soaring problem
(3.1), and its solution nay accordingly
be determined with the same technique.
For the present problem the optimal
velocity history v(x) satisfies the
relation

W
PI
dv

[+3

(3.5) =vix)

(vG) + W (w)) + u G0 = 2lvy)

where Z(Vav} is the Lagrange multiplier
which will in general vary with v,,.

The bar over wh signifies the use of the
extended-velocity-polar relationship
(3.3). The actual value of z{vy,) is

to be determined from

Uav L'dx
=F T ="
Q
The solution of (3.4) i.e., the maximal

average vertical velocity for given

(z.6)




average horizontal velocity will play
such an important role in the develop-
ment to follow that it is given the
special name optimal vertical range
velocity wypy. It may be determined
for any value of v, 0. The formal
relation between the two is

5 e v Tow (vlx)) + u_{(x)
worv(vav} t= max []va o - a i

This relationship, which may be plotted
(Fig. ) in a way similar to the
sxtended velocity polar, is called the
optimal-range-velocity-polar or orv-
polar {for the given range and vertical
atmospheric velocity distribution).

The orv-polar yields the result of the
use of an optimal strategy for given
Vay. Since any optimal strategy must
result in some vy, value, that
strategv must result in the correspond-
ing optimal vertical range velocity.
The orv-polar thus contains the results
of all possible mininum time
strategies. This makes it an extremfely
useful tool in the theory and the
practice of soaring strategies.

3.3 Geometric construction of orv-polars

Intimately related to any point of the
orv-polar is the value of the Lagrange
multiplier z{vay). From (3.7) the
derivative of the orv-polar satisfies
the relationship

The proof of this is not included here.
1t is of more interest toc note that the
derivative property implies a similar
relaticnship (for the orv-polar) and the
MacCready relation (2.7). The optimal
MacCready ring setting follows from the
geometrically interpretable expression
(Fig. 6).
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'\\. MacCready strategies | dolphin strategies

“'H-._,_
ZAV-point

Zmr

YWorvVay)

Fig. 6: The orv-polar for the range and atmospheric
vertical velocity distribution of Fig. 5

Two points on any orv-polar are of most
interest., The first is the zero-
average-velocity point or ZAY-point.
This Ties on the vertical axis and
corresponds to the best absolute
rate-of-climb zp. (mr = maximum range)
that can be realized at some point of
the range. The second is the
hest-straight-flight or BSF-point which
corresponds to a MacCready setting

zpgp equal to zn,.. With the convex

comhination property I it is easy to
show that all points of the orv-polar
that correspond to v,, smaller than
Vay,BSF Tie on the straight line
connecting the ZAV-point and the
BSF-point. The corresponding optimal
strategy is called a MacCready strategy
and consists of c¢limbing at the point
where zgpe can be realized, followed

(or preceded) by a straight flight with
that as MacCready ring setting.

A direct consequence of {3.8) and the
concavity of the orv-polar is that for
Vay larger than vyy gsp the
MacCready ring setting will be larger.
In this case one should fly straight and
follow the commands of the MacCready
ring or the Soilfahrtgeber. This is
called dolphin strategy. The BSF-point
is the transition point for the two
strategies.

The convex combination property I and
the derivative property make it simple
to construct the orv-polar that
corresponds to a combination of two
ranges, provided that the orv-polars for
each are given. All points of the new

orv-polar (Fig.7) will 1ie on lines that
connect tangent points on the original
orv-polars corresponding to the same
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MacCready ring setting. The ZAV-point
of the new orv-polar will be the larger
of the two best absolute rates of climb
on the original ranges. The BSF-point
of the new orv-polar lies on the Tine
joining the points on the original
orv-polars where the lines through the
point (0,zy.) are tangent. The
division of the connecting line is
inversely proportional to the times over
the two ranges (convex combination
property II). For all points on the
concave part the sane construction
applies.

