
SIOCHASTIC MODELS OF
THERMAL CONVECTION:

AN EXTENDEDMCCREADY
THEORYANDA

SIMULATIONTOOL
by Rudolf Mathar, Germany

Pres€nied at the XXIV OSTIV ConSress, Omarama, New Zealand, 1995

Classical McCready th€oryis based on a clctc.ninis-
trc model. Dup Lo uncFrLdin inlormrri,,n dur icg J Lr, ^.
courltry 6itht this seems tobe rather questionable. The
present pap€r deals with stochastic models which are
more appropriate to descrjbe realisticconveciional pat
tens.Inafirststep theclassical theoryisextended to the
case thatihe jntensityof ihe n€xtused liftcanbecharac
terized by a randomvariabl€ A. The opiimal speed ring
seiinrg leadhg to minimal expected time ihenisl/E(l/
A), wher€ E denotes the expectation. As a full stochastic
model, including both randon intensities of ups and
downs and their extension, we suggest a Markov jump
process. Anoptimal strategy is unknown for this model.
How€ver, asimulatiorl tool hasbeen developed tocorn
pare the efficiency of different tactics underprobabilis-
tic convection proriles ofthe above type.
I.Introduction

Mccready's theory was one of the startinS points in
the development of analytical lnodcls to support tactics
oftliderpilots. LIowever, this theoryisbased ona rather
simple d€t€rmnristic model. We leel that a stochastic
model is more appropriate, and closer to realiiy, since
thc information about l;ft intensiiies ancl distances be-
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trveen lift during a cross country flight is unceiain.In
this paper we introduce models ofincrcasnrgcomplex
ity to describ€ ihe random nature ofcorlvectional pat
terns. The starting point is an extension of the classical
asslrmpiion of consiant lift intensity. This admits an
explicit solution, easy enough to be implemented in
forthcoming electrorlicvariomcter sofiware. As a more
advanced model a Markov jump proc€ss is sLrggested.
We cannot offer a full analyiical solution, but instead
introduce a simulation tool to compare the efnciency of
dif fereni gliding strat€gies.

Stochastic models corlccming the distance between
subsequent lift, and the risc of an outlanding vs. the
speed of the gli.lerhave alreadybeen considered jn [1].
We thank Marth Simons for having brought our atten
tion to this nice paper.

f or rcf crcncinS purposeswe set oui to describebriefl y
the basics of McCready's theory. A tlider is flying at a
cert.riniltih,clc h(=1000nl,say), thereisalifiof intensity
a at a certain distarlce d, and th€re are no up- or
doh'nwnrds in bchvccn. Widrcut loss of teneraliiy we
may normalize d = 1 biherwise d rvould cancel out in
subscquen i ra tios). Thcqucstion is, i'hichspeedhas io
be chosen by a piloi nr order to reach altiiude h again
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A *,l.tn,' ,'f tltis prott€m is easjl)
derncd from the polar cunc. liind thc
txngtriirl ponrt a! f(!) for thc lnre odgi-
rlaiing f.om (0, n) (se.' l-iilurc 2). If thc'
corresponding spce.l js npplied durin'l
ihc glidcf llise, thisresults inihe minimnl
nntounl of iinrc t() covcr Llistrncc d a|d
cli|rb back to tlr('original nltihrde. Thes('
are thc b.rsic ingrellients of classi.nl
Mccrcady theorv; equ.ti()n (1) allo rsfor
nn exkxrsion b a stochnstic moLicl as is

II. Random Lift Intetrs;ty
Usually a pilot cart'rot bc sure .bout

ihc lnk'nsit]' of the next lift he rscs tc)

climb. This u,rcortanr krlo$]e.lge Dlaybc
nrodcle'd b1 .l rnn.tonr variablc A, do-
scribnrg thi- anxrunt of L,pivind of ihc
next lifi. Ior !rstiurce, r (liscretc probabil
ity moelel of the folLrring typ(, could bc
sLrjtnblr fora ccrtaln thormal pattcrn. Th(l
probnbility ihnL ihe lloxt used lifi

\- (3)

A c(xrti'ruous modflt'ased on the cx-
ponenti.rl .:l'stribution lvlth pr()t abiliiy
dtrlslt)r

