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C0S0R 80-10. It covers an update of material presented at the XVI 0STIV Congress,
Chateauroux, France (,]978) and new natenial presented at the XVII 0STIV Congress,
Paderborn, Germany, l9Bl.

SUI.{!4ARY

Three different problems encountered in the sport of soaring are discussed:
First, as an introduction, the classical "l4accready problem" is revievred; this is
concerned with the determination of the best cruise speed between colu$ns of
risinq air under cunulus clouds. Next, a new solution concept is presented-for
the "optiaal dolphin soaring problefl," This is the problem of deternining the
best (varying) speed through regions with varying vertical attnospheric velo-
cities. Finally, some new ideas are discussed vhich make new solutions possible
to the "optimal zigzagging problem," which is the problen of whether, and if so
how, to make use of favorable regions 'tith uplrard atrnospheric velocities I'Jhich are
present aside of the track to be flown.
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The determination of the instantaneous
horjzontal velocity which yields the
hiqhest average velocity along the
coursF, taking into dccount thc tine
spent gaining altitude, is the funda-
npnfal optinizalion problcm in snaring.
The three nain variants of this probler,r
are: l. the l{accready probletr, ?. the
dolp\i'r so,rr'49 problem, and 3. thc zit-
zagging problen. In this paper atten-
tion is pajd to all three problems but
the first is discussed mainly for the
salie of its central role in the theory.

2. The lracLready Problcm, the l{dcCready
"in fi n7 -FFSot-t f;I;i qa6 o

2.1 The l.lacCready probl em.

In any discussion about sailplane
trajectory opt imi zati on, tvro concepts
p'lay a central role: thernal s and the
velo( i ty polar. ue Lale "thernal " to
-rea:r a colunn of rising ai rJ5i!6 cnough
for a sailplane to circle in, and assume
tha' rhp vArticdl velocity of thp air is
constant. Thjs inplies that the
(absolute) rate of climh of the sai'l-
plane is also constant. The tern
"velocity polar" neans the relationship
bEfieen Thi lorizontal and vertical
(equjlibriun) velocities of the sail-
plane (see Fiq. 2), The velocity polar

Fiq. 2: The standard and the absolute (.egdlar
and €xtended) velocitY Pola.

depends on the sailplane's vieight and
the air density; these are usually
cons i dered invariable. The relatjonship

is represented by

(:.1) u = rp(r)

where w is the vertical velocity of the
sailplane rclat.ivF to tne air dnd v is
its horizontal v-"locity. The difference
bet!/een the horizontal and total velo-
cities may nornally be neglected,

The basic problen'in sailplane
tra.iectory optiiiization is the l4accready
problem. This is the question ;a -o hoi
fisT-iF sailp)ane should fly between
therrnals in order to mininize the flight
tine fron point A (see Fiq. I ) in one

IIlTRODUCTION

Fiq. 1: The classical',acCready problem

thernal to point C at the sane hejght
the next. If the horizontal distance
betlveen tlre two thennal s is L, the
.lbsolute rate of cliFb in tlle 'lext
thermal is zth and the atmosphere
het!,/een the thernals hds a constant
vertical velocity ua, the l4accready
probl em reads

tn

(2.2)

, l; lar*!lv ['"t; 
. '"]

The inequalities for h and v are
colmonly not explicitly stated. l.lhen'
as usual. it i: asstlned that they are
strictly satisfiel, the problem reduc-"s
to thc ninization of the tine tABC

given by

zrn-("o(")*"")\2.1) .^*.+ [
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By differentiation with respect to v it
can be shovrn that

(iv) The optimal
ua is zero depends
next thermal (for
usual I y called the

(-.ql zrh-("!(")+Na)
-;i'''

This js the llaccready relation. It
pl ays a centiS'fEf---n thc theorv ano
the in0lementation of opLimal fl ight
trajectories. A feli renarks nay he ndde:

(i) -hc ibsencc of L in thF elprqssion
impl ies that the optinal solution is
indeoendent of distance. In practice'
it does play a role since it affects the
altitude loss which of course should not
exceed the height of A.

{ii) (2.4) is the basis of Lhe t{ell
knovrn qraDhical approach (Fig.2) to the
rieternination of the best cruise velo-
city v^R fron noint A to B. This is
easilv"iound bv dravling a line throuSh
the p;int (0,zrh) tangant to the velo-
citv Dolar Lransldted vertically by an

amouni u,. or, of course, hy drdving a

line thr6uqh (0,zrtr - ua) tangent to
the velocity Polar itsel f.

(iii ) The average velocity vABC from
A via B to C 'is given bY the inter-
section of the tangent line vith the
horjzontal axis, and is equal to

12.r)

{vi ) Considering the l4accready problem
to be one of naxinizing vABf. twc.
relatFd very sinplc Aeometric properties
hol d as fol I ovrs:

Convex Combination Property 1: Let ABC
be a broken trajectory (Fiq. 3) and let

average vel oci tY vrhen
on zth in the

zth:0). It is
llacCready travel

re=r;-, !r!+hr%.

Fi9. 3: The conver combination properties

i49 ana ig6 be the velocity vectors
in the directions AB and BC respec-
tively. Th.n thc r^srtltinq velocity
496 in the dirFction AC is equal to

the convex combination in the direction
AC of those velocity vectors,

ConvFX fonbi.ldtion Properly lIi -he
linF that connecLs the end Doints oi
vAR ano vBf (1r3...j) ls /llVlded by
Lhe earrpoinl of ii,1p6 into tr/^ piecps.
the lengths of v/hich are proportional to
the tires +a, dld I 

^D , spert on Lhe
I ects BC d r,. i'AB.

Thjs approach, that nakes use of the
idea of convex combinations of velo-
citjes, and so js c.rlled the convex
conhination dpproach, is the p.ssential
mds of-h-Ta rqnl v novel dnDroach !o
optimi zati on p.oblems oresented here.

