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1. INTRODUCTION.

Flying to and fro along a line of hill or wave lift we
often pass through local patches of stronger lift. Traffic
and other conditions permitting, we sometimes try to
work this lift either by circling, by flying short beats
through the good patch, or by doing figures of eight.
Unlike thermals, which drift downwind, hill and wave
lift tend to be associated with the ground features pro-
ducing them. Shifts certainly occur, but there are peri-
ods when the area of lift seems to be fixed near some
point on the ground, and we try to stay fairly close to it.
This note suggests ways to optimize the gain from the
figure-8 method.

In what follows we will take the direction from which
the wind blows as 0° ( = 360°) and the line of lift as
running across wind (090° < 270°). We will first con-
sider a simple case, consisting of a sequence of reverse
turns.

2. SIMPLE CASE: 180° TURNS, TO AND FRO
ACROSS WIND.

Suppose we start from a heading directly across
wind, say 090°. First turn left (upwind) onto 270°, then
roll into the opposite turn back onto 0907, and so on.
Relative to the air, if we ignore the time taken in rolling
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from one turn to the other, the result is a “chain” of
semicircles (see Figure 1). Let the radius of the turning
circleber,and cthe circling time, for the chosen airspeed
and angle of bank.

Let A be the airspeed, W the windspeed, and R = W/
A. In this section we show that for a certain fixed value
of R, the path of the glider relative to the ground is a
figure of eight centered at a fixed point on the ground,
above which the turn reversal occurs.

Relative to the air (see Figure 1) the gliderin complet-
ing the semicircle SXN moves a distance 2r in the direc-
tion SN. This takes time ¢/2. Relative to the ground the
airmass moves a distance W¢/2 in the direction NS. Let
s be the distance in the direction SN that the glider
moves. Using Wc/2 = rW/A we get

s=2r(1-Rmw/2) (1

We see that s = 0 when R = 2/t = 0.6366.

In this case the net result of completing a semicircle is
zero displacement in the upwind or downwind direc-
tion. By symmetry the displacement perpendicular to
NS (across wind) after each complete semicircle is zero.
Thus each turn reversal takes place over the same fixed
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FIGURE 1. "Simple Case" of Sections 2 and 4. "Chain” of

semicircles forming S-turns either side of wind direction.

point on the ground.

Numerical example: s =0when A =45ktsand W =
28. 64 kts.

3. OUTLINE OF THE REST OF THE PAPER

There are nine numbered sections. In some, the main
text is followed by some paragraphs of remarks and
consequences: these are numbered separately as, for
example (4.i), (4.ii) etc.

Section 4: Detailed examination of the path relative to
the ground, showing that the method keeps the glider
within a small area, which is likely to increase the time
spent in stronger lift.

Section 5: Development of the method of flying a
figure-8, fixed relative to the ground, for any value of R
0 R-D.

Section 6: Detailed examination of the paths in sec-
tion 5.

Section 7: Technique for flying the figure-8.

Section 8: Proposals for evaluating the effectiveness
of the method.

Section 9: Some other applications to low flying and
safety problems (also applicable to power flying).

4. SIMPLE CASE: PATH RELATIVE TO THE
GROUND.

In Figure 2, suppose the semicircle SXN is the path
relative to the air. Suppose the glider flies round the arc
SQ where the angle S OQ = 1 (radians) and 0 <1 < 7W2.

This takes time /A, during which the air mass moves
a distance Wm/A = rR1) in the direction NS.
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FIGURE 2. Vector diagram for equation (2).

Let L be the position of the glider relative to the
ground due to flying round the arc SQ and to the
movement of the air. At the starting time, the point S
represents the position of the glider both relative to the
airand the ground, so that the vector SQ is the displace-
mentrelative to the air, and SL is the sum of this and the
displacement relative to the ground. By protecting

vectors on the axes OX, ON and using R = 2/mthis gives:-

SL=5SQ + QL

0Q +QL-0S

r(sinn-cos )+ r (0, - Rn) - r (0, -1)

r(sinn.1-cosn-2n/m (2)

Calculation of values is elementary. The graph of the
results for 0“1 - W2 is the lower boundary of the right-
hand lobe of the figure-5 in Figure 3. In Figure 2 the
direction of the tangent QT is the heading when the
glider is at Q (relative to the air) and at L (relative to the
ground). From the shape of the lobe, drift and track are
non-linear functions of n.

(4.i) Completion of the figure-8 relative to the ground.

