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Introduction

The possibility of extracting energy from moving air and its
utilization for flight has been known for quite a long time. This
holds both for vertically and horizontally moving air. The flight
technique termed dynamic soaring extracts energy from hori-
zontally moving air, which may be characterized as a non-
uniform horizontal wind showing a variation with altitude
(wind shear). Whereas, vertically moving air is utilized for the
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flight of sailplanes as a standard practice, the experience in
dynamic soaring is rather limited.

The possibility of such extraction from horizontally movin &
air was first observed with the flight of birds, but it was also
carlier considered as a means for use in the flight of sailplanes.
In the meantime, more insight has been gained by a number of
theoretical investigationsand cven by some practical experience
(Refs. 1-13).
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Sofar,importantresults havebeenachicved proving valuable
information and knowledge of the principle characteristics of
dynamic soaring flight. Some of the investigations are based on
simplified models or give an estimate with the use of energy
considerations. Others apply numerical simulation techniques
for computing flight profiles.

Inthis paper, modern mathematical optimization procedures
are applied to the problem of Maximizing energy extraction
from horizontally moving air. Thus, it is possible to determine
optimal trajectories without simplifying the modeling of the
sailplane, and results which give precise information about the
capability of dynamic soaring flight can be achieved.

Nomenclature

a, = coefficient (i=u,v,w;k=1,2,3)

b = vector of boundary conditions

Cs = drag cocfficient

G, = lift coefficient

D = drag

B = max. lift-to-drag rati(),!’E:(CL{CD)Mr

g = acceleration due to gravity

H = Hamiltonian

h = altitude

J = performance criterion

K = lift dependent drag factor

L = lift

m = mass of the airplane

n = load factor

r = parameter vector

5 = reference arca

i = time

u, = control estimale

u = control vector

Uy = longitudinal component of the abso-
lute speed vector

v = airspeed

Ve = absolute speed

Vs = wind speed

L - lateral component of the absolute speed vector

Wy, = vertical component of the absolute speed vec-
tor

X = state vector

X, = longitudinal coordinate

Y, = lateral coordinate

z, = vertical coordinate

7 B angle between airspeed and horizontal
plane

A = Lagrange multiplier

K, = roll angle (aerodynamic coordinate sys-
tem)

© = air density

% = azimuth angle (acrodynamic coordinate

system

Modeling Considerations

The speed relationships of a sailplane flying in horizontally
moving air are illustrated in Figure 1. The speed vector in
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relation to the carth as an inertial reference system may be
expressed as:

—

V=(u, 0, w, )" (1)

K Vg Wiy

withx,_and v,, representing the components in the horizon-
tal plane and w, the vertical component.

The airspeed may be written as:

- = =

V=V, -V, )

_-) .
where V represents the wind speed vector. A wind shear

condition shows only a horizontal speed component. By appro-
priate choice of the coordinate axes, the wind speed can be

expressed as:
s
3
V.=V, 00) (3)
where l/’w is a function of altitude. Thus:
VT.:(qu+Vw Uy ,wxg)T

{4)

e e

Theangular orientation between the vectors VK and V vam\bc
expressed by three Euler angles x_ , 7, , 1, (See Figure 2). The

following relations hold:

5in Y = el
sin'y, =-—3%

w
tang = =ty (5)

FIGURE 2. BASIC CHARACTERISTICS OF AN OPTIMAL TRA.-
JECTORY FOR DYNAMIC SOARING
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FIGURE 1. COORDINATES, SPEED VECTORS AND ANGLES FOR DESCRIBING THE FLIGHT OF AN AIRPLANE IN HORIZONTALLY

MOVING AIR.

The remaining angle g is determined by optimality condi-
tions.
The equations of motion may be written as:

U =-a 2- L_
Ky ul W

L
U(__aurg' 2GR
¥ m L
: D L
w, =4 a4, — 4
Kg w]m Wl Hy 48
%y T
yszy'ﬁi
h:«w,@ (6)
where

= C0S [ Sir Yros x +sin | sin y
a,,= COoS|L Sin 7 sin ¥ - sinjl cosy,
a,,=cos |Lcos ¥,

Theaerodynamic forcesaretheliftand drag forces denoted by
Land D. L is perpendicular to the air speed vector Vand D is
parallel to V' but opposite to its direction. The aerodynamic
forces can be expressed as:

D=C,@/2)Vs  L=C/(8/2)VS (7)

Theaerodynamic performance characteristics of the sailplane
are determined by its drag polar:
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2
=, KE (8)

