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L ABSTRACT

With the introduction of natural laminar flow airfoils

and more precise manufacturing methods, the modern
sailplane has developed into a sophisticated aircraft.
These advances have also led to the creation of more
complex speed polars. Typical speed to fly models
employing second degree polynomials are imprecise
and sacrifices must be made, typically at the high speed
end of the polar.
This paper will analyze and compare speed to fly mod-
els built upon second, third, fourth, and fifth degree
polynomial polars. It will be shown that the lesser
polynomial models are very inefficient, as much as
under-estimating by 4 knots as the speed passes 100
knots, but are still good approximations, within 1 knot,
in the lower speed end of the polar.

ILNOMENCLATURE
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Er Expected rate of climb in the next thermal
P () Speed polar function

Sg Glider sink rate

Si Interthermal sink rate

Vg Glider speed

HI.INTRODUCTION

Since the advent of relatively efficient gliders with
glide ratios better than 20/1, it has been the goal of
aviators and theorists across the world to develop abest
speed to fly theory that will enable the sailplane pilot to
achieve the maximum cruise speed in cross country
flight. By taking into account the rising air masses
(thermals), and assuming a constant vertical air mass
sink rate between thermals, a relatively simple and
efficient model was created. The man largely respon-
sible for this model, Dr. Paul MacCready, also devised
a speed ring which would allow a practical application
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of his theory. The model assumed that all height gains
would be done in a thermal and the pilot would only
make distance gains by flying between them. This type
of assumptionisconsidered classical speed to fly theory.

With the advent of more complex manufacturing
methods and more precise control of laminar flow over
the wing, the speed polar has developed into a very
complex graph. Much of the MacCready models in use
today are based on speed polars described by a second
degree polynomial. With more complex polars, ahigher
degree polynomial is needed to define more accurately
the best speed to fly. Itis possible to use polars described
by third, fourth, or even fifth degree polynomials to
determine the best speed to fly values.

IV. SIMPLIFIED EXPLANATION OF
MACCREADY SPEED TO FLY MODEL

In soaring, their exists a paradox, to travel forward,
you have to sink downwards, and to gain altitude, you
have to circle in a stationary spot. Realizing this prob-
lem, a theory was developed to extract the maximum
average speed between thermals based on the rate of

climb expected in the next thermal.
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FIGURE 1.

Figure 1 displays a glider altitude that is traveling
forwards towards the thermal marked by the cloud. In
between the glider and the thermal, isan airmass that is
sinking at a constant rate. This sink rate, Si, is the
interthermal sink rate. Upon reaching the thermal, the
glider climbs to the beginning altitude at a rate of Er.
Based on this description of flight, a model was devel-
oped thatwould extract the minimum time necessary to
fly from the top of one thermal and then up to the top of
the next thermal, thereby creating the highest average
speed.

Figure 2 describes this model graphically. The best
speed to fly can be found by drawing a tangent, from a
pointon the Sg axisrepresenting the expected climbrate
plus the interthermal sink rate, to the glider's speed
polar.

For every glider there is a corresponding polar, The
polar seen in figure 2 relates the horizontal velocity,
speed, of the glider with the vertical velocity, sink.
Mathematically, a polar can be simply represcented by a
polynomial equation where Vg, the speed of the glider
is plotted on the x axis and Sg, the sink rate is plotted on
the y axis as a function of Vg. Today, speed polars are
getting more complex and more difficult to describe
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with asecond degree polynomial, but for the ease of this
explanation we will use a second degree polynomial.
The polar can be easily described with the following
equation:

P (Vg)=Sg=aVg +bVg +c W

where a,b,c are arbitrary constants. Using the graphical
deseription of the MacCready model it is possible to
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FIGURE 2.

solve for the y intercept values if we know the function
and its derivative.

GivenP(Vg)anditsderivative P(Vg) and theequation
of a line, y=mx+b, we can substitute in point slope form
and solve for the y intercept, “b.”

(y-P(Vg)) =P (Vg) (x-Vg) (2.1)
y =P (Vg)x-P’ (Vg)Vg + P(Vg) (2.2)
b=P(Vg)-P (Vg)Vg (2.3)

Clearly as the function to describe the speed polar
increases in polynomial degree, a more accurate rela-
tionship between “b” and Vg will be obtained. The next
step then is to use values obtained from a graphics
program that fits varying degree polynomials toa graph
and then analyze the differences between the values of
“b” obtained from the relationship in equation 2.3.

V. EXPLANATION OF
EXPERIMENTALTECHNIQUES

The sailplanes chosen for this analysis are representa-
tive of the current generation sailplanes in both the 15-
meter class, and the standard class. Chosen to represent
the 15-meter classis the ASW-20C, and representing the
standard class is the ASW-24. Using the graphing pro-
gram “Cricket Graph,” it is possible to obtain polyno-
mial equations describing the curvature of data. Using
speed polar data obtained from flight tests and manu-
facturers measured data, four equations describing each
speed polar are obtained. See Appendix A. The con-
stants from these equations are then entered onto a
spreadsheetand the calculated values of “b” are created
using the formula:

b=P(Vg)-P'(Vg)Vg (23)
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APPENDIX A: Speed polars and polynomial equations
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These values are then calculated using all four of the equations to describe the polar. These data are then graphed,

again using cricket graph. See Appendix B.

APPENDIX B: ASW 20C Speed to Fly
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APPENDIX B: ASW 24 Speed to Fly
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| APPENDIX C: ASW 20C Errors
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APPENDIX C: ASW 24 Errors
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VI. COMPARISON OF SECOND, THIRD,
FOURTH, AND FIFTH DEGREE
POLYNOMIAL SPEED POLARS

To compare the various speed polars, we will assume
that the calculated values of “b,” using the fifth degree
polynomial, are correct. The values of the other speed
polars will be subtracted from the values of the fifth
degree and then graphed against one another. It should
be noted that positive values reflect a condition where
the pilot could be flying faster, and negative values
reflect the condition where the pilotis flying too fastand
thereby loosing too much altitude. Also note that we
need only concern ourselves with the differences that
occur after positive values of “b.” Negative values of “b”
indicated an expected negative lift which is illogical.

Appendix C shows the results of these differences. In
the “ASW-20C Errors” graph it is observed that the
errors are mostly within the 1 knot difference. It also
shows how more accurately the values of “b” are ob-
tained when the degree of polynomial is increased. In
the “ASW-24 Errors” graphitis observed that the values
are close up to a speed of 100 knots, but that they fall
sharply off afterwards. Also note that the Fourth Degree
polynomial does very well until 100 knots where it starts
to rise sharply upwards. Since negative values indicate
traveling too fast, and thereby loosing much altitude,
significant decreases in cruising speed will be obtained.
Especially if one chooses to fly an ASW-24 and is using
second degree polynomials to model speed to fly theory.
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VIIL. CONCLUSION

It is interesting to note that a second degree polyno-
mial does quite well in describing the ASW-20C, but is
much worse when describing the ASW-24. Using higher
degree polynomial speed polars do more accurately
describe the best speed to fly and are not too difficult to
use. Although pilots may over estimate or under esti-
mate the current conditions and cause a greater error
than the polar, competition pilots are not as likely to
make gross errors. In competition where the difference
between first and tenth place can be only a few minutes,
it is essential that the pilots have the most accurate
information to enable them to fly as fast as possible.
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