
Editor’s comment:  Roland Stuff died in March 2009 before this manuscript could go 
through the review process.  Consequently, the paper was read for accuracy by an Associ-
ate Editor and is published to honor Stuff’s enthusiastic presentation in Lüsse. 

Non-Viscous Vortex Generation due to Buoyancy, an Example of  
Application of Compulsive Forces in Fluids 

 
Roland Stuff 

Retired from Deutsches Zentrum für Luft- und Raumfahrt 
Tegeler Weg 39A, 37085 Göttingen, Germany 

 
Presented at the XXIX OSTIV Congress, Lüsse, Germany, 6 - 13 August 2008 

 
Abstract 

 In the application of the Euler momentum equation to the flow of a two-dimensional incompressible vortex 
pair, the density of the accompanying fluid of which is greater than the one of the ambient fluid, the generation 
of a pressure discontinuity, i. e. the generation of a shock, at the density discontinuity is predicted.  However, 
even weak shock waves are propagating at the infinite speed of sound in an ideal incompressible fluid, which is 
a good approximation for low subsonic flows of air.  In order to avoid the pressure discontinuity, the condition 
of pressure continuity is introduced as a compulsive condition.  If this condition is not fulfilled, which up to 
now is the case in relevant papers, the compulsive condition of pressure continuity has to be introduced.  This 
results in a supplementary compulsive force, which in the present case is non-conservative, and consequently 
leads to the generation of circulation in the barotropic, non-viscous fluid accompanying the vortex pair, for 
which Bjerknes theorem of baroclinic generation of circulation does not hold.  It may be applied to the velocity 
jump across the density discontinuity, but without the contribution from the compulsive forces does not satisfy 
the condition of pressure continuity and the cinematic condition at the stagnation points.  Thus, another excep-
tion to Kelvin’s theorem of the constancy of circulation is found.  The theory presented is applied to the inter-
ference between an aircraft wake and atmospheric instability.  In the case of a latent atmospheric instability the 
aircraft wake may trigger off instability. 

 
Nomenclature 

g  gravity acceleration 
p  static pressure, (pa) 
p0        static pressure due to stratification, Eq. (2)   
R         radius of streamline curvature 
±R0     distance of vortex canters from the vertical axis 
s      distance measured along streamline from lower stagna-

tion point 
v         velocity of accompanying flow in non-inertial reference 

frame 
vA        velocity of ambient flow in non-inertial reference frame 
W        velocity of the non-inertial reference frame 
z,y,t    rectangular coordinates and time in non-inertial refer-

ence frame 
Z,Y,T rectangular coordinates and time in inertial reference 

frame 
α.  factor of acceleration of the apparent mass 
αA        factor of apparent mass at separating streamline 
Γ          circulation 
γ         intensity of vortex sheet, Eq. (26) 
φ          pressure term, Eq. (20) 
ρ  density of accompanying fluid 
ρA  density of ambient fluid 
 
Subscripts 
A  ambient flow 
b         bottom of ambient fluid  

 
i          inside accompanying fluid 
s  vortex sheet 

 
Introduction 

Non-viscous ideal flows generally are described by the 
Euler momentum equations.  The forces on the right hand side 
of those equations are conservative, if the flow is barotropic, 
meaning, that density and pressure gradients are parallel.  Con-
servative means, that the sum of the kinetic and potential en-
ergy, i. e. the total pressure of a fluid element remains un-
changed.  Consequently the curl over these forces is zero as 
has been shown by Lord Kelvin1 in his theorem of the con-
stancy of circulation in non-viscous flows.  For baroclinic 
flows, in which pressure and density gradients are not parallel, 
Bjerknes2 found his theorem of the generation of circulation, a 
first exception to Lord Kelvin’s theorem.  
 A non-conservative force is defined such3 that the work 
done by this force per unit time equals the rate of change of the 
sum of its kinetic and potential energy.  An example are fric-
tional forces, which are dissipative and, thus, subtracting ki-
netic and, or, potential energy from the fluid element.  In    
addition, forces imparting energy to the element of fluid, for 
example, by work of displacement also are non-conservative. 
Those are dealt with in the present paper as compulsive forces, 
which are well known for solid bodies, but much less so in 
fluid mechanics.  No example of application in fluid mechan-
ics could be found.  The Gaussian principle of least compul-
sion is mentioned briefly4.  The condition of pressure continu-
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ity must be introduced as a compulsive condition in incom-
pressible flows, if this condition is not already fulfilled by de-
scribing it using the Euler momentum equation5. This is quite 
obvious, since in incompressible flows even weak pressure 
disturbances propagate at the infinite speed of sound.  Shock 
waves cannot exist; the pressure is the same in all directions, 
i.e. isotropic.  Compulsive forces are determined from the re-
sulting accelerations such, that pressure continuity is achieved. 
They are not furnished a priori, are among the unknowns of the 
problem, reflect the influence of the entire flow on the local 
element of fluid and must be obtained from the solution we 
seek.  In the present case, compulsive forces are time depend-
ent.  The curl over these forces is non-zero leading to another 
theorem of the generation of circulation in barotropic flows, a 
second exception to Lord Kelvin’s theorem1.   