(vij) Using the convex combinations
approacn rL rs very srnple lo solve the
llaccready prohlem in the case of A and C

being at different heights. In most
cases, the sane vAB r,rill be optinal ,
but the tine to clirllb in the thernal
will varv with the heiqhr ^f C lFiir,3).

(viii) Horizontal wjnd velocities dre
assumed not to intluence the opr]nat
solution to the l4acCready problen on the

vel oci ty and is denoteTF

{ .(r) r",-, - z+ts =

(v) l/lhen ua is not constant but
varies with the distdnce coordindte
x (C 1x 1l- ), the t4accready relation
becomes

"(*) 1! (!rr)r



basis that the horizontal lrind is
constant for the nhole flight. ihe
p'ilot who flies the fastest relative to
the air will also be fastest in the
absol ute sense. Sinilar considerations
vill hold r{ith respect to the other tiro
probl ens.

2. The llaccready Ring and the
SoIf fahrtqeber

Two Jnalogous devices have been dc-
velofed for qjvinq the pilot d visual
r'ndication of hotl well the llaccready
:^elation is satisfied, h-v indicatinq l)oU
to choose his (horizontal ) specd.

I l'acCrc.r,iv Pii:r rs a novdblp rifS
roiiTdl-Eiiln-il-i-Ta te -o f-c I i nb i ndi cator
l,/i th a 'linear scale (Fig,4). 0n the
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i ndr c','--, wjih the quantity
-v(x)uwo (vrrrt + ua(x) ' v/p(\,(\)).

dv
It does this by superimposing on the
signal for the absolute rate-of-cliirh
another signal proportional to tlre
eoui vr l ont vertical velocitv
-v{x)d,p (v,()), either r,reihanically o"

dt-
eleclrnni.rlly. The pilot ha5 only tc
take care thdt the poin.Ler of the
Sol I fahrtgeber pojnts towards the
expeLtcd r^te-of-clinb in the nexL
thernal . If it points to a hiqher val!e
thc pilot should fly norc slculy; if
towards a lower valL ,he should rly
faster.

For either device the pilot has to
guess the rate-of-cl inb iI the next
thernal; if he has guessed correctly he

will f1y optinally if he iust adapts his
speed according to the connland given by
the device. To enphasize jts inrportance
the g[essed value is given a narne - the
l'dccroady ri'rJ se!tipg. if thn pilot
.,",r.tlv ToTTor/s r co"nrands of the
llacCreacly ring or the sollfahrtgeber,
the optinality will only depend on the
proper value of the llaccready ring
setti ng.

3. E--e9!sEl!zsg-3eu!i!-!9qr!!s
p!'_o!Lq!t- ltd qLe- 9p!j]lla] ralgq
velocjtJ lolar

3.r The generalized dolphin soaring
proll9q

If the vertical atnospheric vclocity
varies over the range, the oPtimal
strategJ uill in genera'l be to fly fast
through dorn drafts and slow through up

drafts. The resulting traiectory shotis
sone resenblpnce to that of a junping
dolphin and accordinqly is called
(quasi -stationary ) 4qbtin soarin!..Fi9.5

-l--^)a'- t \

,,-.1
,.1

fiq, 4i naccready.ing.round.ale of clinb indicato'

ring one reference mark is engraved, and
other narks which correspond to velo-
cities to be flown, as sketched in
Fiq.4. The pilot sets the reference
nark against the scale of the rate-of
clinb jndicator at the anticjpated
rate-of- clinb in the next thernal.
Thereafter, he flies at the velocity
torvards which the rate-of clinL)
inCicdtor is pointjng on the llaccreddy
ri ng.

The disadvantage of the Haccready ring
is that one has to conpare ai- any mofient
the actual velocity vrith that jndicated
by the pointer of the rate-of-cl'inb
indicator at the ring. This inpl ies
reading tvo instrunents sinultaneously -
al!,/ays nore diffjcul t than reading only
one. Hence, the developnent of the
"sol l fahrtgeber" or "speed director," in
esscnce d rlodiTi ed ratc-oT-cTin5-

'.2 '3

^'8
,,..'/

!,"

liq. 5: The (q€neralized) dolphin sodrinq
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l,lhere cloudstreets cover part of the
trajectory, proper use of the l4accready
rinq or the Sollfahrtgeber results in an

altitude gain instead of a loss- In
that case no circling in the next
thernal is necessary and the pilot can
fly faster and increase the average
velocit-v. A new probler.r nay be formu-
l ated: "When the vertical atnosphere
velocity varies, how to select the
i nstantaneous horizontal velocity such
that the average horizontal velocity is
naximized for a prescribed altitude gajn
(or l oss ). " In nathemati cal terms, thi s

leads to the constrained riinimization
Probi ent

some special cases such as the sinuS-
oidal distribution (Ref, K-l ) and the
square-viave di str jbuti on (Ref. 1,4-l).
The results however serve as a gujde for
the l4accready ring setting in many
practi cal cases.

3.2 The optimal -range-vel ocj ty polar or
orv-pol ar

civen any range (0,1) and aDy vertical
atnospheri c velocity distribution, there
wi I I i n oenerdl be an in I i ni !e nunber of
horizont;l velocity histories v(x) th,rt
yield the sanre average horizontal velo-
city vav, This will be true for smdll
v;v if one dllows circling or flying
s-.rirves- The veloLi Lv histories of
nost interest are those that result in
the smallest altitude loss or largest
gai n, or, equivalently, the'largest
averaqe vertical velocity or snallest
descent velocity (i.e., the sol ution of
the probl em)

(1.4) rr;o(v(a)) * ua'xl d"J--------?-

This problen is of the same type as the
general ized dolphin soarjng problen
(3.1), and its solution may accordingly
be determined \iith the saFe technique
For the present problem the optjmal
velocity history v(x) satjsfies the
rel ati on

d;
O.5) -!(') # ('{.)) - nn('(x)) * u.(x) =.("uu)

where z{vuu) is the Lagrange mLrltiplier
which v/il l in general vary with vdv.

hp bo' ovpr dp qiqr'ie. lrp .,p ot lL
p\ 'p. dod vplo r_p. d/ .erot oa(.ip
(3.3). The actual value of z{vuu) is
to be deternri ned from

(1.6) l# =,

*="."".']