,.,, I"" 11'! r r"n^,,".. zzrtr ,'

accor d inBl). (tcscrib!'s lhc rnn(irnr lift intsisily. ln this
ca$ the prcbibiljiv tllrt thr.lirnb htc is n vnloe bir-
t$'.'0J1 . an.l ; (m/s) cnn bc cnlculat!.1 is

r .t t, /'r \'/r. r'' ..rr' \I. 
J,

Lct L(A)den{)telheexpectl.d vnlr.,)f A. By thcstrong
lnrvof largenLrnrbers this is thrvnlucorrervo!ld observc
as the aithr)dic ncnn oler Drany nrcaslrrenrclris ol
indepcndent lift int('nsitics tullow;ng the sa rcrarrdonr
las'. for distributn)r (3) ihc expcci.riiorl is gi!,en Lry

qij 00i 0s+01

whilst in c.rsr of (1) rv. l,ivo

Itrvisiling et]l'iti(nr (l) undi:r lhr prcsent stochastic
r.\lLl I , .,F( , .,..ti.i,I ..L.l. n..1..,- r.'r,',i', 7,

afterminimal time. Flencedstimctl toSlideand timct2
toclimbback to hisoriginal altituclc (see F;t.1). On lhe
other ha|rd, wc must consjdcr the performancc of the
glider, rcpresentcd by its pohr cun'e l,fs) (see Fig. 2).
When tlleglideris flowrl atspeed r, this rcsultsin a shk
ratc ofp(s) (nr nr/s). The following cquations now leacl
to the relevant optimization problem.

1
11 - -

s
n(s)

The first equation is obvious, dre second onc ex
presscs the fact that thc total hcight los t d Lrring glkling
cquals ihehejghi tobc Banred whcn climbi,rg. Thus, the

r p(,) d + r(r)r=r'ir?: (1)

Sirced is a constani,itnral becancelorl in thenunrcra'
tor abovc rvidrou t alterinS the nr inimiznrB sp€ed. Hence,
lvc cnd !p with the Iollotvnr€! prcblem
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The total timc T is now a random variabl€ itself,
which camotbe minimized uniformly.

hstead we minimize its cxpcctcd value, vielLling
. r Dlrl

'r.. f/r - m'.( 
- 

Ir!)). 6,

because of linearity of the expectation. Abbreviatnrg b =
E(l,/A) we rt from (6) via

. 1+ 6. p(3) r/b+ p(s)
, . (r/A)

afier cancelling thc corlstant l/& in the numeraior, ihe
problem

(7)

1.5 I 25

J1

Takhg limits c,d+2 yields
deterministic modcl is obtained

pr€sent MC3 MCz ]!{Cr I{C0position a b

IIGURE3. Clidc path and lift.

FIGURE 4. IlDs anll dorvns on. lri.k

srced rirg setlins

+ 1/6 = 1.06

+ 1/6 = r.82

+ I/t) =151

l/1, = 2 such that ihe

The solution is detcrnincd inexactlythe sameman
ner as above- Find the tangential point a t the polar cur!,e
rorthehlenow orisinatinsfrom(0, 1,,1,) (insteadof (0, a))
. In summary we havc the following

Rlle. If th? nttensity Df the tert used l il can be d?sctibed
b r a ,andrn,Daunblt A, th,n th, nptwu'a.p..d tiaz..ttins
r(L(l'A\\t,uh,n apthtkn t,Ic^ to rh|;nu i\pt,til

Thiscontradicts common opinion that the average of
the lift itselfshouldbe used as the speed ring setthg. Thc
following examplcs clarify the djfference.

Example :1. Assume the discrete distribution givenin
(3). The corresponding optimal speed rhg sctting is

(005/05 +o 11 0 +o 3/r 5 +0.3/r 0 + 0.r/r.5 + 0 05/3 0) I = v0m67= r.{5

This is theso calledharmonic m€an, yielding a smaller
value than E(A) = 1.575. This is generally true for any
distribution, and means that the probability of finding
better1iftthan expcctcd docs notcompensateihe worse
oncs onc has b take.