In regard to wind conditions, a lincar wind shear model is
applied where the gradient dV, [ dh is considered as constant
within a prescribed altitude range. This is based on measured
data as shown in Figure 2. Furthermore, the wind shear model
used as considered as independent of the coordinates X and v,
within the region covering an optimal trajectory cycle (the term
cycle will be explained subsequently). Figure 3 gives an illus-
tration for the wind shear model applied.
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FIGURE 3. WIND SHEAR CONDITIONS (MEASURED DATA,
FROM REFERENCE 14)
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Basically, an optimal trajectory for maximizing energy trans-
fer to the airplane consists of cycles as shown in Figure 4, with
points 0 and 1 denoting the begin and end of a cycle. After
completing one cycle, another starts so thal the whole trajectory
may be considered as a set composed of such individual cycles.
The individual cycles may differ, depending on the altitude of
the starting point and its wind conditions, No differences exist
when the altitude at point 1 is the same as at point 0 (r,, =0).In
this case, the optimal cycle for soaring flight may be qualified as
cnergy-neutral.
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FIGURE 4. WIND MODEL APPLIED

Considering now a cycle as a basic clement of an optimal
energy-neutral trajectory, the following initial conditions hold
(with appropriate choice of the origin of the reference axes):

xg( 0) = yx( 0)=0 h(0) = h( fq‘), (9a)
where b denotes the time at the end of the cycle.

The speed vector V| at the end of a cycle must be the same as
at the beginning. Thus:

uM(U} =u (tq‘) U,q(()) o= %(tqﬁ)

wlg( 0} = wh( t%c)

(9b)

Inaddition, theinitial flight condition can bechosen such that:
w, (0)=0 (9¢)
Control variables are the lift coefficient C, and the roll angle

. The lift coefficient is subject to the following inequality
constraint:

TEEC {10}

TLwan T LT T Lwax
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Optimization

The optimization problem can now be formulated as to find
the controls history (C,, p ), the initial conditions (u.x_s(O) ,v_,q(O))
and the cyclelength (tbyc) which minimize the performance cri-
terion:

f=h (O)—h(!w__) (11)

with | = 0 denoting an energy-neutral trajectory. This problem
is subject to the dynamic system described by Eq. (1) and the
inequality constraint for the controls according Eq. (10).

The problem described has been solved by applying two
optimization programs. One is the optimization program
BOUNDSCO whichisbased onthe method of multiple shooting
[15,16]). The other is the optimization program TOMP which
utilizesa parameterizationtechnique fordetermining theoptimal
controls [17]. A short description for both techniques is given in
the following.

In regard to the first optimization procedure, necessary
optimality conditions according to the minimum principle are
applied. Dencting the vectors of the state and control variables
by:

x(t) ={u w

T
ot %g 1 Y o 1) (12)

Kt Ui

ult)=(C, )7
Eq. (1) can be expressed as:
x=f(xu) (13)

Corresponding to the state variables, Lagrange multipliers
are introduced

A=A, Ap hy A A, A )7 (14)

The Hamiltonian may now be defined as:
H{x, A u)=2A"fx, u) (15}

With the useof the Hamiltonian, the Lagrange multipliers are

determined by:

oH

A= o (16)

For the boundary conditions of the Lagrange multipliers, the
following relations hold for energy-neutral trajectories:

AW =21t I=u,vwxYy (17)

At =-1

The optimal controls are such that H is minimized. For this
reason, they are determined by:

dH :
5 = 0 (18)

or (with regard to C,) by the constraining bounds of Eq. (10).
The dynamic system described by Eq. (1) is autonomous, so
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that the Hamiltonian is constant. Since furthermore the time of
acycle fqﬁ is considered free, {1 is given by:

H=0. {19}
As to the second optimization procedure applied, a param-

eterization technique was used. Here, the control vector u{f) is
approximated by a parameter vector p. Defining a grid:

O=t<t<..<t <t = £ {20)
the following is applied:
w(t) = U (pt) tst<t+] {21)

The function LI represents control estimated forinterval [, j =
1,...;m - 1. For modeling the controls, polygonal or spline func-
tions can be applied. For given initial conditions, Eq. (6) can be
integrated with the estimated controls and the performance
criterion and the boundary conditions can be evaluated, This
results in a nonlinear programming problem which may be
stated as to minimize the performance criterion:

L=h-hipt ) {22)

subject to the boundary conditions:

bip, tqc) =) (23)
Results

In the first part, energy-neutral optimal trajectories are con-
sidered. For this type of trajectory illustrated in Figure 5, the
potential and kinetic energy at the end of a cycle is the same as
at its beginning, including the direction of the speed vector.
Thus, the energy extracted from moving air is just sufficient for
continuously maintaining dynamic soaring. The geometric

FIGURE 5. ENERGY-NEUTRAL OPTIMAL TRAJECTORY FOR
DYNAMIC SOARING (tm:EQ.S s, E=45, m/5=50 kg/m?, dV /
dh=0.02691)
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FIGURE6. STATE VARIABLES OF AN OFTIMAL TRAJECTORY
FOR ENERGY-NEUTRAL DYNAMIC SOARING.
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FIGURE 7. CONTROL VARIABLES OF AN OPTIMAL TRAJEC-
TORY FOR ENERGY-NEUTRAL DYNAMIC SOARING
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propertiesof anoptimai trajectory show a positionchange ofthe
airplane, not only crosswise to the wind, but alsoinits direction.