Thi s is known as
soaring Problen.
Tion Droblem miv
(cf.(2.2))

o2) .'" {

v{x)

Ah.2orlbln<w<

{3.2) differs from (3.1) only through
the assumed presence of isolated ther-
mals. Alternatively, one can assune for
the sake of rodelliag thdt circlinq is
replaced by a stfaight climb over the
width of thp thernal and that wp is
constant for velocities below vr;n6.
so that

in(") :-"p(",rnu) for v< rn nd
lj.1)

:=,!(!) " Y:lmild

The relationship is called the
extended velocity polar {Fig. 2, dotted
fr-nal, =iTl.=ms 

concept the optiniza-
tion nay be fornul ated as a pure dolphin
soaring problem {3.1) and is referred to
as the generalized dolphjn soaring
problen. The solution, by Lagrange
nuTiipli"r technique, is sirplp buL
lengthy, and has only been evaluated for

f
the pure dol phi n

The genera opti mi za-
h€ formul ated as

."-[+

t^". 
.t l+ Ir+* = ,l

,l

The solution of (3.4) i.e
averaqe verti cal vel ocity

,, the maxinal
for gi vei



average horizontai vel oci ty wi I I pl ay
such an jnportant role in the develop-
Fenl to follord that it is given the
special nane optindl vertical rangq
velocity wnru. lt roay be de-te iied
for anj, vdlua of vav 0. The fomdl
relation bet$,een the i$ro is

The proof of this is not included here.
It 'is of more interest tc note that the
der'ivative property inpljes a similar
refetr'r,rsffi-th1-' orv -pol ar ) and the
l.lacCready relatjon (2.7). The optinal
llacCready rjng setting follov/s fror,l the
,t^^rlp'.icAllt, i a rerfra t it\l n e^nrnssi or
(Fiq.6).

I03

po "_'o lF dnoe q o or'o'oh"'
,crr r,l vFlocrr/ disl DrL r o q c

Two points on any orv-polar are of most
interest. The first is the zero-
average-vel ocity point or zA-V-point.

corresponds to the best absolute
rate-of-clinb zmr (mr = neti.nur.l range)
that can be realized at sorre point of
the range. The second is the
bq9! ! q3j!If:lljg!t1 9I 'rhjchcorresponds to a llaccready setting
ZBSF equal to znr. I'Jith the convex

conhinatjon property I jt is easy to
shov,/ that all points of the orv-polar
that correspond to vav snaller than
vav,BSF lie on the strailht line
connectinq the ZAV-point and the
BSF-poi nt. The corresponding optinral
strategy is called a lrlaccready strategy
and consists of climbinq ai tfie poTnt
where znr can be realized, followed
(or precededi by a straight flight with
that as llaccready ring setting.

A direct consequence of (3.8) and +"he

concavity of the orv-polar is that for
vav larger than vav.BSF the
l4a.cre.ldy rinq scttinq v/ill oe largna.
In this case one 5hould fly straight and
follol,/ the corimands of the llaccready
rinq or rho So'lfahrtgeher. Thjs is
callcd dolphin strdtegy. lhe FSF-point
is the traniitinn polnt lor the t\./o
strategj es.

The convex conbination property I and
the derivative property nake it sir,lple
to construct the orv-polar that
corresponds to a combination of two
ranOes, provided that the orv-polars for
each are given, All points of the new
orv-po1ar (Fj0.7) vJill lie on lines that
connect tangent points on the original
orv-polars corresponding to the sane

"t:
This relat'jonship, l{hich nay be plotted
(Fig. 6) in a lray sjmilar to the
extcnded velocity polar, is cal1ed the

^fl iad l - ra nqe -vel oc i ty-po I dr or orv-
pofai fftr tl-re qlten 10 verljcal
atrrospheric vel oci ty distribution).

The orv-polar yields the result of the
use of an optirral strategy for given
vav. Sin.p dny ooliral straleqy hllst
16sIlt jn some vav value, thnt
strateg-v nust result in the correspond_
ing optinal vertjcal range velocjty.
The orv-polar thus contains the results
of all possible mininum time
strategies. Thjs makes it an extrenely
useful tool in the theory and the
practi ce of soaring strategies.

3.3 Geometric constructjon of orv_polars

Intimately related to any point of the
orv-polar is the value of the Lagrange
FUrtittier z(v;v). rrol' (3.7) the
..riv,rrivo of rlie orv-01lar srLi5lies
the relationshjp

.v -,!:f --el-

*,='l

: .9)
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llaccread.v ring setting. The zAv-point
of the new orv-polar trill be the larger
of the trvo best absolute rates of climb
on the oriqinal rdnqes. The BSf-point
of lhe nev orv_polar lies on the linF
joining the Points on the original
orv-Dolars where thc lines throuqh the
Doint (0,2-") are tangent' The

iiuision oi the connecting lire is
inversely proportiondl to thc Iines over
the tvo "anqes 

(convex combindtion
property II). For all Poi4ts on the
concave parl thc sane consLrdctron
aDol i es.

Fven nore useful , n" 'L P (

l-- L, -, +- L, -- -l

Conrtruction of an orv-polar bv svnthesis
.f t{o knolr orv-Pol ars

that anv vertical line is cut by the
three t;ngent lines (the riiddle one
beinq tangent to the new ore-polar) into
Dieces that are inversely proportional
to the length of the tvro ranges. This
folloris from sone sinple geornetry
(Fi9. B)

c-=4
Fiq. 8: Proof of ihe geometric p{oPe'tt of thF

tangent lines of orv Polars

An example of the fruitful use of this
geometlic property of the tangent lines
is given in the next paragraph.