Example 2. LetA bcunifom\'distributed over lc, dl,
0: c < d, with dcnsity

T r/i,r . ,r.-.'d/l ) 1^

Roughly spokcn, undcr this distribution any lift in
tcnsity bctwecnc and /is equallylikely. ThenE(,4) = (c
+ d)/2,wh;tst

E,,' ,, = { /, ,r . ;"1 r,.,- r,-

Tire longer the interval [c, d] is, the larter is the
unccrtahtt about thc lifi coming ahead. The follo\r.jng
numerical ex.lmples sho!v how to choosc corrcspond-
in,l spccd ring sctthgs. Obscrvc that in a1l cases the
expected value js the same E(,4) - 2.0.
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lll A FullStochaslic Model
Thnrts are even more complicatcd durnlg a real

flight. Noi only &e (random) intcnsity of 1ift, bLrt also
their distance csscntia lly innLrences ih€ optimumsirai-
egy. Thc following smallexa mple reveals the a.lclitbnal
difficultics. Cor$jder n glidcr at 1000 m above groun,:l,
fLrrihermorc a lif t of 1 m/s at disinnce d ard anothcronc
of 3 m/s ai distancc 1,. Glidepaihs correspondhg to
spee.l rin I seiiings 0,1,2, :rnd 3 are.lcpicted in Figure3.
The correspondnrgpohts whcrc thc tlider would touch
the groruld witholrt climbing on its way are denoted
accordlnglyby Nlcl-l,..., Mc3. Dependcnton the position
of the stronter lift the tnnc mhimal stralegy to climb
b.rck to the orignral altihrdc nr th;s lift is the follo$'ing.

Nlcl : lri Go to the lift at positiorM with spced ring
seiting 1. Climb to the altihrdc to just reaclr ihe lift atl)
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usint spccd rnrg seiihg 1. Clinrb in the hfi at b.

M.3: lr<NrcliGoiothcliftatl) usingspeed rirgscttint
r, ras largc as tojust reach thc lift at r. Forgct aboui the
lift at /r. Climb in tire lift ai b. ,: \1c3: Clo io thc lifi at ir

usnrg speed ring sciinrB 3. climb ihcr.r.
Now, iftlre inicnsityofliltf is a randomvariatrlennd

the posjiion is fixc.l, thiswo!ld resuli in a comPlicated
optimal-oraverage stralc8y with m.rny subcascs io bc
distingu ished. lf thedistance itsclfisa raudom !nriablc,
lher',rJr-.l,ri,/irrtlhe.prmJl \lrJ.FF\ rr. J, i{,. r'i

io be hopclcss. Moreover, to dcscribe
random.onvection patterns o\'era long distancc in tl s

way lcads to arl untractable model.
first of all, a reasonable but still tractiblc model of

convectionbehaviouris needed. We suggrst b observe
convectiononlyalotrgtllcpaihof a glider pq( ctcdonhl
thcflround, and record ups and downs aL{)t1g tlisPath.
This of course neans that pilots flynrg along different
paths in the sa,ne wcatherconditionsexpeien.e differ
ent convection profiles. But ibis is naiural, competjng
pilots try to follow those tracks which Promise mosi
favourable condit;ons. Ourintention is to dctcrmhe ihe
optimum speed once the track has becn.hosen. After
discretizaiion (c.9. in steps of0.5 m/s from-3 m/s to +3
m/s) onecould for cxample obsen'e thc cotriourrepre
senied in Fig. 4. There are a lot of cmPirical rules for
tl-Pical thermal l'a items. l or instance, 'The sironger an
up or downwind is, the smaller is iis average exten-
sion.', or'To have a sirong down-afier a stront uP!vn].l
is most likely'. Many other empirical rule exist. we add
one morc, which seems not to contradict realjty: 'Thc
ftr tufe conveciion on a pa th depends only on the prcscnt,
no! on pastvalues of ups and downs'.

Markov jump proc€sses are able io model these em-
pirical nrlcs. A Markov process ;s i family of random
variables X(d), d 2 0, whcre X(d) denotes the rnndom
vJlup.fL, nve.lion Jl Jrsl,n., d f r, 'm lhe oflt 

' 
oI I

discrete scalc S, e.g. as above S = 1-3.0, 2.5, .,0,
.,2.5,3.0). A concise description ofthe undcrl)'ing theory
can be found in [2]. The stochastic behaviour of the
process is complctely described by thc initial distribu
I o dnd tlrp, o r(\p' ndint gerrer-l.rm-lr i\\i 1 ilir .

s;rl,qil 0.rli+,..,rd4r -It"t4 Rouql l\'t ^1.^/,/
4/ {.. i- lh. pr,'baL':li5 lovrcr.or,\,\li,n.r inrFn

sitylwhenleavint state;. furthermor€, thc sojourn time
to siay in state j€r is exponentiallv distributcd wiih

Example 3':Thc f oltou'ing very simple model consid-
crs only ups and downs on the scale

f'*=ualli]

FI(iI IRF 5. Th.rmrl D.rlt.ms.