Even more usefulis the rule (Fig. 7)

arv palar Lyvrly

BSF point Ly<ly

Fig. 7: Construction of an orv-polar by synthesis
of two known orv-polars i

that any vertical line is cut by the
three tangent lines (the middle one
being tangent to the new ore-polar) into
pieces that are inversely proportional

to the length of the two ranges. This

follows from some simple geometry

(Fig. 8)

(3.10) AB _AD EF _AS Vo8 g, SNE Ba
" DT ECE S v{iw:&_‘1 ‘ava_T"‘\

Fig. &: Proof of the geometric property of the
tangent lines of orv-polars

An example of the fruitful use of this
geometric property of the tangent lines
is given in the next paragraph.

3.4 A practical application: The
orv-polar and the optimal strategy for
cToudstreet flying

In the real world a pilot will never
know the exact vertical atmospheric
velocity he will encounter along his
course line. Therefore, the hest that
one can do is to provide him with guide-
1ines based on simple models and leave
him to interpret the real situation in
the 1ight of those solutions.

A model of much interest is the
general square wave vertical atmospheric
velocity model, as advocated by
Reichmann (R-1) and illustrated in
Fig. 9. The range consists of two parts
of length Ly and L» having constant
vertical atmospheric velocities
uy and us where uy<up-

- - L 11

Fig. 9: The (generalized) dolphin soaring problem
square wave atmospheric mode]




0f much interest for practical appli-
cation are plots of the MacCready ring
settings for different ratios Lp/L
or, bhetter, of L;/{L1 + Lp), which
result in optimal trajectories with no
overall height change (Fig. 10). To

fig. 10: The orv-polar for the atmospheric model
of Fig. @

construct such a plot for a particular
combination of uy and up, first
evaluate the "break point," j.e., the
first ratio Lp/(Ly + Lp) for which
a MacCready ring setting equal to Znp
Just results in a straight flight with
no overall height change. This ratio
can be determined geometrically
(Fig. 11a). The Yine joining the two
tangent points on lines through the
point (0,z,.) is drawn. The inter-
section point of this line with the
horizontal axis is the BSF-point of the
orv-polar that applies to the hreak
point ratio. The latter can thercafter
be determined as the ratio of the 1ine
lengths cut off from an arbitrary
vertical line by the two tangent lines
through (0,z,,.) and the line through
(0,zp) and the newly found BSF-point.
For all ratios Lp/(Ly + Lp)
smaller than the break point ratio, the
best MacCready ring setting will be the
best z,,. and the strategy will be
MacCready. The corresponding part of
the plot is accordingly just a
horizontal line. For larger ratios
interpolation may be made between points
(Fig. 11b) which correspond to distinct
values of the ring settings. The ratio
that corresponds to a fixed ring
setting z may he determined similarly.
Tang?n% 1ines through the point (0,z)
are drawn to the two original
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orv-polars. Then the line through (0,z)
and the intersection between the Tine
Joining the two tangent points and the
horizontal axis is the tangent line to
the orv-polar for the given Lp/(Ly +

Lp) ratio. The geometric property of
the tangent makes it feasible to measure
the desired ratios directly from the
graph. The strategies will be dolphin
strateqgies,
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Fig. 11: Graphical construction of a plot of optimal
MacCready ring settings as a function o
the cloudstreet extension ratio Lp/{Ly + Lj]

An example is given in Fig. 12. It
should be remarked that the orv-polar
concept makes it possible for any
sailplane pilot to construct plots like
these with no more ajds than a velocity
polar, a ruler and a pencil.
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Fig. 12: The optimal MacCready ring settings as a
~ function of the cloudstreet extension
factor for an LS-3 sailplane with a wing
loading of 45 kb/m2

4, The zigzagging problem

4.1 Problem formulation

In the real world clouds and cloud-
streets are seldom nicely alijned along
the course to be flown. To the problems
of how fast to fly from thermal to
thermal, or through a region of variable
vertical atmospheric velocities, there
is another problem of whether or not,
and if yes how, to make use of regions
of rising air located away from the
track or running at an angle to it.