3.4 A practical application: The

!n=F'Td=sE
Lz

={

In the real wor]d a pilot will never
knoli the pxact verlicdl atnoslheric
velocity he will encounter along his
course line, Therefore, the best that
one can do is to provide hin with guide-
lines based on sinple models and leave
hin to interpret the.edl si!u'ttion in
the light of those solutions.

A model of nuch interest is the
general square wave vertical atnosphFric
velocity modFl , as ddvocated bY

Reichmann (R-l ) and illustrated in
Fig. 9. The range consists of two parts
of length Lt and LZ having constanL
vert i ca1 atmoSpheric velocities
u1 and tt2 i,here ul <'u2 '

The (qeneraljzed) dolDhin soarinq problen

square wave attr'ospheric nodel

oFV-polar and the optinal stratpgy
c ! ouosrree! r ryr ng

( I. ro) Fi s.



0f much 'interest for practical appli-
cation arc plots of the laccready ring
settings for different ratios L2/Ll
or, better, al L?/lL1 + L2), which
result ir optinal traiectories wiLh no
overall height change (Fig. t0). To

liq. 10: The orv-pola. for the atnosph€ric model
of fig. 9

construct such a plot for a particular
combindtion of ut and u?, first
evaluata the "hreal, poinr," i.6., flrafirst "dr'o lrl(Li , L:) for whictr
a l'accrpddJ rjng setting equal to znr
Just resutrs r1 a strdight 11 ight !r;th
no overall lteight chanqe. This ratio
cdn be dctermincd qeonFtrjcally
(Ti9. lla). The rire.joiniqq the tvo
tanrf.nt Doirts on lines th.ouqh the
Doint (0,7rrr) is /Favn. The i4t.--
spcLior poiit of this I ine Hi th the
horizontal axis is the USF-pojnt of the
orv-polar that applies to the breali
point ratio. The latter can thercafter
be detenrined as the ratio of the line'lenqths cut off from an arbitrarv
vertical line by the two tanqenilines
lhrou'th {n.z|'r) alil thF l jne throuCh
(0,/rnr) ard Ihe ne\rly founri BSF-point.

For dl) ratios Lc/lh + Lc)
snaller th^n Une hi.aak'poinf rdtio, thn
besr I'ld(fready rilt serting will be rhe
best zmr and the strategy will be
l4acCread-y. The correspondinq part of
the plot is accordjngly just a
horizontal line. For larger ratiosjnterpolatjon may be made bebreen points
(Fjg. I lb) Irhich correspond to distinct
values of the rinq settinqs. The ratio
that corresponds to a fixed ring
setting z may tle i'leteniined sjflilarly.
Tangent lines through the point (C,z)
are dral{n to the two original
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orv-polars. Then the I ine through {O,z)
and the intersectr-on between the linpjoining tlle t!/o Lan!Flt noints dnrl th;
horizontal axis js:he tanqent line !o
the orv-polar for Hle givFn t2l(Ll -
LZ) rdtio. The geonetric proierty ol
the tangent nakes jt feasible to neasure
the desired ratios directly fron the
graph, The strategies witt be dolphin
strategi es.

(.,,t1. {.-i), -(;'i.)
Fiq. 11: Craphical constructjon oi a plot of oplimal

"raccready rins s€ttings as a function o'
the cloud5treet exiension ratio L2l(11 + L2)

An.xdmple is !iven in Fj!. 12. tt
should he remarkpd that the orv-poldr
concept nakes it possible for any
sai'lplane pilot to construct plots 'like
these with no more aids than a velocity
polar, a !uler and a pencil.
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Fi9. 12: The optjna'l !acC.eady ring settjngs as a
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4. The zi gzaggi ng problem

It.l Probl em fonrulation

In the real v/orld clouds and cloud-
streets are seldon nicely aliSned along
the course to be flolin. To the problens
of hot, fast to fly from therrnal to
thermal , or through a region of variable
verti cai atnospheric velocities, there
is another problem of whether or not,
and if yes how, to .ake use of regions
of rising air located a!,Jay from the
track or running at an angle to it.
This problem is cal led the "optimal
ziqzaqqinq probler." Thpre are three
milin var i;nii-IFfs. l3): (i ) ore single
cloud at so$e distance from the track,
(ii ) one sinple cloucslreet and, (iii ) a

systern of paral l el cloudstreets.
The criterion for the decision vhether

or not to make a detour is the tifle to
fly from the starting Point A to the
point ' (at the sane heiqht rbovc the
track) or, in other !r'ords, the
comparison betv./een the resultjng velo-
cities fron A to C nith and uithout the
detour, i.e. VABC.r, and vAC.r,
respec ti vely.

Fj9. t3i The three main variants of the zj92aqqinq

The deternination of t-he best
achievahle resulting vcloci Ly VABL.r
in the case of a delour is sonewhat more
complicated than that for no detour as
it involves simultaneous optimization in
both the horizontal and the vertical
planes. The optimization in the
horizontal plane usually concerns the
location of either the point C (vrhen the
locatjon of point B is given {variant(i)) or the point B (when the location
of point C is given (variant (ii ) and(iii)). The location of either of these
points is qeonetrically determined by
the fly-off-angie 3 r,rhich is the angle
het\reen the two consecutive legs AB and
BC of the detour (Fig. l4). The opti-
mization in the horizontal plane thus
reduces to the determination of the
optinal fly-off angle. The optimization
in the vertical plane concerns a'11
three variants problens that are srmilar
to those for llaccready and dolphin
flying. A conpl icating factor is the



usual limitation on the height hb of B

relative to that of A and C; the optimal
strateg.v turns out to be fully deter-
nined by hh and by the tvo cruise
velocities vAB-cr and vBC-.r (or,
equivdl^nl.lv, fhe two llac(1ready "in9settinqs). The optimization in the
vertical plane thus reduces to the
deternination of these three quantities.

