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Abstract

Asimplemethod is described whichallows consider-
ation of the most significant higher order term in the
calculation of the induced drag of nonplanar wings.
This is the induced lift due to the velocities that the
lifting vortices induce on themselves. This induced lift
does not change the induced drag. It is positive for
positive dihedral and winglets above the wing tip and
negative for negative dihedral and winglets below the
wing tip. Experiments with small models clearly dem-
onstrate this difference which is neglected in the classi-
cal theory. This shows that the higher order effects
should be taken into account. The results of several
parameter variations are presented.

1. Introduction

The induced drag is for all “heavier than air” flying
vehicles a significant contribution to the total drag. It is
the equivalent of the energy contained in the air masses
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which must for the momentum balance be accelerated
downward by any lifting wing of finite span. The in-
duced drag would be present evenif the viscosity of the
air were not. It is therefore generally assumed that the
induced drag is independent of the viscous drag. The
induced drag is always calculated for a nonviscous
fluid.

To this day the induced drag is mostly calculated
based on the classical lifting line theory of L. Prandil (6),
for example by means of the numerical procedure of H.
Multhopp (4). But already M. Munk (5) in his famous
dissertation mentioned some effects like rollup of the
vortex wake and induced lift whichare neglected by the
lifting line theory and should be regarded in more
precise investigations. This has not been done (or for-
gotten) until recently when S. Schmid-Goller (7) “redis-
covered” the induced lift without explicitly calculating
it. The present paper mainly deals with the induced lift
and shows that it is closely connected with the effect of
the wake rollup.

2. Fundamentals

Any theory of induced forces ona wing mustregard the
following facls:

a). a nonviscous flow which was once irrotational re-
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mains irrotational. An irrotational flow is a potential
flow.
b). Avortexinanonviscous flow can neverend or begin
or change its strength or circulation. A vortex with
variable circulation must be understood as a variety of
vortices which join or leave each other. This is the
Helmholtz Law.
¢). A single straight vortex of infinite length cannot be
present without a total flow field in which all stream-
lines are circles with the vortex as axis, and the flow
velocity w is
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where I'is the circulation of the vortex and r the radius
of the streamline circle. It is also said that the vortex
“induces” the velocity w.
d) A cambered vortec of variable strength which can
according to b) not exist without other vortices joining
orleavingit, inducesalsoa velocity @. It mustbe imaged
that each very short element g'of such a vortex induces
ata point Pavelocity again tangential to the circlewhose
axis is defined by . This is sketched in Figure 2.1. The
total velocity that the vortex of the length S induces at P
is the sum (integral) of the velocities that are induced by
all elements of the vortex. This means, written in vector
formulation

s -
W= _%fr{s)% % ds (r=1I71) )

a

This is the well-known formula of Biot-Savart.

. — —
summarized over the forces on the elements g = ['ds
which are

dF = pi x q (@)

The flow field v may consist of the velocities being
induced by the vortex itself. This case is sketched in
Figure 2.1.

f) For vortex elements of a cambered vortex which are
very close, the denominator 3 in equation (2) is very
small. This means, mathematically that a cambered
vortex of finite strength undergoes aninfinite force! This
does not contradict nature. Single vortices of finite
strength do notexistin nature. They would also contain
infinite energy. These facts show that mathematical
models of flows which containisolated vortices of finite
strength must be considered very carefully.

g) A finite vortex strength can be distributed on a
vorticity surface, on which the vorticity is “f. A vortex
element is then

§=7JdA (5)

where dA is a surface element, see Figure 2.2. It can be
shown that in this case the induced velocities are finite
everywhere exceptat theedge of the vortex surface, and
the forces which the vorticity surface induces on itself
are also finite.

The lifting-line theory models the wing as a single
vortexwith variable finite strength. The figure of Prandtl
(6) is copied in Figure 2.3. The vorticity surface which
mustbe presentdue to the variable I forms the

equation. Element dF of the self-induced force.