This problem is called the "optimal
zigzagging problem." There are three
main variants (Fig. 13): (i) one single
cloud at some distance from the track,
(1) one simple clouastreet and, {iii) a
system of parallel cloudstreets.

The criterion for the decision whether
or not to make a detour is the time to
fly from the starting point A to the
point C (at the same height above the
track) or, in other words, the
comparison between the resulting velo-
cities from A to C with and without the
detour, i.e. VABC,rs and VAC,r>
respectively.

A™ BE< CE—
la): One slogle oloud
l "#‘Fi’_,.——"'h“*
| T
|
|
| B
Al/"/ (b} One sinyle cloudstrest
IJFKJA:ifﬁ
G i
BT
%,,,/”’/’ T =ne,~”””

{el: Parallel cloudstreecs

Fig. 13: The three main variants of the zigzagging
problem

The determination of the best
achievable resulting velocity vapc
in the case of a detour is somewhat more
complicated than that for no detour as
it involves simultaneous optimization in
both the horizontal and the vertical
planes. The optimization in the
horizontal plane usually concerns the
location of either the point C (when the
location of point B is given (variant
(i)) or the point B (when the location
of point C is given (variant (ii) and
(ii1)). The location of either of these
points is geometrically determined by
the fly-off-angle 3 which is the angle
hetween the two consecutive legs AB and
BC of the detour (Fig. 14). The opti-
mization in the horizontal plane thus
reduces to the determination of the
optimal fly-off angle. The optimization
in the vertical plane concerns all
three variants problems that are similar
to those for MacCready and dolphin
flying. A complicating factor is the




usual limitation on the height hy of B
relative to that of A and C; the optimal
strateqgy turns out to be Tully deter-
mined by hy and by the two cruise
velocities vag ¢p and vpe o (o1,
equivalently, the two MacCready ring
settings). The optimization in the
vertical plane thus reduces to the
determination of these three quantities.

C

Fig. 14: The resulting velocity vape over the broken
trajectory R-B-C and the fly-off angle &

Assuming constant vertical atmospheric
velocities, the general optimal zig-
zagqing problem may be phrased as
follows: Given the (course) direction
4 ap of the possible first leg AB of
the detour, the precise location of
either B or C, the strength of the
vertical atmospheric velocities upg
and upc, the best absolute rates of
climb zg at B and z¢ at C, and
finally the maximum ho1ght difference
hR .max at point B, then determine the
optimal fly-off ang]e ¢, the optimal
cruise velocities vap cp» and vpg cp
and the optimal height of B that
together result in the highest resulting
or travel velocity vapc r and so the
shortest time to fly fron A to C.

2 The single cloud problem and the
concept of relative travel velocities

For the single cloud problem (Fig. 15)
the theory of the MacCready problem is
directly applicable. In particular,
there are two optimal cruise velocities,
which satisfy the appropriate MacCready
relations

3 E ¢ N A Y —
1o e I b4 S T oY)
R B R i5 or @ LV_L\‘E_ Ayt o' AR or sk 3
duw
W&} =¥ —‘E b : e
BC or dv BL er S er = b
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Fig. 15:

The single cloud problem

For practical purposes this means the
MacCready ring settings on the legs of
the detour are respectively zp and

Zc.

The opt1m1zat10n in the horizontal
plane is a 1ittle more complicated. An
illustrative way to determine the
optimal fly-off angle is the geometric
approach in combination with a new
concept, that of "relative travel
velocities," which is convenient
whenever hp is not zero.

