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SUMMARY

Exact assessment and correct simulation of atmospheric tur-
bulence is of prime importance for soaring. Raw power spec-
tra of turbulence should be processed using natural-parameter
speetrum formula and evaluating phase angle relationships, wo.
This nuikes it possible w caleulate turbulence-induced sail-
planc loads and motions using input spectral vectors instead
of the usual spectral matrices. Records of thermal traverses are
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best modelled as regular nonstationary processes. Exploita-
tion possibilities of these new developments in soaring include
dynamic thermaling and a more realistic fatigue load simula
tion, Boundary layer research, oo, may benefit from it.

I INTRODUCTION
Flow turbulence is in every respect of prime importance in

eliding. We have threefold reasons to know as much of it as
possible:
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— every kind of updraft, our prime source of energy. is strongly
connected with air turbulence;

—unwanted turbulence in the sailplane boundary layer
diminishes the performance;

the major part of glider fatigue loads is caused by
atmospheric turbulence.

One of these problems would be quite enough 1o justify our
interest. Successes and failures in the past emphasize the

leading role ol basic research in the efficient handling of
= o

turbulence problems, This is the reason why. according to the
humble opinion of the author, some recent developments in
the theory of stochastic processes deserve our due consid-
eration. But, theory alone cannot give us the practical results
required, so basic and applied research should both be
carried out.

Innovations in theory should start with writing spectrum and
correlation functions in terms of natural parameters. They have
beenused in turbulence work for several decades (seee . refs,
4. 10, 11y but full utilization of their possibilitics is still lack-
ing. Furthermore, amending the individual or sample spectra
with phase angle data gives us a very efficient wol for assess-
ment and simulation of atmospheric turbulence. Adding the
phase angle to the present-day atmospheric turbulence mea-
surement/assessment methods promises to give quite a new
picture of the fine structure of convection. The next step toward
the tull understanding of atmospheric dynamics may be then
the investigation of the so-called regular nonstationary tvpe
of stochastic processes.

When adapting these new theoretical relationships to prac
tice, we shall be able to design, dimension and fly our machines
for better advantage in turbulent environments.

2. NATURAL-PARAMETER SPECTRUM
FUNCTIONS

Intelligent and rational stochastic meuasurement and cal-
culation developments come invariably to the ad option of the
spectral method. Raw power spectra — while containing in
principle all the necessary information — are poorly suited o
exact and economical additional processing and calculation.
Itis worth, therefore, caleulating a least-squares approxin-
tion to them using an appropriate analytical function. There
are several types giving acceptable formal fit to the spectriover
the measured frequency range. but it will pay o selectaspecial
aroup,

Turbulence theory inherited the concept of *Misct hungsweg ™
or mixing length from thermodynanics. Splendid work of
Prandd. Dryden, Taylor, Karman and others evolved from it
two sorts of the so-called scale length. The first one is the in-
tegral scale and is defined as Iu]ln\-\a.

g
L = lim j R, () d¢ o
QI_'-DO
3 ¥

s
Ly

The second one, Taylor’s scale, reads:
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The integral scale of turbulence L is used in every turbulence
formula by tradition. Its general importance in the theory of
stationary stochastic processes has been pointed out by
Kovasznay/(3) pp. 91-94./. Taylor's scale length values
above zero are indicating a finite frequency upper bound for
the spectrum,

The full listof the so-called natural parameters of stochastic
processes starts with the well-known standard deviation g,
followed by the scale parameters L and A ending with the spec-
trum exponent o, Definitions and calculation formula are shown
on Table 1.

Natural-parameter turbulence spectrum equations are of the
general form

Gy (S =G, () - (LR, Lik, a) {3af

Itseems that for atmospheric turbulence Lid >> | or perhaps
even A/L— () s0 we can work with

G, (&)=G,(0) - DL, &) {3hy

Zera values for such one-sided spectra are according to
Kovasznay (3}
2L
G0y =" o} iy
The first formula for the vertical component of air turbulence
has been given by Drvden (2):

2 2L 1 431792

G, (R)= P {5/
T+ LY
In 1948 Karman (o) revised this formula giving:
o 1+S (a30Ley
G, (= of\ =" N 1 0
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According (o sone authors, low-altitude rbulence has a
special character necessitating the use ol special fornwila. Tappe
(11 proposed for it the spectrum equation:

G A =g~ ks : 0T
(1 + 1.9V

The Lappe spectrum bas been moditied at Lockheed
Georgia/Firebaugh (4)7 into:
) 081

Gy (=03 i8/
(1 + O8L 5’)

There is a little problem concerning the constants in Egs.
(7} and (8) because they do not meet all theoretical require-
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ments. This induced the author w propose instead of Lg. (8)
the following/Gedeon (5)/:
D L
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The peculiarity of these formula of being written in terms
of the natural parameters gives us several practical advantages.
1t facilitates the calculation of [requency cutofl errors, spece-
frequency domain conversion, ete, (Seee.g. Gedeon (3,6)/ Let
us go now a step further and examine the problem of phase
angle relationships.

3. TURBULENCE FIELD MEASUREMENT
AND SIMULATION

Atmospheric turbulence is acting not on one single point,
but on the whole surface of our sailplanes. Scalar-type func-
tions as given in Egs. /1/-/9/ are insufficient for calculating
such input-output refationships. It is, therefore, customary to
set up a diserete element model of the plane and 1o describe
the turbulence field by the corresponding n ¥ ndimension spec-
tral mairix
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Let us think and speak in terms of o sailplane flying at an
air speed V through turbulence. For dynamic caleulations we
have 1o compose a discrete element vortex/mass

(serodynamic/mechanical) model of the plane/seee.g. Fig. |
and Mai (12)/.

H q

Figure 1. Sailplanc discrete element vortex/mass {aerody-
namic/mechnical) model.
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The diagonal auto-spectra elements Gii(f) in matrix /104 can
be caleulated from one of the space-domain spectra /5/-/9/ in
the following way. First, we have to caleulate the time scale/see
e.g. Gedeon (5.6)/as:

E

T= s
v

The zero value of spectra G, (I) 1s /Gedeon (6)/:
G (0) = 4T3, 12/
and for Eq. /3b/ we should write:
G D =G(0) - ®27 Tt,a) {13/
So the time-domain variant of the Karman spectrum is:

1 +2 84132 TH?
Gi(h) = G(f) =4To, ————— {14/
[1+ (8.4132 TH"®

Calculation of the nondiagonal cross-spectra G (f) of the
matrix is not so clear, They can be determined from the corre-
sponding auto-spectra using the appropriate coherence func-
tions. but the present stochastic process theory does not give
theoretical coherence values, so individual empirical values
are used.

tor turbulence air load simulation n input time functions
w, (1) /i=1-+n/ have to be generated from the matrix G, () by
inverse Fourier transformation. While the calculation pro-
cedure for the absolute values of the Fourier components is
straightforward. there is no text-book formula for Fourier com-
ponent phase angle calculation, [Lis, therefore, usual to assign
random phase angle values to the caleulated absolute values
of the Fourier components. Although statistically not a big
source of errors, this is theoretically not correct,

Input-output relationships can be written in the classical
WY s

Gy = Hi (D Gyt oD 5/

We can improve on both these relationships in the following
way. Fourier series theory indicates that phase angle values
for every finite-length representation have to increase in pro-
portion to the frequency. Using this theorem

— we can give more realistic phase angle values:

— we can discard the spectral matrix form of representation
and can switch over 1o the complex auto-spectrum vector
G (N (for details sce Appendix 2).

In this concept we can write for Eq. /154

1G, (01" = Hy () 1G] 16/




Summing up briefly, the essence of our method is the follow-
ing. [f there are n pieces of finite length samples w,(1} from
a stationary and ergodic stochastic process/ see Fig, 2/ then
finite base length individual uuto-spectra do have phase angle
values as well, so they can be expressed in the form:

G (1) e 1wl A7

The classical auto-speetrum G, (f) — i.e. a spectrum Gy
in the diagonal of the spectral matrix G, (f) — is a real type
ensemble spectrum of the whole process {w(t)}. The complex
auto-spectrum vector G (1) composed from n complex auto
spectra contains all information on the individual and relative
phascangle values as well, Itis a full substitute for the spectral
matrix G, (1) and it makes possible the correct reconstruc-

tion of individual time histories w(t), too. substitution of

Eq. /16/ for Eq. /157 yields signilicant computer time and
space savings.
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Figure 2. Sample time-historics

4. TRANSIENT TURBULENCE

The stationary stochastic process model of turbulence is cor-
rectonly when [lving in steady wrbulence, e.g. in thermaling.
Homogeneous turbulence field lengths in the order of SL are
necessary o justify such an assumption. In straight thermal
traverses. the magnitude of turbulence is transient. Never-
theless, it is custontary to treat even long mixed records as if
they were stationary inasmuch as bulk processing methods are
apy;licd. Results of such processing methods can be interpreted
as some form ol extended range statistics. but a more correct
method would be the following.
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Figure 3. Vertical velocity record of a thermal traverse.