FIGURE 2.1 Induced, velocity w of a vortex element g_) trom the Biot-Savart

wake. Their vortexlines are parallel toves. The
lifting vortex is straight in this case. No in-
duced lift is present. This theory was and is
extremely successful. Once it is used for
nonplanar wings it must be considered very
carefully becausc thelifting vortex would pro-
duce an infinite force. The same is true if the
lifting vortex is swept forward or back.

Of course, this infinite force is not present
on the real wing which does not consist of a
single vortex. But there are forces due to the
velocities that are induced from the wing at
points of itself. The present paper is an at-

e) A straight “bound” vortex of infinite length and the
constantcirculationI"ina parallel flow of the velocity veo
experiences a force (lift) per unit length of

F = pu,Tl 3)

which is perpendicular to ve , and T'. The direction is
towards that side where the induced velocity has the
same direction as oo . The force of a cambered vortex
with variable T in a general flow field v must again be

a0

FIGURE 2.2 Vorticity distribution on a surface and vortex
element of it.
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tempt to calculate these forces.
3. Calculation of the Induced Forces

In the past 20 years several so called panel methods
have been developed which permit comparison of the
flow around very complex bodies like a complete air-
craft with wing, fuselage, tail and engines. These meth-
ods subdivide the surface of the body into very many
panels. On each panel a singularity distribution with
unknown parametersis assumed. The singularities may
be vorticities, doublets or sources. For lifting bodies a
vortex wake must be added to satisfy the Helmholtz
law. VSAERO (3)isanexample of sucha panel program.
Such programs calculate the induced velocities fromall
panels and the wake to all panels. The flow conditions
require that the induced flow together with the infinite
tlow must on each panel be tangential to the surface.
This yields a linear equation system for the unknown
parameters of thesingularity distributions of the panels.
Its solution describes the flow. The forces on the body
can be calculated by summarizing the forces on all
panels.
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FIGURE 2.3 Classical lifting line Theory, Prandtl, 1918.

The panel methods consider all velocities which are
induced by all panels. The summarized pressure forces
of all panels thus include also the induced drag and the
induced lift. A wing without fuselage and tail seems to
be a simple problem for a panel method which even
allowsiterative cirrection of the shape of the wake to the
local flow, Indeed, the pressure distributions from the
panel methods look very good. But it turns out that the
induced forces are mostly not computed precisely
enough. They consist of small components of large
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forces. Anexample isa paper of VanDam (9) which was
discussed by Smithand Kroo (8). Evenwitha very large
number of panels the results were not reliable.
Another method calculates the forces in the Trefftz-
plane far behind the wing,. If a rigid wake is assumed lift
and drag can be calculated in a very simple way in the
Trefftz plane. S. Schmid Géller (7) showed that the
induced dragis calculated correctly thisway, but the lift
from the Trefftz-plane does not contain the induced lift.
Indetail, heshowed thatin the Trefftzplaneall forcesare
calculated which effect the total system in front of the
Trefftz plane. This includes the forces on the wing and
the wake.
FTrl-_fft: = ying + Fumke (6)

There are no drag forces on the wake because the
wake vortices are parallel to v and all forces on them
are perpendicular to them. But there arelift forces on the
wake vortices once there are induced velocities in the
spanwise direction. Such velocities are present once the
wing is not planar, only the forces on planar wings are
calculated correctly in the Trefftz plane.

The present paper uses the Trefftz plane also for
nonplanar wings. But it additionally calculates the lift
on the wake which must according to equation (6) be
subtracted from theliftas evaluated in the Trefftz plane.
Thereisanicesimplification in thisapproach. It couldbe
shown that two parallel vortex elements induce on each
other two forces which together are exactly zero. All
vortex elements of the rigid wake are parallel to ves . The
sum of all forces which are induced from the wake to
itself thus vanish exactly. Only the forces due to induced
velocities from the wing to the wake must be consid-
ered. Of course, if a nonplanar wing is modeled by a
single vortex, these forces are again infinite, because
they contain the induced lift which is infinite, This can
be checked in detail. It was therefore necessary to repre-
sent the wing by a lifting surface.