IIGURE 6. SamDl. scr.cn of ql err.ths.

unit jn this case coLrld be 100 nr, such th.ri lift of +1 m/
s have an expeciccl cxt(rlsion of 100 m.

Thc advtrntage of the Nlarkov model is iis dePen

dence on only.r ferr p.ramcicrs. If the statc sPace S

contains, elcments (up/c:lotvn vilucs), ther the nodel
.. .pp. ,,pd b\ . r 1, 1. r''r ' r,... ll. " oil i E,"r
flexibiliy, whilc stillretanrint iractability of ihe mod.l

The optimal strat.Sy io cover a ccrt.nr distance in
minimunr expcctcd tnne is unknown onderthis modcl.
Ho$,ever, to conparc the eftciency of diflereit stritc-
gics, a snnulation toolhas been devclqrcd. The simula-
tion process cotlsisis of two stcPs. Iirst, a weatlrer Pic
tcrn is offered accordhg t(r the abolc model. Corre-
sponcling p:rrameters in forn of.rn iuiensiiy mitrix..rl
be fed by the user F-u (hermore, one oL, t of four differen i
factorscanbechosen, causing nurerapi.:l changcs hihe
sarne basic corvcctbn pattern. Lifts arc visualizcd by
cloLrds ancl lhc corresponding inicrsiry' cnn be rccot
nizcd from a scnlcbi:lo\r (see FiSures). Afterthecon!cc-
tion patk,rn llas been gencr.rte.:I, lhc gliLlnlg Paihs of
four glicters are dcpictcrl, €nch aPfl)hg a dirfercnt
stratesy (sre figure 6 ior a s.rlnp]c scrccn). The Sliders
use the optimal speed accor(lifg io individu.rl t.rctjcs of
variablc speed rnrt scttirrli nncl ihc Present convc.liol

'(i -i 1)
lhen theprobabitity f(,r a jump from '1 m,/s to +1 nr/

s is 1/'1, and from im/s!o0m/sis3/l Thcextension
of a +l m/s lift is an cxponentially distribuied random
vJr..,hlp h irh e'ppcl,o.,, I o.TheJr.u ,.n,e-'.rrrr;
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intensity. The actual sink mie is thcn taken from the
polar curve such ihat a realistic pcrformance behavioLrr
is achieved.

One of the gliders can be conirolled manually such
that a pilot can practice his own tactics h a random
weather environment, and comParc it to other comP€ti
tors. Sevcraloptionscanbeselectedby theuser, narnely
conveciion parametels (see abov€), ceiling, distance of
drc task, visibility (which means the distance to whjch
lift can be seen ahead of the present position of the
manuallycorltrollcd glider), and &e type ofactivc glid-
crs with or without waterballast.

Extensive use of thc simulator has shown that it
generates quite realistic convectionpatterns and allows
for comparing strate8ies in an actual €nvironment. It
tl,us..,n bc u.ed ai a IruL ng p'od'Jm lo imProve d

pilots tactical decision making. The corresponding pro-
gram runs on PCs with VGA graplics card. it will be
n JdcJrril.rblpb) tl,e.,utlror upon reque-r.

ln section II we suggested an extended Mccrcady
theorybased on random lif t intensitjes. Thecorrcspond-
nrg optimization problem has a simple solutionbased
on a modificd speed rint settint. By estimating the
distrib u tion of thc lift intensities from pa st d a ta during
a task, the corresponding setling could be calculated

automaticallyby a nodern electronjc variomcter, thus
supportnrg the decision of pilots on their speed to be
flown betwcen successive lift. Corcerning ihe Markov
moclel, a lot of questiorls is still open. Of prramount
interest is the problcm how to fit theparameters ofthe
model to cxisiing measured data olconvection patterns.
This$eulclverify the usefulnessof themoclel for gener
ating realistic random etrvironmcnt. f urther work will
also be devoted to determine 8ood, maybc ncarly opti-
mal strategies which simultaneously minimize thc ex-
pected time €n route and the risc ofan outlandinS.
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