In order to reduce the problem to the relevant parameters, a 
two-dimensional, incompressible, non-viscous, buoyant vortex 
pair is chosen, the accompanying fluid of which is heavier than 
the ambient fluid.  The description of the flow is completely 
analytical.  Due to the incompressibility assumption, there only 
is a density discontinuity at the streamline separating the ac-
companying from the ambient fluid.  The Bjerknes theorem is 
applied to the density discontinuity, but leads to a pressure 
discontinuity at the separating streamline.  This way, the same 
problem already has been treated6..  Based on the paper6, a 
numerical code for the NASA aircraft wake programme was 
developed7, 8.  In the present paper, the pressure discontinuity 
is avoided by the introduction of compulsive forces.  The cir-
culation generated barotropically represents the major fraction 
of the total circulation.  

In the following section, the ambient flow is described us-
ing the Euler momentum equations.  Adaptation of the accom-
panying fluid to the increasing total pressure by means of 
compulsive forces is discussed in the next section.  The inevi-
tability of pressure discontinuity by being restricted to the 
Bjerknes theorem is shown in the subsequent section.  For the 
flow of the accompanying fluid in the non-inertial reference 
frame compulsive forces are introduced, and, since they are 
non-conservative, a theorem of the generation of circulation in 
non-viscous, barotropic flows is derived.  The theory is applied 
to an aircraft’s vortex wake triggering off an atmospheric in-
stability. 
 

Ambient flow, Euler equation 
  A non-viscous, incompressible vortex pair moves down-
ward at a constant acceleration, since the fluid containing the 
pair has a higher density, ρ, than the one, ρA, of the ambient 
fluid.  The non-inertial coordinate system, y, z, and t, is at-
tached to its origin at the centre of the vortex pair and moves 
downward with it at the velocity, W; see also Fig, 1.  The lat-
eral distances of the two vortices from the vertical axis are 
±R0.  The origin of the inertial coordinate system, Y, Z, and T, 
is attached to the bottom of the ambient fluid.  Z0 is the altitude 
of the vortex pair at some initial time. The relationship be-
tween the two systems is given by, 

 

∫Wdt− = zZZ 0 + ;    Y = y;    T =t, 

∫−−= WdTZZz 0 ;    y = Y;  t = T.                      (1)                        

 
The static pressure, p0, decreases with altitude, 
 
    p0 = pb - ρAgZ,                                                             (2) 
 
where pb is the static pressure at the bottom, i. e. the ground, 
and g the gravity acceleration.  The Euler momentum equation 
of the ambient flow reads in the non-inertial reference frame,  
 

     
dt

dWgp
dt

dv
AA

A
A ρρρ −−−∇= ,                  (3) 

 
where vA is the velocity as seen from the non-inertial reference 
frame.  The above equation is rewritten by means of Eq. (2), 
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The streamline component of Eq. (4) is, 
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where s is the distance covered from the lower stagnation 

point, see Fig. 2, and  is the unit vector in the streamline 
normal direction.  The streamline normal component of Eq. (4) 
reads, 
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where R is the radius of streamline curvature and the unit 
vector in the streamline direction. 

