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Longitudinal static stability and conirol ofa gliding
parachute are analyzed both analytically and numeri-
cally. The origins of center-of-gravi ty and speed limits
arediscussed.
l.Introduction

Typical glidingparachute is shown in Figure 1. Lon-
gitudinal and lateral control of the vessel is commonly
executed throuSh lines attached to the tniling edge of
thecanopy- apullon theselinescausesthe trailingpaft
of the canopy to flex downward, servinS much as a pair
of conventional elevons. In parachute's jargon, th€ trail-
ing edSe lines (and thepart of the trailinSedSeattached
to them) are known as'brakes'. In some desiSns, a pilot
can also conhol the lengths of the hnes attached to the
forward halfof the canopy so as to move him or herself
(and thevessel's center-of- gravity) forward andback-
ward relative to the canopy. In parachute's jargon the
system ofpulleys enabling a pilot to do so is known as
a 'speed system'.

In Reference 1 a standard static stability analysis was
used to demonstrate a peculiar nature of longitudinal
center-of-gravity limits of a Sliding pamchute. It was
shown that the/ora'rrd center-of- gravityposition ofthe
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vessel islimited by a loss ofcontrol powerwhereas ihe
/i/center-of-Sravityposition jslimitedby thestallof tlre
canopy. It was also shown that tha t:t loss of longj tu d inal
static stability and a loss ofcontrol power limit the top
speed of the vessel.

In this erposriron we remo\ e the most co sp;(u-
ous simplifying assumptions of Referenc€ 1 re'
garding the behavior of control derivatives, and
deliniate the center-of gravity and top-speed lim-
its numerically.

The static stability analysis of Reference 1, without
the pertinent simplifying assumptjons, is recapitulaied
in the next three sections. It will be followed bv an
analysis ofa moclel parachute.
2. Recapitulation - static stability

Consider a gliding parachute in a symmetric
unaccelerated fl ight. Foliowingconventional def initions
ofa€rodynamic coefficients, le t ihe projected wint area
and its meanaerodynamic chord serve as ihe respective
references.

Select a Cartesian coordinate system, with ihe r-, y-
and z axes pointing forward, righi ancl downward,
respectively. For the sake of beinS specific, it will be
assumed thai ihe r axis connects the trailing and the
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leadnrg edges of the mid-section of the rving.
Using wirlg's mean aerodynamjc chord as a unit of

length, let (r?r,z?r). (tci,zcd, eLzl) and (irp,zp) be the
re(pecti\.e drmen<ionleis coordrnJtp- of tlrp wrrrS rpro-
dynamic center, vess€l's center of gravity, lines' center
ofpressure, and pilot's center ofpressure - see Figure 1.

Also,letdbe the angle ofattack, measured between thc
direciion ofthe flow and "hex-axis.It will be assumed
that

(i) c is small ascompared with unjiy;

(ii) liftcoefficient CL is hrear with the anSle ofattack,
\'|z'

C1. =C1.,s+ua, (1)

where o is the lift slope coefficient, and CL,0 is thc lift
coefficient at zero angle ofattack;

(iii) dragcoerficient CD,?u isSivenbythe parabolicpotar

.,2( 1 ,, = ( 1'.,'t+ K( 1. l)\

lvhere CD,rro and (are nrdepenclent of Ct;

(iv) drag coefficjents of the lhes CD,/ and of the pilot
CD,t are nrdependent of the lift coefficien t;

(v) thereareno elastic deforma tions o f the canopy and
of the lines with the change in lift cocfficient - eievors

Under these assumptions, thepitchinS moment coef
ficierlt CM of the vessel abou ! i is center of gravj ty takes

C1y = C11,' r lr 't, - r. - )- ,r a/ , (:,, -:, d,lci
+ -lr r - aK r :... - .-, .rr f. r1)
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L,{r.o = L,rt,tr1, L/r,n l ,' -.,x,
-C D.tk.t - .,.1) - C D, r(. t, - ., ] (1)

Here, CM,.,O is the pitchingmomentcoef ficientof the
canopy abou t its aerodyna mic cent€r. By interpreta tion,
CM,0 is the hypothetical pitching momentcoef ficient of
the parachute about its center of-gravity when the
canopy produces no lift.