When hg is zero the average velo-
cities over the two legs AB and BC are
given by

/

B

(2

(4.3 v = - vm{jr "

-
AR r 2o — W kv bl 4B er
ot v AB or

Z.
1 — (m..)

(h.t) B r T Z T YRC er T TMOr ¢t PO

Jr or

The resulting velocity vapc,p will be
the convex combination of these. From
geometry (Fig. 16} it will be immediate-
Ty clear that, with B being variable,

Fig, l6: Geometric construction of the optimal
fly-off angle
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the extreme values of vpapc » will be
Jocated at the line through the endpoint
of the vector vapg , and tangent to a
circle of radius the length of vpc p
(which is considered to be 1ndependent
of the direction). The corresponding
optimal fly-off angle satisfies the
relationship

(h.5)

v,
cos f RSESE |
oph VAB .

When hg is positive, it will take

extra time to reach B from A, and less
time to reach C from B. The average
velocity vag ay from A to B will
decr2ase and the average velocity

Vp(,ay from B to C will increase.

Yet, it will be clear, that it is only
advantageous to climb higher at B as the
absolute rate of climb there is higher
than at €. The gain in time is then
realized over AB and not over BC, in
contrast to what the average velocities
would indicate. The concept of relative
travel velocities is now introduced to
remedy this discrepancy. To that end
the relative velocity Yjs,. over the

leg AB relative to theahbsolute rate of
climb at C is defined as the length of

AB divided by the relative time tpp/c
which is the real time minus the time
gain (Fig. 17)

Fig. 17: The concept of relative travel velocities and
the construction of the resulting velocity
over a broken trajectory

. S ¥ ::1 [a5]

(4.5 AB/C b, Tt

P AB/T
AR ZC
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Similarly, the relative travel velocity
over the leg BC relative to the

&
absogute rate of climb at C is defined as

" e Jec] _ 1zc]
() B/ hp  tposg
tye + (Erv
o
Since obviously
Yis/c - tapsc = 181
sosc * Frosc = 19
and
tamse o teese T tam T fae

it may eac ily be deduced that the
resulting velocity vapc , OVer the
trajectory ABC is as good a convex
combination of the relative travel
velocities vag/c and vpeyc as of the
real average velocities YAB,av and
VBC,av since

e . Z
tansc¥asse T troscVRo/c

(‘IP.E) + L.

%
W =

A

\BC r b :
e AR/C BC/C

The optimal fly-off angle in case of non
zero hg is analogously given by
Ysc/e

VAT

(L.g) cos B opt =
Since the resulting velocities vap »
and vpc/c are equal to the relative
velocities vag/c and vgeye as long
as hg is zero, 1t follows directly
that relation (4.9) for the optimal
fly-off angle contains relation (4.8) as
a special case. PRelation (4.2) may
therefore be considered as the general
expression for the optimal fly-off angle.
It should be mentioned that the
relative velocities can also be
determined graphically as sketched in
Fig. 18, which shows the orv-polar over
the range AB. The optimal average
torizontal and vertical velocities may
he determined by intersecting the
orv-polar with a line under an angle
equal to the flight path angle

h_ hy,
arcltan =7 ! i1 BaE - arctan

¥ =

&G
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2 _ IASl i - hF

AB awv t AT » CAB av T -:-__
(4.11) Ay

Vo = }JBC = ot

RC av H ? WBC av £ -

it may readily be deduced that the
relative velocity on the range AB is
also given by the expression

z

tho1z) v = c v
AB/G g YAB ay AB av
and, analogously,
(4,12} v fe )
EC/C © oz, - "BC av

e

Fig. 18: Graphical construction of
relative travel velocities

4.3 The single cloudstreet problem

For this problem it is assumed that the
location of C in the horizontal plane
(Fig. 1%a) is given and that the
location of R, where the pilot should
leave the cloudstreet, is to he
determined. This determination again
requires a sinultaneous optimization in
the horizontal and vertical planes (Fig.
16h). However in a nuwber of not uncom-
mon situations this cannot be decoupled
into two independent vertical .and
horizontal plane optimizations.