Fiq. 14: The .esultinq velocity v^8. over the broIen
traje.tory A B a irnd the fly-off angle 3

Assuni n! constant vertical atnospheric
v0loc:ticq, hn t6nF.a1 optiral 7'g-
zaqtini pro5len l.ry h. phrdsed ds
fol lo\,/s: civen the (course) direction
i AF. of the possjble first leg AB of
the detour, the precjse location of
either B or C, the strength of the
ver t ic a'l atrospheric velocities UAB

and uBa, the best absolute rates of
cliFb zB at R and 7C at C, and
finally the naxinufi hejght djfference
"B-rax at loint q, Lhn"r det^rrine tha
otfi.:al fl /-of. dntlp , Lhe optirdl
(ruisp vnlocities VAI!c.. and vBC,(r
and the optinal heiqht of I that
toqether result in the highesi resultjnq
^r I ravnl vcl or i 1 v vABa.. ind so t ho
<,horte<,t tinc to flv fron A to C.
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li!. l5: Ihe single cloud nrobren

For practical purposes this means the
Maccready ring settings on the legs of
the detour are respectively zB and
zc.

The optjmization in the horizontal
plane is a little nore cor,rplicated. An
illustrative way to deternine the
optiaal fly-off angle is the geometric
approach in conbination lrith a new
concept, that cf "relative travel
vel ocities, " which ls convenienl
whenever hb is not zero.

Hhen hB is zero the average velo-
cities over the tlro legs AB and BC are
gi ven by

;I-^E- 1-

' r. --:-:; \ ^--.

'lhp resi.l Ling velocity VABC.r lli ll he
the convex combind!ion of these. From
qconetry (Fig. l6) it will be jirrlediate-
ly clear that, r/ith B being variable,

For the sjngle cloud problen (Fig. l5)
ll'^ lh.or) o' the 'ldtCrna4y prohlen is
directly appl icable. In particular,
there are tvro optinai cruise velocities,
v/hich satisfy the approprjate l.laccready
re l ati ons

dt(ir.r) -rr- .r nJ ("Ats cr) , " ("r" 
".) 

* "r, = z"

i4.:) -"8" .r a;r (nts. .r) ' i!1v-f ..r , ,:c = "c
Fi1. l6: ceometfic construction

flr off anqle

4,2 The sinqle cloud problem and the
conceDt of relative travel velocities
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the extrcne values of vABC.r !,Jill 5e
located at the line through the endpoinl
o{ the vecLor vAB.. aqd tangent to a

circle of radius flrp length of vBa-r
(which i s cons idered to be independent
of the direction). The correspohding
optimal fly-off angle satisfies the
rel ati onshi p

(L.5) usc t
P .!t v,$ r

tihen hB is positive, it will take
extra time to reach B from A, and less
time to reach C from B. The averaqe
velocity vAB-av from A to B lrill
dec r -.a se dnd-the average velocity
vBi.av fron B to C !,/ill increase.
Yet; it will be clear, thnt it is only
advantaqeous to climb hiqher at B as the
absolute rate of climb there is higher
than at C. The gain in time is then
realizcd over AB and 4ot over BC, in
contrast to what the average velocities
v./ould indicate. The concept of relative
travel velocities is now introduced to
remedy this discrepancy. To that end
the relative velocity !r.l/a over the
lcg IE reTative to Tlie ,(\olira rate of
clinb at C is defined as the length of
AB divided Dy the relative time tpg76
vrhich is the real line ninus the time
gai n (Fig. l7)

conceDt of relative travel velocities and

construction of the re5ultjnq velocity
a brolen trajectory

Simi I arl"v,
vqa /r ovea

the rel ati ve travel velocity
the leg Bc reTtti ve to-h-
te of climb at C is defined as

lrcl(4.?) "Bc/t: -

Since obviously

."". rlr
I Ecl

ul'r''c 'tm/c = lsl

"lc,,c'tr67g=lecl

and tlg/c+rBclc=lrrr+i;c

it may ea! ily be deduced that the
resllltinq velocity VABC,r over tho
trajpctorY ABI is as good d (onv.x
cornbination of the relative travel
velociLips vAB/c and VBC/C as of tha
rcdl aveadqe velocities vAB,av and
VBC, av sr nce

rtt/c" t:i/c * t srl/r:ryc: /c
|t't"c * rzc/t(4. E)

The optimal
zero hB js

(4.9)

fly-off angle 'jn case of non
anal ogously given by

Since the resulting velocities vAB,r
and vgC/C dr" equal to the reldtive
vploci lier vAB/f and vBC/C as lo'rg

^s 
l.R is zero.'ii follo$Ji 4irectlY

that-relation (4.0) ror the optinal
fly-off anlJle contajns relation (4.8) as
a special case. Relation (4.9) nlay
therefore he considered as the general
expression for the optinal fly-off angle.

It should be nentioned that the
re'lative velocities can also be
deternined qraphically as sketched in
Fig. lB, {hich shows the orv-polar over
the range AB. The optimal average
horizontal and vertical velocities nray

be deterroined by jntersecting the
orv-Folar liith d line u'tdcr an aDgle
eq al to the flight Path angle

zlr = "..,-+' tu" = ......#

0

(4.5 )
,-- l.rrl IA.l" '" + to''
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!li th

(q. r 1)

=hB., -h!t

u"" .u = lrcl

deduced that
on the range
expressj on

t-E;'*

5
'it nay readi ly be
rel ati ve vel oci ty
dl so given by th;
(4.12) uwk =

a nd, analogously,

(\,11)
':c,,c = aJfo; ,u. 