The following considerations of symmetry show that
no further calculations are required. See Figure 2 where
superscripts indicate points and angles related syvm-
metrically to Q and L. Consider Q2 where SOQZ = l]z =
m-nsothat W2 <n2<mand let SL2 = r (sin 12, 1 - cos 12

- Rn2.
Then,
SLZ=r(sinn. 1 +cosn-Ra+ Rn)
=r(sinn. -1+ cosn+2n/mn (3)
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From (2) and (3), L and L? are symmetrically placed
with respect to the axis SX2. It follows that as the glider
flies round the semicircle SXN relative to the air, its path
over the ground is anticlockwise round the right-hand
lobe in Figure (3). By symmetry about the axis SN (note
Q% and Q%) we see that a flight upwind around the left
semicircle SWN results in the clockwise path around the
left hand lobe.

To graph the complete figure-8 it suffices to plot the
four points

(LLZ13,LY = r(xsinn, £{1-cosn-2n/7}) (4)

We see that the diameter of the figure-8 perpendicu-

FIGURE 3. "Simple Case". The figure-8 is shown to scale
which is fixed by the radius r of the turning circle.

lar to SN is 2r (the diameter of the turning circle). For the
diameter parallel to SN we need only find the minimum
of 1-cosn-21/win 0 <1 <1 The value of n for this is
sin”l (2/7). The position vector of the minimum point is

SLmin=r /M, 1-V1-{2/m2-{ 2/} sin-1{2/m})  (5)
=1 (0.6366, -0.2105)

which shows that the diameter of the lobe parallel to SN
is 0.421r. Compared to the turning circle shown (of
diameter 2r) the glider moves over a much smaller
range. Also itis likely to be an advantage that its largest
excursions will be approximately along the line of lift.
(4.ii) Remark on Scales.

Intheabove calculation, rn is the length of arcSQand
clearly n must be in radians. However the argument in
sin 1 may be in radians or degrees depending on the
program or tables being used. For use in the air, the final
results will be true or magnetic headings, and these will
be indicated as being in degrees. Otherwise we will only
indicate degrees or radians where there might be uncer-
tainty.
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The turning radius ris a scale constant depending on
the airspeed A and the angle of bank. In tabulating
results we will take r = 1. Results for specific numerical
cases can easily be derived. Further optimization may
be possible by alterations in A or the angle of bank (and
hence r) but these are dependent on the aircraft type,
and other factors. In the present work we treat them as
fixed.

(4. iii) Varying values of R.

Since R=W/A, itcan takeany valuein [0, 1]according
to wind and choice of airspeed. We see from equation
(1) that if the method of 180" turns is adopted when R <
[ > ]2/ the pattern on the ground will move upwind
[downwind].

In sections 5 and 6 we will derive a method to pro-
duce a fixed figure-8 pattern for each given R. From the
above remark we can also see that the pattern can be
shifted up- or downwind as required to look for in-
creased lift.

(4. iv) Headings.

Referring to Figures 1 and 2, note that the position on
the turning circle at the instants of turn reversal are S
and N, and the corresponding headings are 90”and 270°
5. GENERAL CASEFOR ANYR (0° R 1): POSITION
FOR TURN REVERSAL.

We see from (4. iv) that when R = 0. 6366 the optimal
figure-8 results from reversing the turn on headings of
90° and 270°. We now show that forany R (0 R* 1) there
is a corresponding angle 6 (0 - 6 - 180°) such that the
optimal technique is to reverse on 8° and 360° - 0°. This
angle (in radians) is given by the equation

-sinf@-RB8=0 (6)

See Figures 4 and 7, where the chains of circular arcs
relative to the air are shown for R = 8/9 and R = 1/3
respectively. In Figures 5, 8 and 9, the turning circle is
shown in its instantancous position at the starting time,
and the angles POX = XOP’ = 6. Figures 4 and 5 corre-
spond to R > 2/t which gives 0<0 < w2 and 7, 8 and 9
to R < 2/m which gives m/2<8 <.

In flying round the circular arc PXI”, relative to the
air, the glider will go round a closed curve, relative to
the ground, starting and finishing at . To verify this
statement, note that P and " play the roles of Sand N in
section 2. By exactly similar arguments we see that the
distance smoved, relative to the ground in the direction
SN is

s = 2r (sin 0 - R6) (7)

which is zero when condition (6) holds.