Ifa vessel is to hold its attitude, then CM needs to be
zero. With (3), this recluirement yields quadratic equa-
tion
.C M.a + la(:t " - 

.r, r)- Cr o(r,,. - r,.)1Cr.,,,,
(5)+(l -dKY:,, - ialti,,,r,, = o

for the lift coefficieirt Cl,rrtn at equilibrium Grim).
Among two possible solutions of (5), if exisi, we shall
choose theone atwhich ihevessel is siaticallystable; i.e.
we shall choose the soLriior lor which the derivative

dC\l act =(.(,, -r,!)-j(r/.,,(:,,. .,()
+,r( i-,r,(X:,, :,.)(r/. (6)

is neSative at CL = Cl,tl-j,r.It may be ensily !erified by
direct substitution that such n soluiidr is

Cr..u'- {-, r',,. 1..r2(l -.r(X.',, -:, r)
+C/r)(.,, -.,si

lla1r,,, - r, rl - {).,,r:,,. - :,.")l!
-aacq1.n(l-uKX:,, -:,.)l') (7)

Sinceboth CM,o and CL,0 ire functions of the (general-
ized ) elevons defl ection 6f, eqLra tion (7) defnres Ct, I r,
= CL,t, r",lr.q 6f I.

lr rs clpJr ilr..l (-r e. r- 1. orrli ir ll,p F\nrF..'o| under
ihe square'root is non{egntive - thni is, it exists only if

J"rr, ,.' r,..,r:... -:.r'l:
> 4./-,r,,/l - ,rK)(:., - ', ,l

In (11), the lelt h;rnd sjde js nonnegaii!e, whereas dre
right'hand sideiseithcrpositi! eorncg:rti! e,.lependitrg
on signs of ihe respccti!e nlultiPlicrs. Under nornral
cirL,.1,.l.r.(. 1,. r {l'LrL.', -.-.. r.,trri!.b}rl,,
(h^i(,'f l'(c^, r.li_.r",r-r' rn-r' Fi;r.re J H,r.e.rl
CM,0 is nomlcgitiYc, then (8) holLls uncond iiioni lly. I f,

on tlre oiher hind, Cl"f,o is ncgaiiyc, thcn there exist

r. = j,,, - ,lcl .o(.,,, - ..s)

=+ J;;q*,(l -,,,(x."-t. (e)

such that (8) holds if either

r, r, ) x+.

(10)

(11)
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(l - 4()(z,u -:..J, '

Ct.,r.i,,> Ct.,t for each x,- <x-,

C1.,171,1s-C1..1 for each {j > r*. (14)

by (7) and (9). Since neSative values of Cl,r/i,n are
irrelevant in thepresent discussion, (11) is ruled outby
(14); in which case the center-of-gravity should be posi
tioned behind r-. From (13) it thus follows that there
exist a lower bound on th€ lift coefficient possibly
attainable at trim.

Note that a gliding parachute with CM,0 < 0 is neu-
Lrally stdble al y.f - .r- by {6i, rq) rnd (I2). Since, by
a\qumption, the vassel is.upposed lo be -iJtr,.rlly,tJble
if (5) €xists, moving the center of gravity backward
seems to have a stabilizinS effect.

Undernormal circumstances, the sum of draS contri-
butions to CM,O is usually positive. Hence, at least in
principle, by flattening the profile one can design a

vessel with positive CM,o. As alreadycited above, such
a vessel will have no apparent limiiations on its lonSitu-
dinal center-of- travity position, and therefore itcould
be designed to ny at any desired lift coefficient below
stall lsee (13)1. At the same time, it seems improbable
that one can design anel€vons-conirolled glidhg para-
chute in such a way that ii will have a reasonable ranSe
ofaccessible lift coefficients on the one hand, and non-
negative CM,o. for all possible elevons deflections on
the other. But in order to trim the vessel with neFtive
CM,o.,the most forward center-of-gravity position
should be limited by (10). Thus, Siven the ranSe A =
(6"rrr.6ftrl) of usable eievons deflections, the require
ment that a trim condition should exist for each 5? in A,
limits the forward cent€r-of-Sravity position by

r"r.,=inf{,r-(d") | d,EA and Crv,o(6€)<O}. (15)

3. Recapitulation - €ontrol
Consider the derivative s AcL,trim/Aie and. acL,trin/

arcg. Differentiate, in tum, on both sides of (7) with
respect to 6e and .n g, and use (7) in the resulting expres-
sions so as to obtain

For r.8 = ra, the absolute value of Cl,fri,,r is

Ct.,r =

dL r.rtn _d:tr,B
dt., H '

acL,,tu _k* - k)c?.r,h, dcL,o

Frorn ( 18), ( 13)and (8) itfollowsthatHis negative for
each r"- < r. - r. Hence.

acu,inl dxcs<o for each r.s < r.s.t; r (19)

that is, moving the center-of-gravity forwarcl reduces
the lift coeffici€nt at irim as in a conventional vessel.