A complication is caused by the fact
that the location of B on the range in
the vertical plane or, equivalently, the
relative length of the cloudstreet part
of the range, is to be determined as a
result of the optimization in the
horizontal plane and therefore the
knowledge of the average velocities on
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Fig. 1%a: The single cloudstreet problem in the
horizontal plane

Fig. 1%h: The single cloudstreet prohlem in the
vertical plane

the Tegs AB and BC is required. In the
usual prartical situation where the
maximum height is reached at B (Fig. 20,
cases (d) and (e)) these average velo-
cities depend onthe location of the B.
A straightforward iterative procedure is
unfortunately almost prohibitive for
most practical situations. However, the
main conditions for optimality in the
vertical plane follow when the derijva-
tives with respect to vpp ¢ and
VB%’Cr of the Lagrangean function of
relation (4.2) are set equal to zero.
This results in different optimal
MacCready ring settings in the following
vay:

In the usual situation where the
absolute rate of climb z under the

cloud at C is larger than that ZpB
under the cloudstreet along Al the
optimal MacCready settings when the
height Timit is not reached at B
(Fig. 20, cases (a), (b) and (c)) are
given by
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s

Y, ka) =2, =z z)
(ha1bal oz, ot ¢ %BC opt ~ %C (zhn < zg)

and where it is reached at B (Fig. 20,
case (e)) by

{4.14%) Zip opt > 2q Zne opt =z, (ZAZ < ch
In the favorable but infrequent sit-
uation where z. is surpassed by zpp

the optimal MacCready ring settings when
the height 1imit is not reached at B
(Fig. 20, case (d)) are given by

s = % Zpe opt = Zo (z

HE \'fl_:jt

(4.1%¢c)

while when it is reached at B (Fig. 20,
case (e)) they are given by

Lo1ha) P = 3 .
(ho1hd) ) ZpB opt > ZAB  ZBC opt = O (z;p > 20

20: Different optimal paths for different
vertical atmospheric velocities under a
single cloudstreet

Fig.

In the former of these Tatter two cases

the optimal strategy is to use some
extra circling at B to reach the height

1imit under the cloudstreet before
leaving. Thus, the height Timit is

reached at B in all cases except those
of relation (4.14a).

Given the conditions of optimality of
a trajectory in the vertical plane,
differentiation shows that, for
simultaneous optimality in the

aB > %)

)

horizontal plane, the same simple
geometric condition on the fly-off angle
(relation (4.9)) holds, and the relative
travel velocities vpp/p and vagy/c
are given as before by relation (4.13)
and (4.12) respectively.

When upe = 0 it is simple to show
that VBC/C is just equal to the
MacCready travel velocity corresponding
to z C

(ll.‘ll‘)) VBC/G =

2
C

2o — W (Vo (2,0) YuertZo) = Vg, RERY

c ~ "p YMor
Unfortunately, a similar simple relation
cannot he given for Vapse- Only if the
height 1imit under the’cHoudstrﬂet is
not reached at B can a general expres-
sion be given (Fig. 21)

(4163 vAB/C =

T S
¢ "5 Whortee

P

The graphical determination of the optimal
fly-off angle %554 in case of a single
cloudstreet and zp > zpp {cf. Fig. 20a,b.c)

Fig. 21:




In all other cases vap_ay and

WAR, gy, Which are the main building
stones for the relative travel velocity
vag/c (cf. (4.12)) depend on the exact
location of B and this depends in turn
on vag/c. An iterative procedure will
therefore be called for to determine the
proper location of B and possibly the
proper value of the MacCready ring
setting zap opt that together satisfy
the optimality conditions in both
yertical and horizontal planes. An
interesting result in this context is
given in Fig. 22.

