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Introduction

The application of GFRP and CFRP for primary struc-
tures of sailplanes widely opens the possibilities for
improving the aerodynamic and structural design and
configuration. Specific stiffness and strength values of
GFRPand CFRPis dramatically improved compared to
the traditional materials [1], Figure 1.

This also allowed creation of new engineering in
design that was not possible before. The new materials
make possible flight performance improvements by
using bigger wing spans and thinnerairfoils, realization
of variable geometry becomes easier, also increase wa-
ter ballast and, what is

ment, production, certification and operations; avail-
ability of special facilities; experience; and confidence,
Figure 2. To fulfill this structural optimization algo-
rithm with the specified design constraints, such as
material strength, buckling, frequencies, displacement
and flutter constraints were utilized. Since the imposed
constraints are nonlinear and the structural model is
generally indeterminate, the algorithms are always it-
erativeinnature. Thealgorithm foroptimization consist
of two main steps. The first step is to analyze the struc-
ture in order to find its response to the applied loads,
and the second step is to redistribute the material. When

the structure is dis-

very important, an in-

cretized into a number of

crease of torsional rigid- 125 == [
ity and reduced flutter
problems. Today,awing

Gr/Ep- KC 20 oz 30va

— elements, analysis is per-
formed by finite element
methods. The redistribu-

span over 20 m with a
thin airfoil is quite com-
mon. The designer’s

100 |— ArEp VL .
I/Ep [s] //)r
N

-3
o

tion of the material is
] achieved by using a re-
currence relation of a

most importantaim is to
create an Optlll’l"l‘l_lﬂ'l de-

o
=]

/¥

search formula,with the

GrEp-KC 30 objective that after each

sign Le. to achieve opti-
munistrength with mini-
mum possible weight of +BEp

Specific Strongth 103 [m]

GLERCE]

L]
v

the sailplane structure. s 1j
Some of the major fac- Gk

=l |

[ ] iteration the weightof the
structure is reduced and
all constraints are satis-

fied. Recursion formulas

for resizing the design
- variablesbased on Kuhn-

tors which must be con- 0
sidered inthe conceptual 0 5000 10000
design stage are struc- Specific Modulus 10 [m]
tural weight; costs asso-
ciated with develop-

FIGURE 1. Specific strength vs specific modulus.

15 000 20000 25000 Tucker necessary condi-
tion for each type con-
straints incorporated a
design algorithm which

VOLUME XVIiI, NO. 3

85




L SAILPLANE COMCEPTS }'

Value ol waigh

_PROGRAM SPECIFICATIONS [7

Prricemance

Muson raguirements

Iype of ¢ 2]

i L an

Desegn critena salaction
fitohal slructural oplmization
Weight fzasl trade-ofly

Configuration Telection

PRELIMINARY DESIGN STAGE

- SN

1

COMPONENT DESIGN COMIMTIONS

Static lanels

Fatiqus spactrum refinnment

Steengih and asroalasue o nproved finice element madel

LNt Optimal laminate des gn af the

ura fanvirsnmant e laral v

w talerance Steuctural
cequnremants ¥ e Lest of desgn

warification specimens

Spaciheatong
Cerificaron reqrereits

FIGURE 2. Simplified composite structure design process.
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In Equation (2), kj is the stiffness matrix of the i-th
element, a is the compatibility matrix of the i-th
element, and a; is the transponse of a;, The weight of
the sailplane structure W(X;) is given by

Ay
W{X) =Y mXd, 3)
=1
where pj, is the mass density and A is the volume of
the element. The design variable is X; and /; is a
constant that depends on the geometry of the ele-
ment. The generalized constraints g;(X;) imposed on
the structure can be written as

g, (X = AL Sy 3 = Ly (4)

exploits the concept of a most critical constraint. The
main advantage of the algorithm is that the computa-
tional efforts of resizing does not increase very sharply
with increasing of the design variables. The algorithm
was settled in its final form after different problems
were solved and the results compared with those of
other researchs.
Definition of the Problem and the Optimality Crite-
rion

In the last two decades algorithms were developed in
conjuction with finite element analysis (FEA) based on
the nonlinear mathematical programming methods (M1?)
and the optimality method. In this paper we will prima-
rily use algorithms based on the optimality criterion
method [2,3]. Methods for the optimum design of struc-
tures have progressed rapidly in recent years. In par-
ticular, optimality criteriaapproaches have significantly
advanced the state-of-the-art of the minimum weight
design of structures involving large finite element as-
semblies, and for the optimization of large practical
structures with static, dynamic and stability require-
ments [4-6]. The potential strength of the method is that
the number of iterations needed to convergence to an
optimum is virtually independent of the number of
structural members. This property makes this method
well suited for the optimum sizing of large practical
structures. The optimality criterion for the generalized
constraints is derived here first, then is specialized for
the displacement constraint problem. Consider a struc-
ture which is discretized into N finite elements. For this
structure, the load displacement relation is written as:

Ku=F )
where F is the applied load vector, u is the displacement

vector, and Kis the total stiffness matrix of the structure
given by:
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where Cj(X;) is the actual value of the j-th constraint
and Cjis its limiting value of desired value. The tolal
number of constraints on the structure is p. The objective
is to minimize W(Xj) subject to the constraints given in
Equation(4). Using Equations (3) and (4), the Langrange
function L{X;, &; ) can be written as

A »
L{X, A =3 pliXi+ ) Mg X)) (5)
=1 i=1
where 4jare the Lagrangian parameters. The necessary
conditions for the local constrained optimum are ob-
tained by differentiating Equation (5) with respect to the
design variables X;. This gives

-
L8
. X fX =0 '_:1,...,:'\'
pili + J>f;. ax it i (6)
where Aj > 0 and ?&J,‘g;’ = (. Equation (6) is the optimality
criterion. In the case of the displacement constraint
problem, Equation (4) can be written as

o
R o R 7)

|

g,(:{,) = L

=1

where E;}' is the flexibility coefficient given by
E; =uTkslX, (8)

where u; and ¢/; are the displacement vectors associated
with the i-th element due to applied load factor and the
virtual load vector S corresponding to the j-th con-
straint. For the bar structure

EIJ = f‘f [j'!JL/Ef {9)

where Fj is the force in the i-th bar due to applied load,
LV; is the force in the i-th bar due to the virtual lead
vector 5/ and F; is the elastic modulus of the r-th bar.

The coefficients Ejj are constant for statically determi-
nate structures, and for determinate structures they
depend on the design variables X;. However, they may
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beassumed tobeconstant forsmall changes in X;. Using
Equations (6) and (7), the optimality condition can be
wrilten as

]—2"*5; R T (10)

where
A 20 (11)
Ag; =0 (12)

The optimum structure has to satisfy Equations (10) to
{12) and the constraint, Equation (7). These are the
Kuhn-Tucker conditions or optimality conditions. In
Equation (10) the Lagrange multipliers Aj are positive
for active inequality constraints and zero for nonactive
constraints. These are (N +p) nonlinear equations corre-
sponding to the N designvariables Xjand the pLagrange
multipliers &;

In the OC methods the criterion is derived for the
dominant type of constraint imposed on the structure,
and that criterion is used to develop the algorithm. In
the case of moststructuresitislikely thatonecan predict
the type of constraint which will be most active at the
optimumand use the algorithm based on the constraint.
Thenone cantreatall other constraints as being passive.
In this paper a design algorithm exploits concept of a
single most critical constraint.

System Stability Constraints

The linear stability of structure is defined by the

eigenvalue problem defined as

(K — CKa)g=0 (13)

whereK is the linear total stiffness matrix, K is the
geometric stiffness matrix and ¢ is the eigenvector asso-
ciated with the eigenvalue . The critical eigenvalue is
the firsteigenvalue (7, ifthe eigenvalues arearranged in
ascending order. The linearbuckling load of structure is
given as

F.=M\F (14)

Aranging Equation(14) such that, multiplying thisequa-
tion by g gives

‘I_E‘I{Q,f - qu';'" hfi'-'q)‘ =0 (15)
Thus, the eigenvalue Cf can be ertten as
i q 'K q,
L= P (16)
q.." K (i,

The constraint equation for the linear static buckling of
astructure can be written in reference (4) by substitutin

g,=¢—-¢ >0 (17)
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where {; is the lowest critical load factor (the lowest
eigcnva{ue) and {; is given by Equation (16). The
Lagrange function of the above problem is

EX ) =3 pliXi =3 (6~ D) (18)

jm |

Applying Kuhn-Tucker conditions we get

ZA,M - (19)

The gradient of the eigenvalue {; can be obtained by
differentiating Equation (13) with respect to the design
variable X; and multiplying both sides by qT

ok, (1 0¢ K

[ﬁ_(a){f{'_c’ S'X,) Hi =8 (20)

The second term between brackets must be equal zero,
therefore it gives us

a¢; 1 _q Ty

oxX, — X1 Kod; 21

where k; is the stiffness matrix of the i-th element and g;
is the component of the buckling mode associated wit{
i-th element. If the buckling modes an, normalized so
that denominator of Equation (21), (q J,ch) =W, is
equal unity then Equations (16) and (21) can be written
as

¢ =g K, 22)
and
¢ Ao sn
B, = X,k (23)
where
=t (24)
;s \/ﬁ}'ql
A G g 25
O g L L
Tizs %P.h oX, f=y RAY }
[et
" = Xr'é;’,‘kr'é.]f (26)