""

Fi9- lia: Th€ singte
ho ri zontal

the
AB is

cl oudstreet problem in rhe

The sinqle crd!dstreet pro5t€n in |re

4.3 Thc single cloudstreet problem

For this problenr jt is assu'ned that the
locatjon of C in the horizontal plane
(Fiq. l9a) is qiven and that the
location of B, lrhere the pilot should
lenve the cloudstreet, is to he
de Lprr i ed. nis deternil. 9in
rpquires a sinultan"ous oltiniz,ttion in
the horizontal dnd vertjcal planes (Fig.
19b). Horiever in d nurr$er of not uncon-
mon situations thrs cannot be decoupled
into two independent vertical and
hori zonta'l pl ane optimizations.

A corplication is caused by thc fact
tllaL thc locdtion o{ P or the rangc i'l
the vertical plane or, equivalently, the
relative length of the cloudstreet part
of the range, is to be determined as a
result of the cptimization in the
horizontal plane and therefore the
knowledge of the average velocjties on

the legs AB and llc is required. In r-he
usual pra.tical situation vrhere the
naxiDum he'ight is reached at B (Fig. 20,
cases (d) and (e)) these average velo-
cities depend onthe location of the B.
A straightforvard iterative procedure js
unfoftunately al nost prohibitive for
nost practicd'l situations. Hovlever, the
main conditions for optinality in the
vertic.rl pldnn follow vhen Lhe deriva-
tives with respect to vAB-cr and
vBC.cr ot the lagrang.dn function of
rFlation (4.2) are spl F.ludl to zpro,
This results in different optinal
l4accready ring settings in the follo\'ring
lray:

In the usual situation where the
absolute rate of climb zC under the
cloud at C is ldrger than thdt zAB
under the cloudsrrLet alonq Al ,the
optimal Maccready settings vhen the
height I imit is not reached at B
(Fi9.20, cases (a), {b) and (c)) are
qiven by

t

Graphi ca I constructr'on of
r€ I ati ve travel velocitier

j"^'"=ato"*



(4'lrrd) ) zAB .pt> zats zrc apt = zc tzo"> z") 
(\,16) u tit/c _
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(rr.]rx) zAR opt = 'c zec c1r = zc t.zOn < zr't

and rhere it is reached at B {Fig. 20,
case (e)) hy

(r+.1!5) zaF opr > zc .:* o9t = "c \2,-< zr)

In the favorable but infrequent sit-
uation vrhere zc js surpassed bJi zAB
the optjnral l.laccready ring settings when
the height linit is not reached at B
(Fjg. 20, case (d)) are gjven by

(4.1',c) .tN nrt - zAp .4a opf, = .c (.* 1:-)

while when it is reached at B {Fiq. 20,
case {e)) they are given by

liq. ?0: Different ootlnal Daths for different
vertical atf,ospheric veloci ties under a

single cloudstreet

In the fonner of these latter two cases
the optinal strategy is to use some
extra circling at B to reach the height
limit under the cloudstreet before
leaving. Ihus, the height I init is
reached at B in all cases except those
of rel ati on (4.14a),

6iven the conditions of optir,lal i ty of
a trajectory in the vertica'l plane,
di fferentiation sho\'ls that, for
sjnul taneous optinalitY in the

horizontal plane, the same simple
geonetric condition on the fly-off dngle
{relation (a.a)) holds, and tie relative
t|avel velocities vBC/C and vAE/C
dre given as heforp by relation (4,11)
and (4.]2 ) respectively,

Ilhen UBC = 0 it is sinple to shot,
that vgq76 is iust equal to the
14acCrea dy trave'l velocity correspondinq
to zC

,1.).-: " -_, ;;-l;._;_
ljnfortunately, a slmitar sinple relat'ion
' arr'r 'F J ,, i, ,,e
IC-,.r t..r ,,,e, r,c'g' ,,.., .,
1o+ nr'(ed. L c".r. l.nF., e/p,.q_
siC'n he ,tiven ("iq. "l )

zc - itiYl4oxlza rr-{!) +L 
F

c-*a3

rhc a.;hi;al d€t€rhindrion or
fl,-ofr an9le !oDr jn case oi
cloud3treci and zC: zAB {cf,



In all other cases vaR av and
HAB-av- which are the ndin huilding
stoies'for the relative travel vplocity
VAB/C (cf. (4.12)) depend on the exact
location of B and this depends in turn
on vAB/f. An iterdtivc prolPdure will
therefdra be called fcr io deternine r"hp

proper location of B and poss'ibly the
proper value of the t'laccready ring
sot!ing zAB- oDt that togclher sdLisfy
the optirnal ity condi tions i n both
vertical and horizontal pl anes. An

interesting result in this context js
qi ven in Fiq.22.
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determine the optimal strategy in most
cases. 'fo be precise, rrhere tbe
absolute rate of climb under the
cloudstreet is less than the expected
absolute rate of clinb under the cloud-
street, it r's possible to determine thc
. P';r "l r, .-e lo. '' e ' ., ofl "nq
settinq and ihe fly off dngle for the tl,lo
ertrelne situatior5 !'Jhich correspord to
v,rlues {)f the hcight lirlitatjon of
respectivcly 0.nd infjnity (Fig. 23,
cases land III). The values thu.i
obtnined l/ill serve is a good guide for
the choice of the proper vdlues in Lhe

dctual situdtion (l-i9.23. cise II).