Fig. 22: The graphical determination of the optimal
fly-off angle g in case of a single

{

cloudstreet and zp, > 2. (cf. Fig. 20d)

It will be evident that it will be
practically impossible to determine an
exact optimal strategy in most practical
situations. MNevertheless, the theory
provides a way to determine upper and
lower bounds for the parameters that
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determine the optimal strategy in most
cases. To be precise, where the
absolute rate of climb under the
cloudstreet is less than the expected
absolute rate of climb under the cloud-
street, it is possible to determine the
optimal values for the MacCready ring
setting and the fly-off angle for the two
extreme situations which correspond to
values of the height limitation of
respectively 0 and infinity (Fig. 23,
cases | and [II). The values thus

obtained will serve as a good guide for
the choice of the proper values in the
case 11).

actual situation (Fig. 23,

Fig. 23: Different optimal flight paths in the vertical
and the horizontal plane for the same vertical
atmospheric velocity but different initial
heights {cf. Fig. 20e)

4,4 The parallel cloudstreets problem

In the case of parallel cloudstreets the
sailplane should always climb to the
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maximurn height at B (Fig. 24). In fact,
all climbing takes place under the
cloudstreet. As in the preceding
section simple decoupling of the
optimizations in the horizontal and the
vertical will only be possible in
certain situations.

Fig. 24a: The parallel cloudstreets problem in
the horizontal plane
Lasstaditnsae e T ey
vl ,ﬁffjfjfj;gxq
gl A
>
el M B . i
el
7(/// x“M\\\\//”
5

Fig. 24b: The parallel cloudstreets problem in the
vertical plane

The vertical atmospheric velocity is
assumed to be the same under all
subsequent cloudstreets. In that
situation the optimal solution will have
periodic character and therefore the
analysis can be restricted to an

elementary trajectory consisting either
of a climb under the cloudstreet
followed by a descent to the next
cloudstreet or of such a descent
followed by such a climb. We select the

Tatter case
initial and
defined and
formulation

the preceding section.

since the height of the
final point is uniquely
since, as such, the problem
fits in better with that in
The sailplane

starts at height hg at B, descends to
h=0 at A' and thereafter climbs again to
hg at B'. The problem to be solved

now is to find the two cruise velo-
cities vpa'cp and va'gt ¢! the

height hp and the fly-off angle 2 such
that the time necessary to fly along
BA'B' is minimized. 1t should he noted
that the absolute rates of climh at B
and along A'B' are the same, indicated
as Zpap.

The solution procedure is as in the
preceding section. First tne necessary
conditions for optimality are to be
established- thereafter an iterative
procedure is to be used for the solution
of the resulting system of nonlinear
equations:

In the vertical plane the optimization
proceeds in the same way as in the
preceding section.

Whether circling under the cloudstreet
is required or not
(5.17) z[—‘-ﬁ.', opt - EH‘B’,OP'L - Zopt
and there is only one MacCready ring
setting for the whole elementary
trajectory. The optimization in the
horizontal plane also proceeds as in the
preceding section. The basis is again
the geometric approach. CDifferentiation
yields the intuitively expected
expression for

¥ AT Sopt
(L. 18] Ccslg.jpt =

ol
"K'B! fopt

where YAB' Jopt_and VA'R'/opt are the
relative travel velocities Fcf. (4.12)

and (4.13)), given

ho1g9)

Vo =
B4 Sopt
“opt Yoir ep
z - {w_ (v, )+ ua,, ) it
opt v OBAY, o Ah
and
4.20} VAR fopt =

7
it Vg
ont j TR ,or

= O TR
“opt T ‘u'p("rA'B',cr’ ML

They are defined in this way relative to
an absolute rate of climb that is
nowhere present in reality but which
follows from the solution of the opti-




mization problem in the vertical plane.
It is of interest to note that the
presence of a thermal with an absolute
rate of climb equal to zgpt at B' or B
would not change the optimal solution.

