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Summary

I we know the speed at the minimum rate of sink and at the
sink rate of 2 m/s we can casily caleulate the MacCready
function with good approximation. The speed error, in the use-
ful speed range, is less than 10 km/h for standard class gliders.

The MacCready function can be calculated as

Whe = kK V (V=V,,i0)

where

Vs the actual speed of the glider

Vinin 18 the speed at minimum rate of sink

k is a constant

5

k= — forall gliders of the old generation
Va2 (V2—Vin) up to ASWI9, etc.
k - 3.5 = for all modern standard class

Vo (Va2 -Viip) gliders like LS4, Discus, etc.

V5 is the speed at a sink rate of 2 m/s
The best-speed-to-fly V. can be calculated as

where
W is the MacCready setting or the rate of climb in the
next thermal,

1. Introduction
The traditional way to obtain the MacCready curve is to draw
tangents to the speed polar, i.e. a graphical solution, A more
rational way of obtaining the MacCready curve is to describe
the speed polar numerically. Reichmann (1), among others,
suggests the use of a polynomial of the second order
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W, = av2 + bV + ¢ (h

where

W is the rate of sink

V is the speed

a, band ¢ are constants

To solvea, band ¢ we need three equations, i.c. three known
points on the speed polar. These points should. according to
Reichmann, be chosen at minimum sink, high speed and at
the middle of the speed range.

The MacCready function is the sum, Wyye, of the glider’s
rate of sink, the sinking/climbing speed of the airmass and the
rate of climb in the next thermal, at a certain speed. The tangent
to the speed polar at this speed gives us Wy It can be
formulated as

dw
WMCL ol V= 24V + bv (2}
dv

This is a very simple way of calculating the MacCready
curve, provided we know three points of the speed polar. The
resulting error is very small for most gliders.

The trend in the standard class is towards optimizing the
glider in the speed range between 100 and 150 km/h (without
water ballast). The Discus and the new ship from Schleicher,
ASW24, are examples of this new philosophy. At slow speeds
the polar is almost horizontal and at around 160 km/h there
is @ characteristic bend. At higher speeds, the polar is almost
astraight line, Itis quite obvious that a polynomial of the sec-
ond order is not a very good approximation of this type of speed
polar. We must use polynomials of a higher order, which means
more constants to solve. In Figure 1 the speed polar of the
Discus (as measured by DEVLRY) is shown together with two
approximations according to eq. (1).
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Figure 1. Speed polar of the Discus. The straight line is the polar as
measured by DFVLR, the other two are approximations according

to eq. (1).

This problem lead the author to try to find a simple
approximation of the best-speed-to-fly theory, which would give
errors that were negligible for practical use. We will only
consider standard class gliders.

2. A simple approximation

Lars T. Johansson (2) has built up a data bank containing
the speed polars of a lot of gliders. He has used, mostly, polars
as measured by DFVLR and a polynomial of the 10th order
to describe the polar. Thus the polynomial used is a very good
approximation of the true speed polar. When studying the work
of Johansson, it was found that the MacCready speed for an
anticipated rate of climb of 3 m/s was very close to the speed
corresponding to a rate of sink, W, of 2 m/s. Table 1 shows
the rate of sink, Wygca, of 20 gliders for the MacCready speed
correspondng o an anticipated rate of climb of 3 m/s.

type of glider

Whes (m/s)

ASWI9
Std Cirrus
Astir CS
Std Libelle
LS1-t
Phoebus A
Phoebus B
Club Libelle
Salto
Kab6CR
KabtE

K8B
L-Spatz
Pirat
Zugvogel 4
Foka 4
Cobra 15
Pilatus B4
SE27A

1.86
2.13
217
2.09
2.03
2.26
2.18
2.08
2:11
1.94
2.03
1.75
1.79
2.15
2.26
2.25
1.76
7
4
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Table 1. Wy is the gliders rate of sink al a speed corresponding to an

anticipated rate of climb in the next thermal of 3 m/s.
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The mean valuc of Wyyeg is 2.06 m/s, with the coefficient
of variation & = 0.082. The wingloading for the values of
Wi in table 1 corresponds to the empty weight of the glider
plus 90 kg (i.e. weight of pilot). This is the normal way the
polars by DFVLR are published.

