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ABSTRACT

Atmospheric turbulence spectra follow either the von Karman formula or a modified
form of the Lappe/Lockheed-Georgia equation. The integral scale parameter L is
not only a turbulence concept but a basic parameter common to all stationary
stochastic processes,

Because of the finite measuring base length, the standard deviation of the
turbulence & as calculated directly from flight records is always less than
the theoretich value G, in the spectrum formulae. Spatial spectra can be
directly transformed into time spectra by calculation of the time scale T = L/V.

Bulk processing of long flight records is inadvisable because of the 1imited
lengths of the homogeneous sections in atmospheric turbulence.

Runway-respective grass airfield surface spectra follow closely the modified
Lockheed-Georgia equation with the exception of the exponent being a third
parameter o to be measured individually.

NOTATION
f frequency 1/s
h time interval between samples S
n wave number, reciprocal of the wavelength 1/m
t time S
W turbulent velocity component m/s .
X surface elevation above mean m
G () power spectral density function
H height m r
i /integral/scale parameter m
R () autocorrelation function
. sample length m
T time scale s
Y air speed m/s
o exponent
£ cutoff ratio
8 standard deviation
T time lag




a space coordinate parallel to the flight speed m

g space lag m

W circular fregquency rad/s

A relative error

Q space frequency rad/m
SUBSCRIPTS

m measured

max maximal

W for turbulence velocity

for surface elevation

low frequency cutoff

X
0 theoretical, without frequency cutoff
1
2

high frequency cutoff
INTRODUCTION

Aeronautical research has been a leader
in the theory and measurement of
stochastic phenomena. All the same,
even recent full scale fatigue tests on
sailplanes have been run emp10§i?g only
sinusoidal load block programs”,'® and
do not include the type of spectrum-
generated stochastic time histories
current, gor example, in the automotive
1'ndustr‘y1 . Even guite modern

counting equipment reflects this
quasi-static philosOphy3. In view of
the advantages, one can not help
wondering if something might be done to
further the introduction of spectal
methods for sailplane fatigue test load
generation. Will we meet some
fundamental difficulties in doing so?

Basic data measurement ?nd analysis
procedures are well known!sZ,
Similarly, modern magnetic recording
equipment works reliably and it can be
made to fit into the confined space
available in modern high-performance
sailplanes!®,

Of course, no sailplane manufacturer
can afford to buy a full set of
servohydraulic fatigue test equipment
including an on-line control computer.
But glider tests are run mostly in
research institutes where general
purpose test equipment is available.

The most fundamental restriction is
perhaps the necessity to employ a
loading lever system for simulation of
the airloads by hydraulic cylinders.
This arrangement precludes the use of
higher load frequencies.

There is also some uncertainty in the
correct fatigue damage calculation
procedure for stochastic load
sequences. This difficulty may be
partially overcome by using Neuber's
Rule (see e.g. Galliart et. al.’).

Summing up our review, we can say that
a switch over to stochastic load
programs seems to be realizable and
consequently advisable. In order to
promote this, let us analyse some parts
of the stochastic service load
calculation processes.

1. Turbulence Spectra, Scale of
TurbuTence

As regards the starting point for an
atmospheric turbulence description, we
are in a most fortunate situation. The
laws of turbulent fluid motions being
universal, formulae worked out e.g. for
wind tunnel or for boundary layer
research are equally well applicable for
our purposes. Dynamic air load
calculations have to be started {r?m %he
power spectral density funcfaon] 13,14
as given e.g. by von Karman'Y:
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is for the standard deviation of
turbu]ence]’z and L is for the so




called integral scale of turbulence
defined by Taylor 9 through the
autocorrelation function

s
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{see Figure 1)

Ry(b) = 1im

S =0

Below a height of about 600-800 meters
Lappe has found a slightly different
turbulence spectr'um]2 His formula
was modified later at Lockheed—Georgia6
into 6.8,

%) - = (1 + o. am)l -8

(5)

Basic dynam1c 1oad ca]cu]at10n laws
are well known11,13,14,15 pyt 3¢ yet
comparatively 11tt1e has been written on
correct and efficient data assessment
and space-time conver51on procedures.