3.1. Shape of the Lifting Surface
The shape of the lifting surface was specified such

FIGURE 3.1 Definition of the wing shape.

91




that dihedral. vertical winglets and sweep back and
sweep forward are covered. Also swept winglets are
allowed. Figure 3.1 illustrates the options of the shape.
The streamwise coordinate is x, the spanwise coordi-
nate y and the vertical coordinate z. The intersections of
the lifting surface with planes parallel to the x-z-plane
are straight lines the projection of the lifting surface on
the y-z-plane is therefore a line. This line specifies the
dihedral. It is straight (z = 0) for a planar wing. A
coordinate s is defined which is the arc length of the
projection line; in the center (y =0), s = 0. Symmetry to
the x-z-plane is assumed. The projection line is defined
by two functions yp(s),zp(s). This permits inclusion of
vertical winglets or even winglets which are bent more
than 90°. The total length of the surface is 25, the half
span is +B = xyp(S). For planar wings zp =0, yp =s, B=
S. The chord ¢(s) may depend on s. Sweep back or
forward is specified by the x-wise location xT(s) of the
trailing edge. xT > 0 means sweep back of the trailing
edge, xT < 0 sweep forward. In the middle x7 = 0 is
required.

Allfunctions yy(s), zp(s), c(s)and xT(s) arespecified so
that the shape f\as no corners. This would cause
singularities in the calculations. But small transition
arcs instead of corners are allowed like those present in
real wings. This is covered with good precision by the
mathematical procedure.

3.2. Specification of the lift distribution

The lift distribution was pre specified. This is ad-
equate for investigating the fundamental effect of the
induced lift. The definition of the wing shape with the
calculation of the lift distribution is the subject of a
dissertation of J. Leyser (2). He calculates the induced
forces on the wing itself for keeping the option of
regarding the wake rollup. His results with respect to
the induced forces are confirmed by those of the present
paper.

Theliftdistributionis specified by the spanwise (s-wise)
component ¥; of the bound vorticity. It was set

e =ue, =TT 7)
with

1
fg p(E)dE = 1, $(0) =0 (®)

The function I'(s) is circulation distribution of the wing.
£ is thenormalized chordwise coordinate. At the trailing
edge x =xTitis§ = 0, at theleading edge : x = xT - citis
& = 1. The function (&) describes the chordwise lift
distribution which is the same for all spanwise stations.
It is assumed to be of the form

K
P(E) = ar & (9)
k=1

A vorticity distribution ys(£,s) does not satisfy the
Helmholtz-law without a vorticity component yx in the

x-direction. Thiscomponentcanbe calculated by means
of the Helmholtz law. At the trailing edge y(x7s) = -
['(s). This is the vorticity which is continued in the wake,
exactly in the same way as in the lifting line theory. A
typical vortex line of the bound vorticity is sketched in
Figure 3.1. In the examples of section 5 an elliptical
circulation distribution

Plis) =Tgil1 = (-S—) (10)

was mostly used. This is for nonplanar wings not the
optimal circulation distribution. One example of section
5 shows, for a vertical winglet, the improvement due to
abetter circulation distribution which haslower["at the
winglet. The induced drag differs not much from one
with the optimal distributions. But the lower lift coeffi-
cients of the winglet allow a lower drag coefficient for
the viscous correction which turns out to be more effec-
tive than the better I-distribution. But it is very ques-
tionable if the optimal M-distribution can be really
achieved with a real wing. This needs a very careful
design of the winglet by means of a program for the
calculation of the liftdistribution of a nonplanar wing of
given shape. The values from the non optimal elliptical
[-distribution are perhaps more realistic.

The difference in some way represents the fact that
steep or vertical winglets can only be designed opti-
mally for one lift coefficient. For less steep dihedral the
difference is negligible.