Equations (22) and (23) can also be written in terms of
Equation (26) as

Y
_ i
=2 % @)
8¢, _ Ky
X, X! 28

Substitute from Equations (28) into Equation (25) we get
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= J>_—'A i X i {29)
Equation (29) shows the optimality criteria for the sys-
tem stability constraint. If we multiply Equation (29)
both sides by XA and take the f-th root we get the
expression to form the recursion relation for modifying
the design variables

»

xpt=xr(Ca2) (30)

=1

where (v + 1) and v are the iterations numbers and 1/ is
the step size parameters which actuates on the conver-
gence.

variables;

(2) temporary deletion of unimportant constraints;
and

(3) construction of high-quality explicit approxima-
tions for retained constraint functions.

These explicit approximations of the constrains re-
tained are used in place of the finite element analysis. It
is worth pointing out that for a statically determinate
structure, the behavioral constraints are linear with
respect to the reciprocal of the design variables. Itisthen
reasonable to assume that they remain nearly linear in
the case of redundant structures.

For design of large structures, efficient design sensi-
tivity analysis is particularly critical. For such struc-

tures, the 5ubstructuril'1g concept

FIGURE 3. Finite element model of fuselage sailplane structure.

can be effectively integrated into
structural analysis and optimal de-
signprocedures. Eachsubstructure
may now be considered asa“hyper
finite element” for the entire struc-
ture, whose nodal points are the
boundary nodes for the substruc-
ture.
Numerical Examples

The feasibility of the optimality
criterion approach to layered com-
posites is established by initially
focused attention on rear fuselage
sailplane structures, Local buckling
rather thansystembuckling is usu-
ally the main cause of elastic insta-
bility in fuselage structures under
representative load cases. The skin
of fubel'lge structures that carry

Reduction of the Problem Size

The main obstacles to the development of efficient
structural optimization capabilities, based on the use of
MP algorithms, were associated with the fact that the
gencral formulation, defined by Equations (2) and (3),
involved:

(1) large numbers of design variables

(2) large numbers of inequality constraints, and

(3) many inequality constraints that are
computationally burdensome implicit functions of
design variables.

The computational cost of the minimization problem
described by Equation (2) and (3) becomes prohibitive
when large atructureq are considered. Reduction of the
problem of dimensionality hasbeenachieved by replac-
ing the basic problem statement, (1) and (2), with a
sequence of relatively small, explicit problems that pre-
serve the essential features of the original design optimi-
zation problem. This can be achieved through the coor-
dinated use of approximation concepts which include:

(1) reduction of the number of independent design
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compressive forces due to bending
of the fuselage are most vulnerable
to local buckling. In our case the rear fuselage is an
unstiffened layer composite structure. IHence, system
stability is the main cause of elastic instability.

Inthisexample, minimumweight design of the repre-
sentative part of rear composite fuselage is determined
subject to stability constraint and the Hill-Tsai failure
criterion:

&)+ G-+ ()]s o

where o1, 62 and 112 are the components of the stress
vector o; F1, Fp and F17 are the stresses of failure in
uniaxial tension, compression and shear, respectively
and Ty is Tsai’s number.

E11 = E2p =21 GPa
G12=10GPa
vz =0.25

F11=Fpp =185 MPa
Flp=74 MPa
p=1.63 % 103 KG/m3
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FIGURE 4. The optimization weight history for fuselage
substructure,

Figure 3 shows finite element meshes for a fuselage
structure. The fuselage is divided into a number of
smallersubstructures. Hereis considered only one fuse-
lage substructure as indicated at 1. This substructure is
L =400 mm length. Stacking sequence for optimization
was [0° /% 45°]. Initial thickness of the fuselage skin was
2.25 mm. After optimization, final fuselage skin thick-
ness is 1.65. The weight history for this substructure vs.
number of iterations is shown in Figure 4, which shows
that minimum weight is obtained after six iterations
only. As expected in this case the stability constraints
were critical. In thisanalysis the fuselage was under two
load cases; symmetrical and unsymmetrical, respec-
tively.
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Conclusions

Advanced composite material hasattraclive potential
for reducing the structural mass of modern sailplane
components. To achieve this potential, minimum mass
design mustbe provided thatsimultaneously satisfies a
multitude of local and global sailplane design con-
straints, suchasmaterial strength, minimum-gage, buck-
ling, displacement and flutter constraints.

An integrated structural design procedure was ap-
plied to produce the light weight KORUNDUM sail-
plane structure. Compared to a conventional design, a
mass saving of approximately 6% of composite sail-
plane mass is estimated.

The present paper extends an efficient optimality
criterion method, and combines system stability con-
straints with earlier developed [6,7] material strength,
displacement, constraints, etc. -
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