Let us take ¢.g, a record from a traverse trough a thermal
core and its near surroundings /see Fig, 3/, This part of the
record w=w(1) is obviously nonstationary, even after subtract-
ing the updraft velocity profile from it. But, the transient
turbulence can be regarded as a case of the so-called regular
nonstationary processes. That means that while the time fune-
tion w=w(l) Is nonstationary, there is a transformation func-
tion g(1) making the product

ait) - w(i)

stationary {Gedeon (71 . Using the complex sample spectrum
conceptand an appropriate weighing funcuon gt full record
assessment can be achieved by otherwise standard procedures,
Even reconstruction of the origmal or equivalent time fune
tions wit) from the complex sample spectrum G, (1) for
simulation 1s possible.

Data collection is the most difficult and problematical part
of air turbulence investigations. An ideal solution would be
the simultancous sampling over short intervals At over say an
nxnxn natrix cube mesh ol uniform h division, What we have
at present 1s a formation of three motorgliders recording con-
tinuous time histories see ¢.g. Hutter (8)¢ [rom which sampling
i tinne intervals At will give o spatial sampling division

h=A1"V [m] 1R/

How und to what extent such isolated traverses can be
substituted fora matrix data set is an interesting problen beyond
the scope of the present paper.

5 SEMIEI-DYNAMIC THERMALING

The knowledge which will be gained on the fine structure
of atmospheric turbulence could be put to practical use as
follows. Firstofall. we want to extract as much energy as possi-
ble from the atmosphere for staying up and making way, Would
it be possible o utilize atmoespheric turbulence for dyvnamic
soaring? There are quite a number of treatises on the dvnamic
energy exchange between the sailplane and a non-steady at
mosphere but tull-scale utilizaton, except for delphin-style
thermal traverses. is still lacking, In view of the wind shear
ratey necessary W support the permancit flyimg of a sailplane
there is hitde hope ol ever attaining this ideal, But we cun
perhaps. nnprove rate of chimb values in thermal cireling by
utilizing turbulence components.,
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Recently Sto'kovie (13) recomi nded doing a series of alter-
nate dynamic beats through the thermal core. He did his ealeula-
tions on an cxnonential updraft profile fFig. 3. mean line/
without taking .urbulence components into account.

Instead of this. the author prefers another method. While
thermaling, most pilots 1y through turbulence components in
the 0.5-2 Hz frequency { 10-50 m wavelength/ range. When we
shall know more about phase angle relations in turbulence, it
will be possible to do some intelligent aileron and elevator/rud
derdynamic fine work in circling for alittle extra rate of climb.
The avthordid seme instinetive practical experimenting in this
way. In weak evening conditions a difference in the order of
(L5 ni/s seemed Lo be attainable. Maybe it is worthwhile mak-
ing the effort for such an improvement.

6. FATIGUE TEST LOADS

A substantial proportion of glider fatigue loads is caused by
atmospheric turbulence. Stimulating them for fatigue tests 15
based cither on service load statistics or on spectral caleula-
tons. Let us investigate the latter case.
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Figure 4. Atmospheric turbulence spectrum {Jochum (9)/

It is practical to divide the service lite of the glider into
characteristic flight modes. Each ol them has its own block
in the fatigue test load program. Some suggestions on input
spectrum paraneter determination can be found e g. in Ref.
(6). Starting points for them are raw air turbulence spectra as
shown e.e. on Fig. 4. They are (o be processed using one of
the standard formulas. e.g. BEq. /6/ or Eq. /9/. Which one of
them is to be preferred is a question of further statistical in-
vestigations. No matter how. phase angle data arc to be pre-
served during the processing. The aerodynamic/mechanical
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madel on Fig. | is also the pattern for the acrodynamic load
vector function i caleulation.