Although the flow is unsteady, path lines and streamlines 
are identical in the non-inertial reference frame and the same 
as those in the corresponding steady flow; see also the refer-
enced textbooks9, 10.  The velocity potential and stream func-
tion are given by the Cauchy-Riemann differential equations of 
irrotationality and continuity, 
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Only the velocity, W, of the vortex pair as a whole is a func-
tion of time.  The angles  and  are given by, 1Θ 2Θ
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whereas the distances of the element under consideration from 
the vortex centres are given by, 
 
        , .     (8)                    ( ) 22

01 zRyr +−= ( ) 22
02 zRyr ++=

 
Evaluating the velocity potential, Eq. (7), the velocity along 
the separating streamline is found to be, 
 

      .                               (9) ( )
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where α is the factor of the apparent mass.  The equation says, 
that the velocity at the dividing streamline is given by the pro-
jection of the maximum velocity, (1+α) W on to the stream-
line.  This is called Munk’s rule11, which applies to the accel-
eration as well, 
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Eqs. (9) and (10) can be applied to any continuously shaped 
two dimensional body, which in the present case happens to 
have the shape of the separating streamline of a two dimen-
sional vortex pair.  Integration of Eq. (5) over the streamline 
yields the Bernoulli equation extended by the unsteady term, 
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Already at this stage it can be seen, that the sum of potential 
and kinetic energy is a function of time, since the stagnation 
pressure increases.  The factor of the apparent mass can be 
given as a function of the angles, and the vertical coordinate, 
 

                 
z

R 2192 Θ −Θ
=α .                                  (12) 

 
With this, Eqs. (9) and (10) hold throughout the ambient fluid. 
Evaluating Eq. (12) for the lower stagnation point, the factor of 
the apparent mass is found to be, 
 

                
33

2πα =A .                                              (13) 

 
This is the ratio of the lateral axis of the vortex pair divided by 
its longitudinal axis. 

However, one has to have in mind that the compulsive 
forces are obtained from the solution we seek.  Therefore, the 
above solution for the ambient flow, Eq. (7), has to be checked 
again after the compulsive forces and their effects are known. 
 

Accompanying flow, Euler momentum equation, 
compulsive work of displacement 

The Euler momentum equation of the accompanying flow 
in the non-inertial reference frame reads, 
 

       
dt

dWgp
dt
dv ρρρ −−−∇= ,                         (14) 

 
where ρ  is the density of the accompanying fluid, v the ve-
locity as seen from the non-inertial reference frame.  With Eq. 
(2) the above one is rewritten to give, 
 

( ) ( )  
dt

dWgpp
dt
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A ρρρρ −−−−−∇= 0          (15) 

 
( )gAρ ρwhere − is the excess gravity force driving the ac-

celerated flow, since the accompanying fluid is heavier than 
the ambient fluid, ρ > Aρ .  In order to accelerate the apparent 

mass, a vertical pressure gradient z
dt

dW
AAρα , see also Fig. 

3, is superimposed on the pressure distribution of the quasi-
steady flow.  This term is added to the pressure term and sub-
tracted from the excess gravity force, giving instead of Eq. 
(15), 
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Comparison with Eq. (11) for the ambient flow shows that the 

time dependent term 2

2 WAρ  is missing in Eq. (16).  It 

represents the increasing total pressure of the ambient flow, 
and the accompanying fluid has to cope with it by providing 
this pressure increase through compulsive work of displace-
ment,  
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Therefore, the compulsive force of displacement 
dt

dW
Aρ  is 

added to the Euler momentum equation, 
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The time rate of change of the work of displacement is equal to 
the change of total pressure, 
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The terms z
dt

dW
AAρα  and ∫

s

sd
t
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 are not functions of 

time.  The compulsive force of displacement 
dt

dW
Aρ  is non-

conservative, since the sum of the potential and kinetic energy3 
increases.  In a piston cylinder device the work of compression 
of an incompressible fluid is zero.  However, the accompany-
ing fluid, whose excess gravity force drives the entire process, 
is not bounded by solid walls.  For convenience the pressure 
term in the above equation is abbreviated by, 
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Integrating Eq. (18) over the streamline yields the Bernoulli 
equation extended by the unsteady term, 
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Regarding the accompanying fluid as a whole, and taking into 
account that the pressure term ϕ  is balanced by the pressure 
of the ambient flow, see also Eq. (11), we have, 
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This equation also can be obtained from the conservation law 
of energy applied to the entire accompanying fluid, 
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From left to right the terms respectively represent the excess 
gravity potential, the stagnation pressure, the kinetic energy of 
the accompanying fluid and the kinetic energy of the apparent 
mass.  The streamline component of the momentum equation, 
Eq. (18), can be simplified by using Eq. (22), 
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This expression has to be compared with the momentum equa-
tion of the ambient flow, 
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vv A
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Assuming that initially the dynamic pressure is the same on 
both sides of the separating streamline, there is no force term 
available for the local acceleration of the accompanying flow. 
As a result, the above equations predict the forming of a pres-
sure jump across the separating streamline during the course of 
the motion, since according to Eq. (10) the dynamic pressure 
increases in the ambient flow, but does not do so in the accom-
panying fluid.  Saffman6, himself states that the condition of 
pressure continuity is not fulfilled, but regards this as a higher 
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order mistake.  However, even weak disturbances propagate at 
the infinite speed of sound in an incompressible fluid.  Also, 
applying Bjerknes’ theorem to the vortex sheet at the density 
discontinuity does not solve the discrepancy as shown below. 
 