If circling is required to reach the
maximum height at B', the optimal
MacCready ring setting will be equal to
the absolute rate of clinb under the
cloudstreet, If one assumes this to be
equal to the sum of the vertical
atmospheric velocity and the minimum
velocity of descent of the sailplane,
Tl

T .y " ez [
Yoz % W .
Vet opt o,max

T u;‘._"_:_‘f' = Z_-",_}_-:.

then relative velocity vaip'/opt will be
infinitely large and the tly-off angle
2 opt Will be 900, This interesting
result can be made plausible by the
argument that in theory the sailplane
could reach B' from a whole range of
points at the same height in the
neighborhood of A': assumption (4.21)
implies that there is no difference in
absolute rate of climb between circling
and flving straight at the velocity for
minimum rate of descent. The locaticn
of A' being unimportant for the time
spent in reaching B', the shortest time
to fly from B to B' will be realized
when the time from B to A' is minimized
(Fig. 25).

4.5 The optimal resulting velocity curve

or orv-curve and the zigzag computer

The necessity of an iterative procedure
makes it very difficult to compute

Zgpt and £ oot for the parallel
cloudstreet problem in practice.
Instead a graphical solution may be
determined relatively easily, based on
the use of a precomputed optimal-

resul ting-velocity curve or orv-curve.
This curve is defined as the polar graph
of the endpoints of the optimal
resulting velocity vectors (Fig. 26)
that correspond to values of the cloud-
street direction angle ¢ ag between

00 and 909, Its usefulness for
practical application follows from

special properties of the tangent to the
curve at any point, namely:
(i) the normal through the origin
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perpendicular to the tangent line makes
an angle with the horzontal axis equal
to £ gpt corresponding to ¢ ap.

(1?? the length of the normal in (i)
represents in the appropriate scale the
resulting (or MacCready) velocity that
corresponds to a MacCready ring setting
z t-

?jif] the tangent line cuts the
horizontal axis at a point representing
the relative travel velocity VA'B'/opt-

- Bea~. R
1 T ! = i
| - T2 an - | | T
S Ve
. s 5 Wi
/ S | e
LI - Yax i | o
/“/ LT - b e ."_.-"
e, P - | LT N
o

= Vansopt

Fig. 25: Optimal zigzag trajectory in case of a large
cloudstreet angle
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Fig. 26: The optimal-resulting-velocity or orv-curve
for parallel cloudstreets

The hasis of these properties, which
can be proved analytically, is the
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geometric construction of the optimal
resulting velocity for a given optimal
MacCready ring setting (see Fig. 27).

Yaaiopt

..
~.=teasopt

e
. Bont .
! ClARrOpt
R i

Fig. 27: The graphical construction of an ory-curve

The procedure for this, which also
serves as an algorithm for the
computation of the orv-curve, is as
follows: For a given zgpt one
evaluates the nominal resulting
velocity, the real and the relative
travel velocity under the cloudstreet
and the cloudstreet extension ration.
These determine the optimal resulting
velocity as sketched in Fig. 27. For
the actual construction use is made of
the easily evaluated "average velocity"
which is defined as

v =
av

aV

t:"-.'B'/opt
tA'B'/Opt

t'-:iA'/opt “VBA' Sopt !
tBA'/opt i

AVE fopt

The components of the velocities in the
directions BA' and A'B' can be expressed
as

t]?-ﬁt'/opt , _ _
4 ‘J:Ef'_',-f’(.'} (1
tBJ’L‘,f’Dpt tA'B'x’ropt 3
(4.23)
Lgpr ”
LBA' s bgepe @Y
and
tﬁ.'I‘.‘;’opt ” 7 "
ry AR Sopt
“sat/opt ¥ tarBr/opt T
(4.24)
© Lﬁ‘?_\l
T'I\;;\f + ]'A’._‘,‘ ‘i\'

The angle ¢ pag and the optimal
resulting ve%ocity Vag'p' p Can there-
with be constructed. An éxample of
orv-curves is given in Fig. 28.

In the neighborhood of the vertical
axis the orv-curve reduces to a siraight
Tine parallel to the horizontal axis the
length of which is equal to the nominal
resulting velocity corresponding to the
bast absolute rate of climb. For all
points on the straight line the optimal
strategy includes some circling.