Arli

l'i

:'

Fi9. 2l: 0ifferent optifldl flight
dnd trre \ori zontal plane
a!n0sPheri c velocitY hut
h€jqhts {cr. 'jq. ?l€)

i!;

paihs in thP ve ri i.a I
.0, 1\e saoe verlical

Thc qraphi.al dctermitrir!ion cl tte !pliral
lly-cff !.qle 'j in cdse cf i sin!re
cloudstrcot inc /iq r 7. (.r. riq. 20d)

It lrill be evident that it will be
practically iirpossible to determine an
exact optimal strategy ii nost practical
s i tLrati ons. Nevertheless, the theory
provides a way to detefirjne uppcr and
lower bounds for the par,rfleiers that

4 4 Tho Dnrallel Clo,lds!reFts probler

In thc case of Darallel cloudstreets the
sai 1 pl ane shoul d al wavs cl imb to the
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naximun height at B (Fig. 24). In fact,
all climbing takes place under the
cioudstreet, As in the precedinq
section simple decoupl ing of the
optinizations in the horizontal and the
vertical will only be possible in
certai n situations,

starts at height hB at B, descends to
h=n al. A'and theredftar cljnhs again to
hB at B'. The problen to be solved
now is to find the two cruise velo-
cities vRA'cr and vA,B' -.r' the
heighl hR and the fly-olf dntle such
that the tine neless^ry La fly alon!
BArBr is rininrized. lt should he noted
that the absolute rates of cli$b at B

and along A'B' are the sam€, indjcated

The solution procedure is as in the
preceding section. First the necessary
conditions for optimal ity are to be
pstdbl islte.,. tlteredttea an it(rd!ive
procedure js to be used for the solution
of the resulting system of nonlinear
equatjons:

In the vertical plane the optinization
proceeds in the sane \ray as in the
precedi ng section.

Whether circling under the cloudstreet
is required or notFj9.24a: The paral'lel cloudstreets problen in

the horizonta't Dtan€

Fiq- 24b: The parallel cloudstreets problem in the
verti cal plare

and there is only one l'laccready ring
setting for the rhole el e,eentary
trajectory. The optimizat'ion in the
horizontal plane also proceeds as in the
preceding sectinn. Thc basis is nqain
the geometric approach. Differentiation
yi el ds the intuitively expected
exPressi on for

i4.1?) 2Bn,. opt = zri,!',.!t = zolt

4. t8r ... P.pt =

(4. r9)

where vAB'/oDt and vA,B,/oDt arr lhe
relaLive tr"a!el velo!itibs lcf. (4.12)
and (4.13 ) ), givenThe vertical atEospheric vplocity is

assuned to be the same under all
subsequent cloudstreets. In that
situation the optinal solution vrill have
periodic character and therefore the
analysis can be restricted to an

e lementary trajectory consistinI either
of a clinb under the cloudstreet
followed by a descent to the next
cloudstreet or of such a descent
follovred by such a climb. |le select the
latter case since the height of the
initial and final point is uniquely
defined and since, as such, the problenl
formulation fits in better with that in
the preceding section. The sailplane

.opt''n'u.,r

and

+ l;tq--!= J . ..*r "r'F.,-

They are defined in this way relatjve to
an absolute rate of climb that is
no\'ihere present in reality but which
fol l or,rs frorn the solution of the opti-



nization problen in the vertjcal plane.
It is of interest to note that the
oresence of a thermal vrith an absolute
.ate of clinb equal to zooL at B' or B

r{ould not chanqe tne oplihdl solution.
If circl jng is required to reach the

maxinum height at B', the optinal
llaccready rinq setting will be equal to
the absolute rate of climb under the
cloudstreet. If one assunes this to be
equal to the sun of the vertical
atnospheric velocity and the minimun
velocity of descent of the sailplane,
i.e.,

.rtr-i!,r:--u|r,=zxL
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perpendicular to the tangent I ine makes
an a'l9l e wi th tho hor,,ortal 6xi 5 cqualto a ont correspondinq to O rn.(ij)'the leigth o+ ine nornlt in (i)
represents in the appropriate scale theresrrltilg {or fa.Cred tJ) velocity that
corresponds to a Mdc.redoy ring;etting
zoDt.

liij) the tdnaent line cUt< thc
horjzontdl dxis At d point r"lresertin!
thp relativa tr,tvel vptoLity vA,B,/Opt.

Fjq,25: aptimal 2igzaq trajectory in case of a large

Fig- ?6: The oltinal-resultinq-velocitv or orv_'rrve
for paral lel cloudstreets

thef relativc ve'locity vA,B,/oot ','/ill L'e

infjnrtely large and the lly-off angle
oot uill he ono. This inLerpstilg

resirlt cdn bp ndde pldusible by the
arglrment that in theory the sailplane
could reach B' from a whole range of
points at the sane height in the
neighborhood of A' : assunption (4.21 )
i:rplies rhdl Lnpre is no d:flerenLe in
absolute rate of climb between c'jrcljng
and fl.ving straiqht at the velocity for
minimun rate of descent. The location
o' A' hei nq dnrTpo"tdnt'oa the Lir'le
spent in reaching B', the shortest time
to fly fron B to B' will be realjzed
when the tine from B to A' is nininized
(Fis.2s).

4.5 The optimal resulting velocity curve
or orv-curve and the zigzag computer

The necessity of an iteratjve procedure
nakes it very djfficult to conpute
zoDt and I oot for the pdrdllel
cl budstreet probl en i n prac ti ce.
lnstead a qraphjcal solution riay be
determined relatively easil.y, based on
the use of a precomputed optinal-
resul ting-velocity curve or orv-curve.-l"is;:ufv. r's d,.tined ds +le polar 3r,rph
of the endpoints of the optinral
resulting vcl oci ty v-"ctors (Fig.26)
that correspond to values of the cloud-
st.ect direction dngl^ J AB beL'/een
0o and qoo. Its usefulness for
practical appl ication follo\,rs froFl
special proFerties of the tangent to the
curve at any poini, nanely:

(1) the rrornal t|rouqh thc oriqin
The basis of these properties, which

can be proved analyticallY, is the
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geonetric construction of the optinal
resulting velocity for a given optinal
l4accready ring setting (see Fig. ?7).

l:ig. 27: The qraphjcat construction of an or! curve

The procedure for this, which also
serves as an alqorithm for the
coriputation of the orv-curve, is as
follovs: For a given zoDt one
eval uates the nominal reiulting
velocity, the real and the relative
travel velocity under the cloudstreet
and the cloudstreet extension ration.
These detennine the optirial resulting
velocity as sketched in Fig. 27 - For
the actual construction use is made of
the easily evaluated "average velocity"
whi ch is defined as

b(, oo ,4, op, ' (, , ,. . r' r.
'Bc'/o!t 'A'r'/opt

The conponents of the velocities in the
directions BA' and A'B' can be expressed
as

tBA,,oot * iA't' ort o' '!

r:1, 
.,

l,BA, + rd'B' av

and

la,_, 
.,

The angle dA0 and the optimal
.eSultinq velociLv vAB'B'.r cdn thcre-
tiith he constructed. An exanple of
orv-curves is qiven in Fiq.2B.