In Figure 6, the history of state variables is shown. This figure
also gives an illustration of the relation between airspeed V and
theabsolutespeed VK.'I'hccumml5hisi'oryispresentcdin Figure
7. It may be seen that the lifting capability in terms of lift
coefficient changes is significantly used. Similarly, large roll
angle changes are necessary.

An evaluation of encrgy-neutral optimal trajectories is pre-
sented in Figure 8. This figure shows the minimum wind
gradient which is necessary for maintaining dynamic soaring
without gaining or losing energy. The minimum wind gradient
is plotted as a function of maximum lift-to-drag ratio
E=(C/C) . Theresults show that maximum lift-to-drag ratio
is a key factor as regard the minimum wind gradient necessary.
In addition, wing loading m/S exerts a significant influence. In
the results presented in Figure 8, the effect of a load factor
constraint is also taken into account. The load factor limit
considered yields an increase of the wind gradient necessary.

In addition, results for some existing airplanes (the drag
polars of which are based on flight test data) are also shown in
Figure8. They are in agreement with the results concerning the
quadratic drag polar (Eq. (8)) which is used for systematically
investigating the effect of maximum lift-to-drag ratio.

The energy state of the sailplane shows significant changes
during the course of an optimal trajectory. This is illustrated in
Figure 9. In the first part of the cycle shown, a decrease in the
energy state exists. The remaining part shows anincreasein the
energy state such that the energy extracted from the moving air
is greater than the energy detracted by drag work. It may be of

(dVw/ dh) gy
(1/s)

FIGURE 9. CHANGE OF THE ENERGY STATE OF THE AIR-
PLANE DURING AN OPTIMAL TRAJECTORY

interest to note that the most significant energy state increase
occurs in the upper part of the trajectory. Additional insight is
provided by Figure 10, which shows the rate of change of
energy. In this figure, the contribution yiclding an energy state
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FIGURE 8. MINIMUM SHEAR WIND GRADIENT NECESSARY FOR ENERGY-NEUTRAL DYNAMIC SOARING

-SAILPLANE 1 SIMILAR TO TWIN ASTIR
-SAILPLANE 2 SIMILAR TO LS 4
-SAILPLANE 3 SIMILAR TO ASW 22

{M/S = 33.0 KG/MY), CLUB CLASS
(M/S =32.2 KG/M?), STANDARD CLASS
(M/s = 32.5 KG/M?), OPEN CLASS

DOTTED LINES: LIMITATIONS V= 90 M/5 AND Niag=25
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increase due to energy extraction from moving air is compared
iwth the contribution detracting energy from the sailplane due
to drag work.
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FIGURE 10. RATE OF ENERGY CHANGE {e: LIFT CONTRIBU-
TION, e,: DRAG CONTRIBUTION)

In the remaining part, results are presented for optimal tra-
jectories which show a gain in the energy state after completing
acycle. According to Figure 11, significant gainscanbe achieved
when the wind gradient is greater than the minimum value
considered. This figurealso shows the peak values of load factor
and airspeed which reach rather high levels.

Therefore, it is necessary to account for limits in airspeed and
load factor. The effect of such constraints is illustrated in Figure
12, which shows thealtitude gain Ah asa function of maximum
load factor admissible n___ with airspeed limited to V.
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FIGURE 11. ALTITUDE GAIN AND PEAK VALUES OF LOAD
FACTOR AND AIRSPEEDFOR AN OPTIMAL TRAJECTORY (E=45,
miS =50 kg/m?)
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FIGURE 12. ALTITUDE GAIN FOR AN OPTIMAL TRAJECTORY
WITH CONSTRAINTS FOR LOAD FACTOR AND AIRSPEED (E =
45, m/S = 50 kg/ntt, dV, jdh = 0.039 s)

Conclusions

Modern mathematical optimization procedures are applied
for dynamic soaring flight. Thus, flight maneuvers can be de-
termined where the energy extraction from non-unitorm hori-
zontal wind (wind shear) and its transfer to the sailplane is
maximized.

The minimum wind gradient necessary for continuously
maintaining dynamic soaring flight is shown. Maximum lift-to-
drag ratio and wing load are key factors as regards minimum
wind gradient level. In addition, it is shown what energy gain
can be achieved when the wind gradient exceeds the minimum
level considered.
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