3.3. General Results

The calculation of lift and drag is completely de-
scribed in the full paper (1). Some general qualitative
results can be understood without the complete math-
ematics.

A) Positive induced lift is present if the wake experi-
ences negative lift. It can only be caused by velocity
components toward the wing tip which are induced by
the bound vorticity of the wing. Such velocity compo-
nents are induced if the wing has positive dihedral or,
for example, winglets above the wing tip. The opposite
is true for negative dihedral and winglets below the
wing tip.

B) The induced drag is correctly calculated in the Trefftz
plane.Itdepends only on the shape of the projectionline
yp(s), zp(s) and the circulation T(s). The induced liftdoes
not change those and thus the induced drag. The in-
duced lift is therefore “free” lift with respect to the
induced drag. Thisisa very remarkable fact. How canit
be understood? Nature is normally not so generous to
give something free!

The explanation is simple and clear. The velocities
that the wing induces at the wake have the tendency to
increase the distance between the rolled up vortices if
the induced liftis positive. Without changing the circu-
lation of these vortices, the larger distance between
them is equivalent to higher spanand thus to higher lift.

Itisnot yet proved butnearathand thatthe increased
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distance of the rolled up wake vortices is the main effect
of the rollup, and this effect is equivalent to the induced
lift. This would mean that this main effect of the rollup
could be calculated without really performing the adap-
tation of the wake to the local flow. This relaxation
requires much more programming and computing ef-
fort, notonly for theiterative adaptation of the wake, but
also for the calculation of the forces on the wing itself,
because the Trefftz plane cannotbe used in thiscase. The
old difficulties as mentioned in the introduction are
then back again, and much effort in necessary to obtain
at all reliable results.

The program by which the results of the present
paper are computed includes an error bound and needs
about 10 seconds of computing time for each case on an
SPARCELC workstation. Thisallows a lotof parameter
variations.

C) Sweep back or forward has no effect at planar wings.
This coincides with the well-known stagger theorem of
Munk (5).

D) Also for nonplanar wings the effect of sweep back or
forward is much smaller than the effectof dihedral. This
can be seen from one example in the next section in
which the sweep of vertical winglets is varied. It shows
that sweep of such winglets does not pay.

E) The induced drag contains I in the second power
whereas the lift is proportional to the first power. The
induced lift is of the same order of magnitude as the
induced drag. The induced lift has thus more effect at
low aspect ratios and high lift coefficients. But the
examples show that for high aspect ratios also the in-
duced lift should not be neglected .

4. Representation of the Results

4.1, Effective Span

Results with respect toinduced dragare normallyjudged
by the so-called k-factor. It is defined by the equation

Cq; = —= (ll)

where ¢4; is the coefficient of the induced drag, ¢f the lift
coefficient and

(2B)?
A

theaspect ratio of the wing. Planar wingshave k>1, only
anelliptical liftdistribution achieves k=1.Incase of non-
planarwings theirarea A inequation (12) canbe defined
in different ways. It is therefore better to rewrite equa-
tion (11) by means of the definitions of the lift and drag
coefficients and to introduce an effective (half) span B*.
This is the span that a planar wing with an elliptical lift
distribution and the same lift and drag would have.
Using

D,‘ waid A Cd;

[=qgAe ngv; (13)
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where g is the dynamic pressure, it follows that

L? L?
D=k (2B)? = an(2B)? (14)

These equations no longer contain A and, therefore, it
follows that

g B _ L
T VE JamD: (15)

In the examples in section 5, B* is used instead of the k-
factor.
4.2. Drag Penalty from Profile Drag,.