In the neighborhood of the vertical
axis the orv-curve reduces to a straight
line frarallel to the horizontal axis the
length of which is equal to the noninal
!^esulting velocity corresponding to the
b:st absolute rate of cl imb, For all
points on the straight line the optifial
strategy i ncl udes some circling.

The velocity at which the orv-curve
cuts the horizontal axis is that at
!,/hich the sailplane just flies
horizontal ly under the cl oudstreet, The
appropriate l4accready ring setting that
will generate thjs velocity may be found
by drat'ring a tangent line at that point
and by determining the distance from the
oriqin to that tangent line and evaluat-
ing the l4accready ring setting to lihich
comesponds the same nofiinal resulti g

vel oci ty.
The use of the orv-curve for the

(qraphical ) sol ution of the paral I el
cl oudstreet probl em lvi I I be sel f-
evident. Given the appropriate orv-
curve and the cloudstreet angle, the
optimal resulting velocity can be con-
structed inmediately (Fi g. 2-o ). zopt

Fi9- 29: txanple of th€ use or the o.v_curv. r.. th-p

deter ination of the optihal fly-off angle
ard the optinal liac1]reaiy rinq settjng in
case of para I tet ctoudstreets

and oDt follow directly after the
(onstruttion of the tanqcnt I ine dnd rhe
nornal to it froft the orjgin. The use
of the orv-curve has the added advantage
that a !{ind from an arbitrary direction
can be easily handled (Fig, 30).

(q.2ql
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Fiq. 30

ri!. 28: aptimat-resuttinq_vetocity or orv curves ror an Ls-3 sajtptane wth d !inq toading or 45 kq/h2

Franple of the use of the orv curve for the
dete.rination of lhe optimil fly ofl dn.Jle
and the optinal lacCr€ddy ring settinq in
cdse of pa.allel clo!dst.eets and wr'nd from
an arbi trdry dr rection

For use in fliqht d specjal device vas
developed to perform the graphical
solution. This device, naned the
"zigzag conputer" conprises (Fig. 3l )
tv,/o circular transparent discs, one
nontransparent disc wjth a conpass rose
enJrdved on it and i re( L4nlular piecc.
al I of which can freely rotate with
respect to each other. 0n ofe
transparent disc tr,/o sets of orv-curves
for di fferent sailplane confiqurations

are engraved together !'iith a nurirber of
circles corresponding to noriinal result-
ing velocities: on the other C'isc
parallel lines are engraved at distances
fron the horizontal axis that correspond
to those veloc'ities. By rotating the
tvJo transparent discs ilith respect to
each other the q^o|IpL"ic corslrdctio'l
that is at the heart of the orv-curves
co"rcel't can be realized (soe tig. 3; ),
The rec Ldnqul ar pi rce p|ov ioes the
descent course direction, the coitpass
rose di sc the dctLra l courie d i rFc t ions
in flight.

The use of the ?iqzaq comDuter is not
restricted to the solution of the
parallcl cloudstreet problen. It may
also assist the pilot in other
zigzagging problems, such as those
sketched jn 13 (a and b). The r,rost
difficult part of the solution of these
problens in general is to estimate the
velocity VAB/C. (The velocity vg67g
is cqual to !11s"..{26) and c i.cles
with radii corresponding to nonlnal
resultjng velocities for different rates
of clinb are drawn on one of the
di scs. ) In the case of the si nql e cl oud
problem the VAB/C is practical ly

zl'= r s;*-
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Compa s s rose djsc

OQV cu rves di sc

Tanqent I j nes di sc

Course d i recti on rectangl e

Fi s 31: Ziqzaq cornPUter -
i nitrument r,roul d

many graduati ons '

diagranmatic. Actual
have 2 to 3 times as

Fiq. 32: Prifc i Pl e of oPeration of the zigzag computer



inpossible to detefirine in flight when B

is not at the same height as A. If they
are at the sarie height it is no problerit,
as in that case it suffices to have an
estinate of the rate of clinb at B. In
the single cloudstreet case, the
relativc velocity vAp/C is Dasy to
find il two si tuatio.rs, First, t{hen A
is already at the maximum height and AB
is horizontal , VAB/C is giver by the
jntersection of thb appropriate orv-curv
l'ith the horizontal axis. Second, when
Lhe naxirun heiqht is noL redched at B.
(providPC 7a > zB) A iov La 16 e r ina '

by dra\ring a ta.gen! }.Jrth the horizontal
axis.

'lr ^4Lrso r th. .j. L.ldl s i lud I inn i n
fliqht will never be so nice aid clean
as the nodel on which the zjgzag
computer is based. In addition, the
required input values, such as the rate
of clinb under the next cloud, will only
be knoua dt LFp nonent thar o4e drrivcs
there, Therefore, the solutjons
provided by the zigzag conputer lrill
iaver \e exactly optiaal in prdctice.
llowgver, the real optinal solutions r./ill
not be very different, and Irith some
experience it t$ill be possible to get
good approximations. The main value of
the devicxe lies therefore not in the
djrect practjcal application, but rather
in the extra jnsight that it provides
for the experienced piJot \./hen he
exercises 1'ith it at home for different
hypotheti cal si tuati ons.
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