Flow field induced by the vortex sheet,  
Bjerknes theorem 

The instantaneous local intensity of the vortex sheet is 
given by the velocity jump across the separating streamline, 

 
              vvA −=γ .                                             (26) 
 
The flow field induced by the vortex sheet is obtained from 
integrating over the entire vortex sheet.  One then obtains for 
the accompanying flow a downward velocity, 
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W
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vvW
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The velocity induced is the same throughout the accompanying 
fluid, because in the integration over the vortex sheet the vec-
tor from the fluid element to the vortex sheet turns by 360 de-
grees.  The subscript s denotes vortex sheet.  For the ambient 
flow we obtain a different velocity field, which also would be 
obtained from the two singularities of a vortex pair, because 
the vector from the fluid element to the vortex sheet does not 
turn by 360 degrees, instead oscillates and returns to its origi-
nal angle.  The details of the integration may be taken from a 
textbook12, which uses a complex potential.  The effect of the 
baroclinic circulation on the ambient flow may be alternatively 
obtained by an adjoint potential, 
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where  is taken from Eq. (7).  The theorem of Bjerknes2 
predicts a time rate of change of circulation due to the baro-
clinic torque.  Evaluating the acceleration over a closed path, 
see Fig. 4, the time rate of circulation will be found. 

AΦ

SΓ is the 
circulation around the end of the vortex sheet cut off at s.  The 
local intensity is given by, 
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and the time rate of change of γ  is, 
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The flow field obtained from the Bjerknes theorem cannot ful-
fil the condition of pressure continuity, as may become evident 
from the two flow fields described below. 

In the first case it is assumed that in the non-inertial refer-
ence frame there is no velocity in the accompanying fluid, v = 
0.  Then the vortex sheet induces at the two stagnation points 
the velocity W at which the vortex pair moves downward, see 
Eq. (27), but there is already a pressure jump across the sepa-
rating streamline in the initial flow. 

The second case has been partly explained in the preceding 
paragraph.  In addition to the formation of a shock, the flow 
does not fulfil the cinematic condition at the two stagnation 
points, see also Eq. (27).  The flow would be torn apart. 
 

Compulsive condition and compulsive forces in the 
accompanying fluid 

In order to avoid the formation of a shock, the time rate of 
change of pressure, which a fluid element of the accompanying 
flow undergoes during the course of the motion has to be in-
troduced as a compulsive condition.  The pressure imposed on 
a fluid element of the accompanying flow by the ambient flow 
during the course of the motion has a convective and a local 
time dependent term.  Using the abbreviation of Eq. (20), we 
have for the inertial system, 
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This can be rewritten for the non-inertial system by using Eq. 
(1), 
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δ
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It represents the total time rate of change of ϕ  as experienced 
by an element of fluid moving along a streamline at the veloc-
ity v on the inside of the separating streamline.  Division of the 
above equation by the velocity v yields the pressure change of 
the fluid element while passing a local position s, 
 

       
tvdt

d
v δ

ϕ δϕϕ 11
+∇=                                       (33) 

 
Thus, the convective term on the right is converted into the 
pressure gradient, which is well known from the Euler momen-
tum equation.  The latter, however, does not take into account 
the second local term.  In the ambient flow, the second local 
term is a consequence of the acceleration obtained from the 
Euler momentum equation.  But, in the accompanying flow it 
does not appear, see also Eqs. (24) and (25).  This is the reason 
the Euler momentum equation predicts the generation of a 
pressure jump across the separating streamline during the 
course of the motion.  For the same reason, the theory of non-
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homogeneous fluids is restricted to steady flows13, which 
greatly limits application.  By rearranging Eq. (19), it is found 
that, 
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Therefore, in order to maintain pressure continuity, the second 
term of the right hand side of Eq. (33) is added to the momen-
tum equation, Eq. (24), in the streamline direction as another 
compulsive force, 
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The first term on the right hand side is the compulsive force 
term missing in Eq. (24).  From Eqs. (34) and (35) it follows, 
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which implies that the dynamic pressure remains unchanged 
across the separating streamline, 
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With Eqs. (9), (10), (34) and (37), the velocity of the accom-
panying fluid is given by, 
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and the acceleration by, 
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The intensity of the density discontinuity now is, 
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The flow field induced by the vortex sheet on the accompany-
ing fluid then is, 
 