The speed at a sink rate of 2 m/s is denoted V5 and using
eq. (1) we have

2 =aV: + bV, +c¢ 3)

The slope of the polar is zero at the speed corresponding
to the minimum rate of sink, Vi, and this gives us

dWs — 2av,. + b =0

dv

Now, wemake use of the values in Table 1, by simply stating
that Wyge = 3 + 2 = 5 corresponds to a speed that equals
V3. Using eq (2) we get
=Wy = 2av2 + bV, =5

dv

We have three equations and three unknown constants, a,
band ¢, which means that we can solve these. The speed polar
can be written as

4)

Whic (5)

Van  y LSV, 5V
VoV = Vi) V=

W= 2w

¢ min 4 7
ValVa = Vigin)

(6)
Our main interest is not the speed polar itself, but the

MacCready function. We derivate eq (6) and multiply with
V. After rewriting, we arrive at

.
\mm

Wae = — - V=V V=KVV -V, (7
ValVa = Vigin)
where
5
VaV2 = Viin)

To calculate the speed ring we only need to know the speed
at minimum sink and at a sink rate of 2 m/s!

3. Evaluation
Eq (7) is very simple to use and the natural question is: how
good is it? Figure 2 to 7 shows both the MacCready function
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according to Johansson (2) and eq (7). In the case of Figure
2, ASWI19, the MacCready curve obtained when using a
polynomial of the second order is also shown. As can be seen
cg (7 is a good approximation. The values are valid for
unballasted gliders. In this configuration and in European
weather one would seldom fly faster than 160 km/h. Below
this speed. the speed error resulting from using eq (7) is less
than 5 km/h.

Now we turn our attention towards more modern standard
class ghders like LS4, DG300 and Pegase. For these gliders
(and cven for gliders of the 15 m class) eq (7) needs to be
modified. Here Vo corresponds toa Wy of 5.5 (3.5 + 2).
and the k in eq (7) becomes

Ve

Figure 8 shows the result for the LS4,

or the Discus (and the ASW24), with its peculiar bend on
the speed polar, the MacCready curve alsohas a peculiar shape.
At a certain value of Wy the function becomes a straight line.
This is because when the polar itsell becomes a straight line,
it i not possible to find tangents anymore. This means, as an
example, with the speed ring set to zero, at a certain rate of
sink we have the same glide ratio independent of the speed.

It is not possible, as shown in Figure 9, to calculate the
MacCready lunction with the help of a polynomial ol the sec-
ond order, as described by eq (1) and (2). We need polynomials
of a higher order. Eq (7) with k caleulated according to ¢q (8)
is actually a better approximation over a larger speed range,
see Figure 9. Below 165 km/h the speed error is less than

L= (8) 7 km/h.
VE(VE - Vmin)
|
30 Wy mrs ’
A0 Wig ms RO l
1or 7ot i
|
6.0r a0k \
501 50+
L0r L0
anF me
Lo 2ok
* L34 WS =30.9 dhfm’ L :
1+ f'// ' Y nih |_u‘ i ) ) . . . , ,
"“"fm (U Y R R R v\ N B R S R ¥ R R R F/ RN
Figure 8. Figure 9.
86 [TECHNICAL SOARING



4. Best-Speed-To-Fly
The best-speed-to-fly, Ve can be calculated as (see
Reichmann (1))

1
¢ — W, + W,
Vvme = ‘\/ _:J = %)

where

W,; is the rate of sink of the airmass

W, is the rate of climb in the next thermal

a and ¢ are constants, see eq (1)

We identify a and ¢ in eq (6) and by using k we arrive at

\/O-SKVE_kvzvmin"i'?-‘i'wst_wii

0.5k (10)

-\IMC =

which can be written as

2 :
Viie = ,\/Vi — 2V Viin + L4 + Wy — 2W;
k k
(11
We are interested in finding the speed in calm air which
means that Wy; = 0. A new approximation is entered, which
says that Vo = 2V . Eq (11) can now be written as

L @4+ 2wy

Vyie = ==
MC K (12)

W, is the MacCready setting or ring setting. Table 2 is a
comparison between eq (12) and the values calculated by
Johansson (2) for three different gliders, KabCR, ASW |9 and
Discus. Eq (12) is a good approximation of Ve for the
Ka6CR and the ASW19. It is also good for the Discus as long
as we are above the “*bend.”
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VMC km/h
Wui i :
_ KabCR ASWI19 Discus
m's
Johansson | Eq (12) | Johansson | Eq (12) | Johansson | Eq(12)

0 83 81 86 101 100 102
1 98 99 127 124 L18 125
2 119 114 144 143 148 144
3 130 128 157 160 156 161
4 140 140 172 175 161 176
3 150 151 186 189 165 191

Tahle 2. The speeds are valid for a wingloading corresponding to the emply
weight of the glider plus 90 kg,

5. Conclusions
Il we know the speed at the minimum rate of sink and at
the sink rate of 2 m/s we can easily calculate the MacCready
function with good approximation. The speed error. in the
useful speed range, is less than 10 km/h.
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