The velocity at which the orv-curve
cuts the horizontal axis is that at
which the sailplane just flies
horizontally under the cloudstreet. The
appropriate MacCready ring setting that
will generate this velocity may be found
hy drawing a tangent line at that point
and by determining the distance from the
origin to that tangent Tine and evaluat-
ing the MacCready ring setting to which
corresponds the same nonminal resulting
velocity.

The use of the orv-curve for the
(graphical) solution of the parallel
cloudstreet problem will be self-
evident. Given the appropriate orv-
curve and the cloudstreet angle, the
optimal resulting velocity can be con-
structed immediately (Fig. 29). 2zgpt

Example of the use of the arv-curve for the
determination of the optimal fly-off angle
and the optimal MacCready ring setting in
case of parallel cloudstreets

Fig. 29:

and 3 ont follow directly after the
construgtion of the tangent line and the
normal to it from the origin. The use
of the orv-curve has the added advantage
that a wind from an arbitrary direction
can be easily handled (Fig. 30).
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Fig. 28: Optimal-resulting-velocity or orv-curves for an LS-3 sailplane with a wing loading of 45 kg/m2
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fxample of the use of the orv-curve for the
determination of the optimal fly-off angle
and the optimal MacCready ring setting in

case of paralle! cloudstreets and wind from
an arbitrary directian

Fig, 30:

For use in flight a special device was
developed to perform the graphical
solution. This device, named the
"zigzag computer" comprises (Fig. 31)
two circular transparent discs, one
nontransparent disc with a compass rose
engraved on it and a rectangular piece,
all of which can freely rotate with
respect to each other. On one
transparent disc two sets of orv-curves
for different sailplane configurations

are engraved together with a number of
circles corresponding to nominal resul t-
ing velocities; on the other disc
parallel lines are engraved at distances
from the horizontal axis that correspond
to those velocities. By rotating the
two transparent discs with respect to
each other the geometric construction
that is at the heart of the orv-curves
concept can be realized (see Fig. 32).
The rectangular piece provides the
descent course direction, the compass
rose disc the actual course directions
in flight. '

The use of the zigzag computer is not
restricted to the solution of the
parallel cloudstreet problem. It may
also assist the pilot in other
zigzagging problems, such as those .
sketched in 13 (a and b). The most
difficult part of the solution of these
problerms in general is to estimate the
velocity vag/c. (The velocity vge/c
is equal to vmpp.p(ze) and circles

with radii corresponding to nominal
resulting velocities for different rates
of climb are drawn on one of the

discs.) In the case of the single cloud
problem the vap/c is practically
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Fig. 31: Zigzag computer - diagrammatic. Actual
instrument would have 2 to 3 times as
many graduations.

Fig. 32: Principle of operation of the zigzag computer
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impossible to determine in flight when B
is not at the same height as A. If they
are at the same height it is no problem,
as in that case it suffices to have an
estimate of the rate of climb at B. In
the single cloudstreet case, the
relative velocity vpp/c is easy to

find in two situations. First, when A
is already at the maximum height and AB
is horizontal, vag/c is given by the
intersection of the appropriate orv-curv
with the horizontal axis. Second, when
the maximum height is not reached at B.
(provided zp :’ZP)Vﬂ'XP may he determined
by drawing a tangent with the horizontal
axis.

Of course, the actual situation in
flight will never be so nice and clean
as the model on which the zigzag
computer is based. In addition, the
required input values, such as the rate
of climb under the next cloud, will only
be known at the moment that one arrives
there. Therefore, the solutions
provided by the zigzag computer will
never be exactly optimal in practice.
However, the real optimal solutions will
not be very different., and with some
experience it will be possible to get
good approximations. The main value of
the devicxe Ties therefore not in the
direct practical application, but rather
in the extra insight that it provides
for the experienced pilot when he
exercises with it at home for different
hypothetical situations.
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