Winglets and other forms of wing tips with dihedral
increase not only the effective span, but also the wetted
area of the wing. Although the induced drag is consid-
ered to be completel} independent of the viscous d rag,
for a correct comparison of different wings it is neces-
sary to add to the induced drag that part of the viscous
drag that is due to the difference in wetted arcas. Two
different wings 1 and 2 are to be compared. They have
the effective spans B and B2, the wetted areas A7 and
A, thelifts Land .2, and the induced drags Djand D).
If for example A > A7, then the additional drag of wing
2

AD = Q(AQ = .*{;}Cdp (16)

mustbe added to the induced drag of wing 2 if it is to be
compared with wing 1. Here cdp is the profile-drag
coefficient corresponding to the additional wing area.
Thisisequivalent to a difference in the effective span for
which from equation (15) follows

L

B AR s s T
B JAxqiDs = AD) (17)

This yields, if a small AD is assumed,
AB* 1 AD

1-4-—3-5—:@::1—@ (18)

and, using equations (15) and (16),
AB* _ w (A — AN (2B;)? ch
B2 A3 cf

(19)

Inthe examples in section 5 the chord distribution of the
wing is elliptical with respect to the length s, which
means, if ¢y is the chord at the wing root, that

32

1—-‘8-5 A;2SCQ‘, Cay

‘N "
S = Z Lo (20)
where ¢y is the average chord of the wing. Assuming
that the values of §, B*, and B do not differ much it
follows that
AB* S —8) ¢
~ A iy 1)

Bg Co ('!'

The effective span is diminished by the additional vis-
cousdrag, and c12is in the denominator of the diminish-
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ing term. This may overcompensate the reduction of the
induced drag if ¢/ is low. An example is given in section
5.1tisa well known fact that winglets mainly reduce the
total drag at high c{.
4.3, Circulation and Lift Coefficient

All formulas for the induced lift always contain qua-
dratic terms of the circulation T, asis true for the induced
drag. This means that, the higher T, the greater the
influence of the induced lift. It must, however, be con-
sidered that the lift coefficient of a wing section is
limited. The relation between I" and ¢} can be found by
expressing the local lift L by both variables, as follows.

2
L= puI'dy= -p%'f’-c dy (22)
This yields
1
M=t c 23
5 YooC Ce (23)

The examples in the next section, except the last one, are
all calculated with ¢ =1.5.
5. Examples

The following examples were selected to study the
effect of wing-tip shapes like winglets or short sections
with dihedral on the total drag. The chordwise lift
distribution isin all cases the same. In equation (9), a7 =
6 and a2 = -6 are used. This satisfies all the conditions
thatwere established for y(£). Becausey(£)isa parabola
and symmetrical around the middle of the chord, the
resulting lift is located at mid chord. The spanwise
chord distribution c(s) is elliptical according to equation
(20). The trailing edge is straight without sweep back.

In the first example, the length 5 =1 is constant, and
25% of S is bent up at an angle 8. This means the span
becomes smaller with increasing (. The viscous drag
need notbe considered because the wetted area doesnot
change. Angles from 0 to 40° were evaluated for three
aspectratios A =6.4,12.7 and 25.5 for each £8. The results
are presented in Figure 5.1. in terms of the effective span
B*,

1% "‘"%i““*--__

- ==

B*/S 1 —- Geometry, B/S\

x—x Trefftz
+——+New Theory A = 25.5
+——+ New Theory A = 12.7

////

X 4re

0.95- ~v——~New Theory A= 6.4
T i L) T T E 1
0 10 20 30 B &0

FIGURES5.1 Effective span B* of wings with constantlength
5, different aspect ratios and various dihedral angles over

25% of S,

Thedifference between the line labeled “Treffiz” and
the line for the geometric span shows the effect of the
dihedral dueto theclassical theory withoutinduced lift.
This theory yields exactly the same result for dihedral
up and down, in this case for the same absolute value of
8 but with opposite sign. This was computed to 6
significant figures. The case & = 0 is the elliptical lift
distribution for which B* = 5§ must hold. This test was
also successful to 6 figures,

The differencesbetween the lines from the new theory
and the Trefftz line show the effect of the induced lift. It
depends on the aspect ratio, and it is of the same order
of magnitude as the difference between the Trefftz line
and the geometricspan. According tothe classical theory,
approximately 40% of the geometric span reduction is
regained”. For the low aspect ratio and low £, the effect
of the induced lift is even larger than the one of the
classical theory. For all aspect ratios a wing tip with 87
107 is better than a planar wing with the same length S,
and thus higher span.