To the author's knowledge it was
Kovasznay5 who proved first - as a
special case of the Wiener-Khinchin
relationships - that for every
stationary stochastic process the zero
value of the PSD function Gu( ) is:
6y(0) = £67 L (6)

This opens up new aspects in the
interpretation of stochastic processes.
Let us review some of them. It is well
known that the zero value of the
autocorrelation function is:

Rg(0) = (7)

and the variance can also be calculated

using the formula:
2 Lv_ =]

6w = $Cw(2) a2 (8)
By comparing Eq. 6 to Eq. 7 and Eq. 4

to Eq. 8 it will be evident that the

scale parameter L is not only a

turbulence concept but a basic parameter

commen to all stationary stochastic
processes. In this respect it is equal

to and complementary with the standard
deviation Ow>.

When comparing the Lockheed-Georgia
formula as given in Eq. 5 to Eq. 6 it is
seen that unlike the Karman formula this

one does not meet the zero value
requirement. This problem recently
induced the author to propose the
f0110winq a]ternate formulaaz
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The fact that such a problem can occur
is to be explained by the quasi-
stationary character of atmospheric
turbulence and by problems associated
with the finite record base lengths,

2. Consequences of a Finite Measuring
Base Length

There 1s always an upper limit to the
extension of the measuring/evaluation
base Tength, It is imposed not so much
by basic measuring accuracy but more by
the 1imited lengths of homogeneous
turbulence sections. For thermal
atmospheric turbulence this upper limit
has to be set to about 5 ,,F L + 4L

Measured spectra are therefore always
truncated on their low-frequency
boundary at

L

Frequency transfer characteristics of
the instrumentation and/or sampling rate
also give a high-frequency cutoff. For
digital processing with a sampling
interval h and holding a 100% safety
factor to the Nyquist frequency the
high-frequency cutoff will be at
f=l
2~ %%
giving

(Figure 2) (10)
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w, = 2xf, = A (Figure 2) (11b) L

The corresponding space frequency is
ws
=7

In assessing the differences in the as
measured value of the standard
deviation ¢ caused by the frequency
cutoffs for a spectrum following Eq. 9
it will be practical to introduce the
shorthand notations

(12) T
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respectively. Integration of Eq. 9
between these limits will give

e 2 1 - 1 (15)
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The relative error is therefore:
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or
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The high-frequency cutoff error
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isn't serious. Using good instrumen-
tation and with a Tittle care it can be
reduced to below 1%,

The difference due to low-frequency
cutoff

) - -t
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(19)

is much more difficult to live with.
There are simply no homogeneous
turbulence sections for the direct
measurement of the theoretical standard
deviation & ., so we have to introduce
the concept of the measured or effective
standard deviation &.,8. For
Lockheed-Georgia type turbulence,
conversion can be made using Egs. 13-15.
Similar equations can be worked out for
Karman-type spectra.

3. Space Spectra and Time Spectra

Theoretical turbuTence spectra, as
given e.g. by Eqs. 1 and 9 respectively,
refer to the turbulent velocity as a
function of the space coordinate w=w ().

However, The aircraft structure
experiences them as a function of the
time t and so are accelerations or
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strains displayed in flight records.
Every time a flight-measured spectrum is
used for air load calculation a two-fold
space-time conversion has to be
accomplished.

It is not enough for a correct
conversion to transform the time scale
of the spectrum by

f"—'nV:A%L_I

Theoretically the correct procedure
would be to transform the space

correlation function Ry(z) by the
substitution

(20)

b= oy (21)
into the time autocorreTation function
Ry(T). Fourier transformation of the
autocorrelation function will give

G.(f) = 4];'(€jcos 2xf T de

This lengthy and expensive process can
be easily evaded. A direct equivalent
time spectrum_can be given in the
following waya. Let us define the
time scale, the time equivalent of the
scale of turbulence L, as

(22)

T = —lﬁlrgw@r ar (23)
O s

If the time spectrum is given as a
function of the frequency f, then -
observing Eq. 22 - Eq. 6 will turn into

2

(o)) = 465 T (6a)

It follows from Eqs. 4, 21, and 24
that the time scale can be directly
calculated as

24
T = # (24}

Egs. 20, 6a, and 24 give then the time
variant of the Karman spectrum directly as
5 1+ %(8.4132’1‘:’)2
" [1 +(s.41321£) 2 [11/6
Formally the same has been done in
Rep?gt FAA-ADS-53 by Mystrom and