The transfer matrix Hp, (f) necessary [or this can be caleu-
lated e_g. by the Low Frequency Acroclastic Element Method
developed by Mai (12). Current fatigue load simulation methods
are rudimentary in two ways. In caleulations it is usual to
presume constant input vector component phase angle values
all along the wing span, i.e. to assume orthotropic turbulence
instead of isotropic. Moreover, loading in our fatigue rigs is
by a single hydraulic linear actuator through a mechanical lever
system. This practically precludes any possibility of phase
ditferences in loading.

A uniform spanwise loading may cause overloading in some
respect in proportion o the service loads, but on the other hand,
all the antisymmetric load components are lacking, In posses
sion of the complex sample spectrain the form of Eq. /17/ this
can be corrected. According o Eq. 716/ the complex loading
spectral vector 1s:

[Ge(DI'™ = HiD [Gu(H)' 19

Load time histories can be composed by the formula
i A £ : -
i) = z (IG(DI AfYE ¢ Prk et e thl oy
k=1

Full simulation of the local load fluctuations for each
wing/tailplane section requires a separate load actuator for
every section and a corresponding control system. How far this
can be simplified within acceptable error margins is still an
apen question, but surely worthy of serious consideration.

7. LAMINAR FLOW CONTROL

Last but not least, the new concepts could be applied to the
classical boundary layer and laminar profile problems as well.
Their consequent use in the assessment and evaluation of multi-
ple simultaneous hot-wire anemometer and laser Doppler
anemometer records may contribute o the discovery of new
concepts in flow structure interpretation. Improvements in sail-
plane design as well as in flow mechanics in general would
be the net result of this. At present, we cannot predict for surc
the practical improvements. but a better understanding of the
laws of nature has always given ample dividends.

8. CONCLUSIONS

It is advisable to use natural-paranteter spectra for atmo-
spheric turbulence description and simulation. Contrary to
the prevalent beliel. sample autospectra do have non-zero
phase angle values as function of the frequency. Individual sam-
ple spectra should be written, therefore, in a complex form.
This simplifies considerably the caleulation and simulation
of turbulence-induced sailplane motion and of wrbulence
fatiguc loads. Transient turbulence can be modelled as a spe
cial case of regular nonstationary stochastic processes. Prac-
tical use of these new theses is in dynamic thermaling, in the
compilation of fatigue test programs and maybe in laminar flow
research. oo,
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Appendix 1: Notation

At

W

T

9

Superscripts:

Volume X1V, No. 3

frequency

function

interval between samples
space frequency

time

time interval

vertical component of turbulence velocity
induced time variable

force fair load/

power spectral density tunction
complex spectral vector
spectral matrix

transfer matrix

integral scale parameter
autocorrelation function
sample length

time

time base

air speed

exponent

phase angle

Taylor's scale length

standard deviation

time lag

space coordinate parallel to flight speed
space lag

circular frequency

base frequency

shape function

space circular frequency

tra nspose

complex conjugate

m

m

m

rad(s

rad/s

rad/m
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Appendix 2: Proof of the Spectral Vector Concept

We state that n pieces of finite-length /O < t < T/ stationary and ergidic time functions wi(t) /i=1+n/
can be fully described and represented by the complexspectral vector G, (f) instead of the traditional
spectral matrix G,,,,.(f).

Let us take an n degree of freedom aerodynamic/mechanical model of the glider (Fig. 1/. By use of the
direct Fourier calculation method the complex spectrum at the i-th degree of freedom point reads:
(-;»\1“} = (:;Rv,i{f) + j(}im.i(f) = |G\\(l)| IICOS (\OJ(t) + I sin Lpl(r)] 1224
Then

[Goi(D]'? = [IG, (BN [cos @y(f) + § sin ¢i(F)] 28!

and the input spectral vector in Eq. {19/ reads:

(GBI = [Ga(H)]"? = [G.f]"? cos o) + | sin ¢y i24f
|Ga(f)]'? COs @1+ J Sin o
[Ga(6)]'* cos @, +jsin o,

The spectral matrix is a dyadic product:

Gy =TGR [Gu#T™ 125!

— W

The diagonal elements of the matrix read:

Gu“) = (-“\\(f} = (-;\x“—) ."I26."I

and the general formula for the elements reads:

Gu(f) =G (E)l [cos (i) — i) + j sin (@i(f) — ()] 127

The spectral matrix is obviously hermitic:

Gii(t) = Gii(f) 1281
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