The effect of the induced lift is opposite for winglets
down; the lines from the new theory would be in the
same distance below the Trefftz line. For low -valuesa
negative dihedral near the wing tip is worse than a
planar wing with the same span.

Small models with one winglet up and the other one
down are capable of clearly demonstrating the effect of
the induced lift.

The second example considers the fact that in many
cases the span is restricted. Therefore. the wing tip is
assumed at y = B and z = ().1B. The wing shapes range
from avertical winglet to a wing thatis straight and has
a small, constant dihedral from root to tip. The wetted
areaincreases with the dihedral angle. The difference in
the viscous drab is considered according to section 4.2
with 4cdp/ﬁ"f = 0.025. which means for ¢f = 1.5 ¢4y =
0.01406. The results for the high aspect ratioare given in
Figure 5.2,

The effective span B* is again larger than the geometric
span B. The highest B* is achieved with the vertical

-—— Length S/B

x—x Tretftz sk
v ] +——+New Theory A =25,
B'/B ) .. With Profile Drag

1 / o ;_f// esll
| e

'EéT%' O s M S e
0 20 30 0 50 60 70 B0 B 90

FIGURE 5.2 Effective span B* for wings with the wing tip at
y=B=1 and z=0.1B and various dihedral angles &. The
spanwise location of the start of the dihedra dt‘pf-‘nds on s,
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winglet. It is questionable however if this is in all cases
the optimum. A vertical winglet does not change its
geometrical angle of attack. If it is optimized for the
high-liftcaseit yieldsaconsiderable additional induced
drag at high speeds. If it is optimized for low ¢j, the
improvement in the high lift case is smaller. Thus, only
a one point design should use a vertical winglet.

If the wing has lift increasing flaps, the multi-point
problem of the vertical winglet can be reduced by ex-
tending the flap into the winglet.

The third example has the same fixed wing tip as the
second one. The dihedral is now, however, assumed in
the form of a circular arc instead of a corner. The results
areshowninFigure 5.3. Again, only the high aspect ratio
A =255 is considered.

-—- Length 5/B

x—x Trafftz

105 +——+Now Theory A = 255
+——4& With Profi{e Drag

-}

T 1
80 8 90

FIGURE 5.3 Effective span B* for circular arc winglets
ending at a fixed wing tip position. The angle R is the

dihedral angle at the wing tip. Span B = 1.

The extension of the wing lengths yields now a higher
increase of the effective span B*. This is shown in more
detail in Fig. 5.4.

.
0.6+ s
AB"/8S 1 ™ -/ e B
0.5+
-l x""‘-—-.____‘.
‘--‘_‘-"l
0.4 7\
4 '\\.,____ ---_.__________“
0.39 = Circular Arc nglats Viscous
| +— Straight Winglets, Trefftz
+ Straight Winglets, Viscous
0.2 T T T T 7 1
1.01 102 B/B 103
FIGURE 5.4 Relative increase AB*/AS against B*/B for
circular arc and straight winglets.

Fig. 5.4 shows several remarkable results:

The higher the extension AB*/B of the effective span,
the lower the effectivity AB*/AS of the length extension.
This means that steep winglets are less effective than
less steep ones.

Already in the Trefftz plane the circular arc winglets
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yield a higher increase of the effective span than the
straight winglets.

The decrease of the effective span due to the profile
drag is higher for the straight winglet. Altogether the
circular arc winglet profits from the length extension AS
of the wing approximately 20% more AB* than the
straight winglet.

It is thus better to design wing shapes that simulate
the circular arc winglets, for example wings with more
than one dihedral corner.