                                          (41) 

 
The baroclinic generation of circulation is with Eqs. (29) and 
(30), 
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since the baroclinic circulation only induces a fraction of the 
necessary velocity W at the stagnation points, see Eq. (41), 
another mechanism of vortex generation must make up for this 
deficit. 
 

Barotropic generation of circulation 
The time rate of change of circulation is: 
 

           
Γ

∫= .ds
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d i                                             (43) 

 
The subscript i indicates the inside of the accompanying fluid. 
Using the solution for the ambient flow as a boundary condi-
tion, one obtains for the velocity potential of the inside, 
 

A
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where Φ  is given by Eq. (7).  But it now applies to the entire 
accompanying flow.  Evaluating Eq. (43) along a closed 
streamline by using Eq. (39) for the acceleration, the baro-
tropic time rate of circulation finally is, 
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with 
dt

dW
 given from Eq. (22), 
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Eqs. (45) and (46) describe the barotropic generation of circu-
lation due to buoyancy in an ideal non-viscous fluid.  It should 
be noted that the density is constant throughout the accompa-
nying fluid, which renders the accompanying flow barotropic. 
At the two stagnation points the contribution of the barotropic 
circulation to the velocity is, 
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With the contribution from the baroclinic circulation, Eq. (41) 
superimposed on the flow field of the barotropic circulation, 
we have for the velocity at the stagnation points, 
 
               ,                                     (48) WWW iS =Δ+Δ
 
which satisfies the cinematic condition.  The solution for the 
ambient flow, Eq. (7), still holds, if the velocity W is replaced 
by the total circulation. 
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Since the square root ratio of the densities is near to 1, it is 
evident that the major part of the flow emanates from the cir-
culation of the barotropic generation. 
 

Vortex pair in a stratified atmosphere 
A vortex pair moving downward in a stratified atmosphere 

is isentropically compressed by the increasing static pressure. 
This causes a supplementary acceleration14.  The velocity W 
still may be obtained from Eq. (49).  But the distance R0 now 
is a function of time.  Both contributions to the acceleration, 
the one due to compressibility and the one due to buoyancy 
may be obtained from a straightforward time differentiation of 
Eq. (49), 
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The term, 
dt
dR0−

, represents the velocity of the vortex centres 

towards each other.  The acceleration due to buoyancy may be 
obtained from Eq. (46), if the velocity W is replaced by 

04 R
totΓ his way, Eq. (50) describes the combined ef-

fects of compressibility and buoyancy on the acceleration of 
the vortex pair. 
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 Vortex wake of a jumbo jet in an atmosphere with an 

adverse stratification 
A jumbo jet, B-747, is assumed to fly with a weight of 322 

tons at 170 knots and 5 km altitude, where the atmospheric 
state is given by a density of 75423.0=Aρ  kg/m3, and a 

pressure of .  The temperature lapse rate is 

slightly over-adiabatic, a = -0.0105° K/m.  Then the initial 
figures for the total circulation, vortex spacing and downward 
velocity respectively are 822m2/s, 47m, 2.8 m/s.  From the 
initial state at an altitude of 5 km and the temperature lapse 
rate the atmospheric state at sea level is found to be,  

hpap 5.5650 =

13962.1=Aρ kg/m3, , T = 313.7K. 
The accompanying air is isentropically compressed from the 
above mentioned initial density

hpap 2.10260 =

75423.0=ρ  kg/m3 to 
24928.1=ρ  kg/m3 at sea level.  Upon descent it is getting 

progressively heavier than the ambient atmosphere.  The in-
crease of the total circulation is found from the buoyancy equa-
tion, Eq. (46), to be 4.3784Γ =total  m2/s, a 4.6 fold increase 
of the initial circulation of 822m2/s, which has been created by 
the lift and lift distribution of the aircraft.  Out of the increase 
of circulation, 94.2% emanates from the barotropic generation, 
and 5.8% from the baroclinic generation at the vortex sheet.  
At sea level the descent speed of the vortex pair is W=15.9m/s, 
a 5.7 fold increase of the initial figure of 2.8m/s, out of which 
10.5m/s are due to buoyancy and 2.6m/s due to the isentropic 
compression upon descent.  Certainly, these increases cannot 
be regarded as small.  
 