(5. 1) Remarks on special values of R.
R=0correspondsto W=0,and givessinn=0whence

(assuming A > 0) 8 = . The glider flies round the

complete semicircle X’ SX. In fact it would remain in a

fixed pattern by continuous circling, as is obvious in the
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FIGURE 4. For angle 8 see section 5, and ratio R (4.iii). Here
R > 2/m giving 68 < 907, S-turns are reversed when the
heading is £ 6 from ON.

FIGURE 5. Vector diagram for section 6 (case 1). For the
variety of cases, see equations (8) through (12).

R =1corresponds to W = A. The glider can only keep
station by heading directly upwind. The equation sin 0
= 0 has the root 8 = 0, and with non-zero wind this is
possible (though in practice only when W > stalling
speed ).

R =2/mis the “simple case” of section 2. This can now
be seen to be the boundary case between stronger winds
in which the glider can keep station by weaving to either
side of upwind, and weaker winds in which it is neces-
sary to turn partly downwind in each cycle.

FIGURE 6. Scaled by ras in Figure 4. Conditions reversed:
R <2/m giving 8 > 90", Note much smaller figure-8.
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FIGURE?7.5-turn under the conditions of Figure 6. Note how
this is looped in contrast to Figures 3 and 5.

6. GENERAL CASE: PATH RELATIVE TO THE
GROUND. (0=R"-1)

We show that the equation of the vector PL as a
function of the parameters n and 0 is (generalizing (2) ):

PL=r(cos{6-n}-cosB,-sin {6 -1} +sin06-Rn) (8)
The argument at the beginning of section 3 concern-

ing flying round the arc SQ gives, for a general starting

point P instead of 5, the vector equation

PL=0Q + QL - OP (9)
Asinsection 4 we project vectors on the axes OX, ON.

Trigonometrical details depend on the order of the fixed
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FIGURE 8. Vector diagram for section 8 (case 2).
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FIGURE 9. Vector diagram for section 8 (case 3).

points (W, S, X) and the variable ones (P, Q). The
possibilities are illustrated in three figures as follows: -
Figure 5(W, 5, P, Q, X); Figure 7 (W, P, 5, Q, X); Figure
8(W,P,Q,S X).

For the vector QL note that its direction is NS and its
magnitude |QL/= R so that

QL=r(0,-Rn) (10)
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R=1/3 =228

FIGURE 10. With Figure 11, this illustrates the behavior of
the figure-§ relative to r as R decreases (weakening wind).

For OP there are two cases. In Figure 5, POX = 0 so
projecting on SN, OX

OP =r(cos,-sin0) (11)
In Figures 8 and 9,

POS =0 - w2

so that

OP =r (- sin {6 - W2), - cos {6 - W2})

which by simple trigonometrical identities is the same
as (11).

For OQ, in Figures 5 and 8, QOX = 0 - 1] (the heading
at Q) so

0Q =r (cos {6 - 1), sin{0 - 1)) (12)

In Figure 9 we have QOS =8 - 11 - /2 and again using
identities this gives (12). Combining (9), (10}, (11), (12)
gives (8) as stated.

(6. 1) Shape of the path relative to the ground.

The remarks on symmetry in section 3. (i) carry over
almost unchanged, to show that the path relative to the
ground is a figure of eight centered at the origin P with
axes parallel, and perpendicular, to OX and SN. Ex-
amples will be seen in the figures for various values of
R in the appendix, plotted using equation 8.

(6. ii) Maximum distances from P in direction of the
axes.
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FIGURE11. With R=1/3in Figure 10and R =2/9 here, note

the lobes of the figure-8 expanding to fill the turning circles.

Asinsection 3, thereisamaximum width of the lobes,
or diameter, in the direction parallel to SN. This is a
function of R, and the diameter of the figure-8 parallel to
OX also varies with R. Values of these provide a useful
impression of the distances traveled away from the
center with varying air- and windspeeds, to comple-
ment the plots reproduced.

Differentiating (8) with respect to n gives (13)

(d/dn) PL =r (sin {0 - 11}, cos {6 - n} - R) (14)

Let Nmin be the value in 0 < ) < W2 for which the
(negative) second coordinate is a minimum, given by

cos {0 - Nmint =R (15)

Substituting from this in (8), and also using equation
(6) gives the position of the minimum

PLpin=r(R - '\"I.l. - RZGZ, R cosIR - \I'Il - RZ}

7. TECHNIQUE FOR FLYING THE OPTIMAL FIG-
URE-8.

This section, together with sections 8 and 9, will be
concerned with work in progress, further proposals,
and some general comments. There is no claim of com-
pleteness, and some results will be presented in the form
of examples.