The examples given so far were calculated with ¢ =
1.5, which is mostly realized in circling flight of gliders.
The last example concerns vertical winglets of aircraft
which may cruise ata lower ¢j = 0.5. The profile drag is
assumed to be ¢4, = 0.008, which is a low value for a
normal aircraft. The height of the winglets is varied.
Figure5.5shows theresult. Thelower ¢ has two effects.
The induced lift is reduced because it is proportional to
c/? and the effect of the profile drag is much higher
because it is proportional to ]/(.‘jz. This overcompen-
sates the reduction of the induced drag duc to the
winglets. Itisthus very questionableif the winglets of jet
aircraft reduce the clrag in cruise conditions, in which
even lower ¢/ mostly occurs.

7 +— LengthS/B
{ x——xTrefftz

+——+New Theory A = 12.3, ¢, = 0.5
+—=2 \With Profile Drog

FIGURE 5.5 Effect of vertical winglets of height .

The next example investigates the effect of the I'-distri-
bution for a wing with a vertical winglet. Its height is
again selected as i = 0.IB which means 5% of the span.
The example starts from an elliptical I™distribution
according to equation (10). Also the planform is ellipti-
cal, the aspect ratio is A = 25.5, ¢ = 1.5 has again been
selected. This is realized by I'g = 0.075. The variation of
['was made by reducing I' in the winglet range in a way
which approximates the optimal distribution. Near the
beginning a steep droop , AT was introduced. The
amount of the droop was between , AT" = 0 and Al" =
0.003. The last value was already beyond the optimum
with respect to the induced drag, but at the wi ngletc] =
1.05 instead of ¢ = 1.5 for the elliptical T allowed a
reduction of ¢4p. This reduction was considered using
cdp = 0.00625c1~. This perhaps overestimates the influ-
ence of ¢f, but it shows the tendency. The results are
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giveninFigure5.6. Thereduction of ¢dp ismore effective
than the improvement of T,

1.06
j [——
gm—" T
106 e —
T-‘—""""_f
-4._/-’"_'_""‘
— Trefftz
102 =—— New Theory
: «——= With Prafile Orag
|
1 g = 7 1 ] T 2 )
0 .002 004 006 Al 008
FIGURE 5.6 Effect of the improvement of I'(s). Al is the
amount of I'-reduction at the beginning of the winglet.

The last example deals with the effect of sweep back
of the winglets. The wing is the same as in the preceding
example. Only the winglet is swept back by an angle ¢
whose tangens is the abscissa in Figure 5.7. The T-
distribution with A" = 0.006 was used which is close to
the optimum for the induced drag. The viscous correc-
tion is for all sweep angles € the same, also the classical
theory shows, of course, no effect of the sweep back.
Only the induced lift has a tiny effect which probably
does not justify the additional effort of the sweep back.

1.06
B*/B
1.0 = . -
1024 —— Trefftz
=——= New Theory
i +——+ With Profile Drag
i T T T T ! T T L} 1
0 tane 05
FIGURE 5.7 Effect of winglet sweep back.

Similar tiny effects have been calculated for a moder-
ate sweep back of a total nonplanar wing,
6. Concluding Remarks, Future Work

A simple method has been presented which allows
consideration of an important second order term in the
theory of induced drag. This term is the induced lift,
which probably is the most importanteffect of the wake
rollup. The new theory explains the difference between
positive and negative dihedral which has been demon-
strated by model experiments. Many more results can
be expected from this theory.
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So far, the chordwise and spanwise lift distribution
have been prespecified. The problem of the pre speci-
fied wing shape hasbeen treated by . Leyser (2). He can
calculate the induced forces on the wing itself with
adequate precision. He could validate his results by
means of results from the present paper. His approach
is the fundamental condition for regarding the complete
effect of the wake rollup. So far his program requires
very much computing time. The wake rollup hasnot yet
been performed. Butitseems that the computing time of
his program can be reduced, and larger computers can
be used to evaluate the higher order effects. This is
probably the most important work to be performed in
the futurebecauseitshowsif really theinducedliftis the
prevailing higher order term as it is supposed now. If
this were true, then the present theory would be subject
to evaluation by means of computers which are avail-
able to anybody.
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