Mai Similarly the low-level
turbulence Eq. 9 becomes

G () =416 (25)

2 4T
Gy(%) = Oy - 2?4 r£) 1178 (26)
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4, A MNumerical Example

Let us suppose that records of the
atmospheric turbulence have been made in
the flight modes and weather conditions
given in Table 1. Strength of
turbulence values are rounded off_from

typical data as given by Steiner!’ and

scale of turbulence values follow the
trends found by Lappe‘z. The data
sampling interval should be h=0.005 s,
giving a sampling frequency of 200 Hz.
The theoretical Nyquist frequency is
therefore 100 Hz giving a practical
high-frequency cutoff at fp=50 Hz
(Table 2),

In flight mode 1, a Lockheed-Georgia

Tow-frequency cutoff at f1=0.0488 Hz,
Time scales calculated using Eq. 24 are
given in the Tast column of Table 1.
Respective space and time spectra will
turn out therefore as in Figures 3 and
4, End products of the record
evaluations will be the space spectra
shown on Figure 3 and stochastc fatigue
load time functions can be generated
from the time spectra in Figure 4,

The appraisal of these results raises
no questions regarding the correctness
of the high-freguency cutoffs. But a
comparison of the measuring base lengths
S with the scales L reveals

S 8.5 L for flight mode 1 and

[T

type turbulence spectrum following Eq. 9 S *11.4 L for flight mode 2.
is to expected while in all other cases We cannot be sure of such long
the spectrum will be of the Karman type. relative lengths of homogeneous

Digital data turbulence. Therefore, 1t will be
lTength of 4096h

P2

essing using a sample

will give a

advisable to cut these records in half -

Flight mods % H gggor 6y | L |Spectr.| T
km/h| m pe w78 type "
Btraight flight ' y '
1 | 52 clsar six 90 | 600 | 1.0 |[0.5| 60| I~G 2.4
Glide between ' ' !
2 | Cheraals 200 |1500! 1.0 |1.0|100 K 1.8
Ciroling in ’ ' '
3 | Shecmntc 80 {1500| 1.6 |1,0]|100 X 4,5
5 |Circling in 80 [2000| 1.6 |2.0]200 ¢ 9,0
cloud
Table 1 - : -
{gad SRt 5 | Circling in Cb | 80 [3000| 1.6 |4.0]300 K 13,5
st msl £y ] £ s 7 Q,
ght ‘mods Hz Hz m rad /m | rad /m
Straight flight | . ' ’ '
L[5 aicey iy 50 | 0,0488 | 512 | 0.0123 | 12.566
Glide between “ i ' ‘
2| heniile 1138 | 0,0055 | 5.655
Cirecling in " ‘ -
5| trernats " 455 | 0,0138 | 14,137
4 Circling in n " " " "
cloud
Table 2 N N
. 5 | Cieling in Cb " " "
Cutoff Frequencies




perhaps even split record 2 in four -
and then see if they will give congruent
results. Otherwise,turbulence strengths
and scale parameters might turn out as
undefiniably biased averages from
different turbulence sections.

i
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Figure 1: Calculation of the Scale
Parameter L
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Figure 3: Turbulence Spectra for

Different Flight Modes
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5. Runway and Grass Field Surfaces
Fourier transformation of runway and
soft terrain surface profile records
give spectra of quite similar character
to turbulence spectra following Eq. 9.
As shown recently by the authorB, they
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Figure 2: Low- and High-Frequency
Cutoff
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Figure 4: Time Spectra for Different

Flight Modes



13

can be correctly evaluated using the
following formula:

Gx{n) = 53: ( b

fi]

=1
In some cases a twin formula of

similar character will be requiredg.

The value of the exponent & depends on

the type of road surface with o =1.5-2.8

while L will vary between 1.8 m to 50-80

1+ Ln)d‘ (27)

meters. These are preliminary results,
however.
CONCLUSION

Evaluation of flight records as well as
practical use of the spectral method
will be faciliated if full use is made
of the scale parameter L with respect to
the time scale T. They are not only an
attribute of atmospheric turbulence but
basic parameters in all stationary
stochastic processes.
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