(7.i) Simple Case: Use of landmarks.
To illustrate the various requirements, and one solu-

tion, let us consider the simple cases of sections 1 and 2.
Assume airspeed A = 45 kts. windspeed W = 28.64 kts.
and wind direction 0° (from). Suppose suitable lift is
encountered while flying upwind, due North. Then the
pilot should turn onto 0907, reverse direction onto 2707,
and so on.

The only problem is to perform the first 90° turn, and
subsequent 180° ones with sufficient precision. In good
visibility this is easy: before the first turn, note land-
marks (preferably prominent and distant) or conspicu-
ous clouds off both wingtips. Reversing the turn when
heading, alternately, towards one and then the other of
these marks results in flying the special figure-8 of the
simple case.

(7.ii). General Case for any R (O R'1): Further Use of
landmarks.

For the above technique to be useful it must clearly be
extended to allow for any combination of A and W that
islikely to be encountered. The basis of this has been laid
in Sections 5 and 6. Note in particular the role of the
solution 0 to equation (6). A table of values of 8° will be
found in the Appendix at the end of the paper. It is
usetful to note values of 6 for likely combinations of A
and W, on the basis of met. observations, before flying.
See section (4.11) for the use of degrees here and below.

The use of landmarks allows us to treat the upwind
direction as 0%, as in (7.1). Then the problem is to reverse
the turn on the alternate headings 0° and 360° - 6°, This
depends on the wind strength:-

(a) In strong winds (R near 1) 07 is small, and looking
ahead it is possible to judge a weave of a few degrees
either side of the upwind direction.

(b) In weaker winds 07 is larger, but an approximate
measured turn can still be based on the 90” angle be-
tween aircraft heading and wingtip direction, by scan-
ning the quadrant between nose and wingtip, and di-
viding it by eye. If 87 < 90° then a landmark bearing 6°
canbe approximately located in this way. [f 8" > 907 turn
through 907 and then a further 8° - 90°. The opposite
reverse turns are, from North, the same magnitudes but
to the left.

This procedure of locating landmarks isapproximate
but simple especially if it is practiced in advance. Useful
landmarks can be noted, and judgment of angles im-
proved by doing turns onto headings and then letting
the compass settle. Noting landmarks and their bear-
ings can also be done during an actual search for lift.
(7. iii) Use of Instruments.

The compass could obviously take the primary role
in fixing the turn reversals, and for these it is necessary
toallow for the wind direction. Let the wind direction be
6°. In (7.4 and ii) 8" = 0° and the headings for turn
reversals are + 6 (when turning right) and - 6° (left).

Changing the wind direction to 6° changes these to &
+ 8" and 8" - 0° respectively. Note that the first of these
may exceed 360° while the latter may be negative.
Conventionally a compass heading will be within the
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interval (0°,360°). Let the compass headings on which

to reverse from a right [resp. left] turn be o [resp. 8°].
Using the fact that 0:8°360° and 0:6°:180°, we find that
the conditions are satisfied by the following special
cases of addition and subtraction modulo 360:-

& + 0° if this * 360°
o=

6" + 6" - 360" otherwise.

5" - 0% if this=0°
8’ - 8° + 360° otherwise.

Glider pilots who have practised the art of turning
onto headings on a magnetic compass will easily de-
velop the technique. At altitude in wave the turns can
often be fairly gentle, which may make it easier. Lower
down, and particularly when trying to make the transi-
tion from hill soaring to wave, tighter turns and higher
airspeeds are likely to be necessary. A directional gyro
would help. When there is no horizon, instruments may
be necessary for the turn reversals, even though the
glider is clear of cloud.

When searching for lift on any heading in good
visibility, itis useful tobe prepared with theappropriate
values of ¢” and B8°. With this, one can start a turn in the
preferred direction as soon as good lift is encountered,
and reverse on the correct heading by compass. A
flexible approach, with cross reference between land-
marks and compass, seems generally desirable.

8. PROPOSALS FOR EVALUATION OF THE
METHOD.

No systematic attempt to evaluate the technique has
yet been possible, but on the relatively few flights on
which it has been tried there have been some encourag-
ing results. These were not evaluated against defined
criteria, and, in the small sample, variation of conditions
such as weather, presence of other gliders to compare
performance, etc. meant that no two flights could be
precisely compared. Nevertheless, observations such as
climbing above gliders of lower wingload, or being the
only one of a group to climb from hill lift into wave
seemed, as just said “encouraging.”