Concluding remarks 
The non-viscous, incompressible flow of a two dimensional 

buoyant vortex pair is solved such that pressure continuity is 
maintained throughout the flow.  For the ambient flow an ana-
lytic potential and a stream function are found by using the 
Euler momentum equations.  The circulations of those func-
tions initially are undetermined as long as the compulsive 
forces acting upon the accompanying flow and the resulting 
accelerations are unknown, since compulsive forces are not 
furnished a priori and are part of the solution we seek.  The 
compulsive condition of pressure continuity across the separat-
ing streamline is obtained by a compulsive force doing work of 
displacement at the expense of the excess gravity potential of 
the heavier accompanying fluid.  This renders the compulsive 
force non-conservative.  In addition, accelerations of the flow 
as seen from the non-inertial reference frame are found.  

A theorem for the generation of circulation in non-viscous 
barotropic flows is obtained from the curl of the non-
conservative force, a second exception to Kelvin’s1 theorem of 
the constancy of circulation.  The first exception is the theorem 
of Bjerknes2 of the generation of circulation in baroclinic 
flows. 

The concept of compulsive forces may have far reaching 
consequences, since every flow phenomenon, a viscous as well 
as a non-viscous one, leaves a footprint in the pressure distri-
bution, which may enter the problem via the compulsive con-
dition of pressure continuity. 

The Bjerknes theorem for baroclinic flows is applied to the 
vortex sheet at the separating streamline and the new theorem 
for barotrpic flow is applied to the inside the accompanying 
fluid.  For the ambient flow the circulation is given by the sum 
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of the baroclinic and barotropic contributions.  This way, the 
initial solution for the ambient flow is substantiated.  

The vortex sheet induces throughout the accompanying 
flow a constant velocity and the barotropic circulation induces 
the flow field of a vortex pair, the speeds of which are reduced 
by the square root ratio of the densities, so that the dynamic 
pressure is unchanged across the separating streamline.  The 
addition of both fields fulfils the cinematic conditions at the 
two stagnation points.   

The example of a jumbo jet demonstrates that the major 
part of the circulation of the vortex wake emanates from the 
barotropic generation.  Only a small fraction of circulation is 
generated by the baroclinic vortex sheet at the separating 
streamline.  

Thus, an aircraft flying in an unstably stratified atmosphere 
may trigger an instability.  This possibility might be consid-
ered by wake vortex warning systems.  Accident investigation 
committees might consider the vertical atmospheric profiles 
when a wake-circulation accident occurred.  Additional efforts 
might be undertaken by the aircraft industry to obtain a fast 
decay of wake circulation through aerodynamic measures. 
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Figure 1  Inertial and non-inertial reference frame respectively 
given by Z, Y, T and z, y, t.  The streamlines of the two-
dimensional vortex pair belong to the non-inertial reference 
frame.  The accompanying fluid has a higher density than the 
ambient one, ρ > Aρ .  Both fluids are assumed to be incom-
pressible.  The separating streamline is a density discontinuity. 
Buoyancy accelerates the vortex pair downward. 

 
Figure 2 The coordinate s is measured along the separating 
streamline, starting at the lower stagnation point.  At this point 
the combined circulation, the baroclinic one of the vortex sheet 
and the barotropic one from the two single vortices, must in-
duce the velocity W, at which the vortex pair moves down-
ward.  Otherwise the flow would be torn apart, which is not 
possible. 
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Figure 3 Pressure distribution due to the acceleration of the 
apparent mass, which is superimposed on that one due to the 
quasi-steady flow.  In order to plot the pressure on a vertical 
line, the z-coordinate is turned into the horizontal.  Below the 
vortex pair (left hand side) the apparent mass is accelerated by 
overpressure above (right hand side) by suction. 

  
Figure 4 Closed path ABCD for evaluation of Bjerknes’ theo-
rem applied to the vortex sheet along the separating streamline. 
AB and CD are at constant pressure and do not contribute.  
The contributions come from BC at density

 
 
 ρ and DA at den-

sity
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 Aρ .  SΓ  is the circulation around the end of the free vor-
tex sheet cut off at s.  

  
       

  
  

  
  
  

 
 
 

 
 

 
 

 
 

 
 
 