An obvious proposal is that more people should try
the technique. If they find it produces markedly better
performance than they had expected in the conditions,
the term “encouraging” would be reinforced.

In the longer run, however, a systematic evaluation
will be needed. After the first successful climb, the
Author (a statistician) sobered up on the thought that
anything that kept the pilot more or less in the right area,
and helped to concentrate the mind and hands, would
produce the same result when a puff of better lift came
along.

[tis not only in the case of apparent success that a test
would be useful. If the technique increased the propor-
tion of winch launches into hill lift that led on to a wave
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climb by quite a modest factor, the economics of this
gain could turn out very welcome. Yet statistical signifi-
cance of the corresponding level might not be detectable
by “the naked eye”: only controls, comparisons of like
withlike, and sufficient recorded flightsinlarge enough
number would give a clear discrimination. In such a
trial, use of directional gyros, and perhaps evaluation of
the success or otherwise in holding position by GPS
would be advisable.

Obviously these remarks are only a hint of the plan-
ning that would be needed for a trial. Results from well
planned trials at different sites could be combined; a
process that is currently getting a lot of attention in
medical statistics.

9. SOME OTHER APPLICATIONS INCLUDING
LOW FLYING AND SAFETY PROBLEMS (ALSO
APPLICABLE TO POWER FLYING).

(9.1) General Remarks on the Equation of the Curves:
Cycloids.

The four bounding curves of the optimal figure-8
belong to a family of curves, the Cycloids, which are
well known in other applications. The ”
of the textbooks is commonly presented as the path of a
point on the rim of a wheel that is rolling along the X-
axis. Taking the radius of the wheel as 1, it has the
parametric equation:-

simple” cycloid

OP = (1 -sinn, 1-cos 1)

where 0is the position of the point of contact at the start
of motion, and P is that of the moving point when the
wheel has turned through the angle n. Comparing equa-
tion (8) we see that both equations have coordinates that
are linear functions of cos 11, sin 1, and n. (In the simplest
case above sin 1 is absent but this is due to the special
choice of axes). The point is that we can expect these
curves, and others that may arise in furtherapplications,
to have properties common to the family.

(9.ii) Final Turns and Low Flying.

Looking at the part of the curve in the lower right-
hand quadrant, it can be seen to start with flying across
wind, and drifting downwind. Then the turn tightens,
and ends directly upwind. The relationship with the
crosswind leg of a square circuit, when landing is to be
directly into wind, is obvious.

Crashes due to spinning on the final turn, and also in
situations such as circling low over a fixed point, for
photography or other reasons, have a long history. Too
low flying speed is obviously a primary cause. How-
ever, thereis some effect of low altitude, in upsetting the
pilot’s perception of rates of turn, and of the approach to
a desired heading or ground position.

The pilot’s natural inclination is to perceive flying a
steady turn as circling, which it is relative to the air, but
not relative to the ground. The different pattern of the
latter —sometimes very different as has been seen in this
study — is only experienced in the comparatively short



periods of time spent on final approach and other
forms of low flying.

Better understanding of what is happening might
reduce the risk of an inappropriate response. A study of
the curves involved could help in this, and these curves
are the some as, or related to, the figure-8 curves of the
presentstudy. This would beapplicable to powerand as
well as glider flying,.

(9.iii) Birdwatching.

Justafter having obtained the equation of the optimal

figure-8, the author was walking in the country and

observed a kestrel hovering overhead, facing directly
across the road, and hardly moving its wings as there
was lift off trees and the hedgerow. Suddenly it decided
to change station. It swung across wind, and followed
the road in a wide curve which tightened as it ap-
proached the upwind direction, when it came to a
standstill relative to the ground, once more hovering.
The author recognizes that a good deal of what he has
put into mathematical form has been known for a very
long time.

APPENDIX

Table of values of 8° against windspeed and airspeed.

W/S

0 5 10 15 20 25 30 35 40 45 50 55
55 | 180 165 151 139 127 115 103 90 77 62 43 0
50 | 180 163 148 135 122 109 95 81 65 45 0
45 | 180 162 146 131 116 101 86 69 48 0

W 40 | 180 160 142 125 109 92 73 51 0
35 1180 157 137 118 99 79 54 0
30 | 180 153 131 109 86 59 0
1

Remark on the end-values.

The value 180 corresponding to nil wind is consistent with the fact that no turn reversal is necessary:
circling will equally well keep the glider near the center. The value 0 is similarly consistent: when A =
W the optimal technique is to remain on a heading directly upwind.
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