Predictable lonsitudhal control of a gliding para-
chute dictates tlrai l/rc /ift coclJicit't! nt ltit sho ld be nn

increnshS ftutction af conr'ols deJlEtio, viz.

H - --aC u.o + (t - aK)(2,, - 2,ii1..,,t,,,.

dct.l,i,,fd6" > 0 for each 6. in A.

dcto acn,u ^\ 1\! ' Zt I tL ! J tt nt--:- - d-----:- <U

- a dC t\lDld6tLt 2-- 1f :^.-dct t,/J '

08)
(12)

(13)

(20)

From(17), itimmediately Follo$'s thathordertosatisry
(20) for some r-.8 < i!.S,1., one neects

for each 6.' in a. In (21), JCt,o65i is normally positive,
$'hereas z?r, -:cg is ne8ative. Hence, with

(21)

(22)

equation (20) imposes a restriction

C 1 .,,,,,(x,.,6") >C1.2(6) (z3)

on the lift coefficient that is preclictably controllable
with elevons denected at be. Concurrently. it also im-
poses an additional restriction on the most forward
center-of-gravity position. With

x"r,u1,,(C1.,6 ,\ = x * + C M,o@")lc r.
+(zcs-.)fcL.o@) - (t -uK)c1.ffa, e4)

the longitudinal center-of-gravity position needed to
trim a vessel atlift coefficient CL with el€vons deflected
at 6c, and

CL)l6e\ = sw{C L)@.\, C u2G"\},

dris restriction takes on the form

xcg < rag 2'

t"r.2= inf{x"r,,,i^(C 1.r(d"),d") I d"€A}. e7)

From; (19) and (20), tl1e minimal lift coefficient Ct,,rnl
possibly attainable at trim corresponds to the most
forward center-ofgravity position, i.e. r.8 = jr.8,2, and

(25)

\26)

'H d6,

-t tt,i^ Eul 
.

H A6c

d6,

(16)
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elevons released, i.e.6e = 6rrirj explicitly,

ctni, = c u,.,(x.",2,6.i). (28)

4. Forward .enter-of-Sravity and minimal lift coeffi-
cientlimits
The resultsof the preceding twosections suggest that

the existence of the minimal lift coefficient limit, and,
concurrentl, of the forward center-of-gravity limiL is a
direct consequence of rcquiring a predictably control-
lable trim condition for all possible elevons positions. A
parachutewith CM,O(6,''n) > 0 utilizingcenter-of -gravity
movement for longitudinal contrcl (elevons released
and'fixed') can, inprinciple,be predictably trimmed at
any desired liftcoefficientbelow stall Isee (12) and (19)].

The minimal lilt coefficient of an elevonscontrolled
parachute depends on several design parameters, of
which the mostnoticeable arc CM,o and the ratio of the
derivatives acM,0/a6c and aCL,0/46c.

Unless the canopy is stal)ed, the last derivative is
positive. The first derivative,

ac MD dc^' do dcD*i.
d\ - d6" ;:-(zw -ril) 

esl

ls€e (4)l is either positiveor neSativ€, d€pending on the
relation between the drag (positive) and pitchhg mo-
ment (netative) contributions. If it could have been
made positiv€ for the entire range of elevons deflec-
tions, the parachute with CM,0(6r,tr) > 0 would have
had no restrictions on the minimal liftcoefficient and on
thc most forward centerof- Sravity position.

Typically, the derivative aCM,O,€6r is neSative for
small elevons deflections and positive for larS€ ones.
Since for small deflections C,y,6 can be designed posi-
tive, the predictability of elevons control a t small deflec-
tions is, perhaps, th€ most significant design criterion
that determines the minimal lift coefficieit and the
forward center-of-Sravity limit. Numerous numcrical
simulations that haveb€en doDe durinS this stucty seem
to support this conclusion.

Forsmall elevons defl ectionsone can usually assLrme
thatCL,2 isa decreasint function of6c.In thiscase, (20)
and (23) imply that

c s1,Q 
"r,2,6,,,,\ 

> C 1.2(6.",\; (30)

viz., CL,2(6rrtl is the lowerbourd on th€ lift coefficient
possibly attainable at trim. The concurrent
center-of-gravity limit is rcs,tri t(CL,2(6n 6t,rl.
5. Numerical example

We turn now to implement the above tlreory for n

typical recreational gliding parachute. The vessel to be
iiicussed l,os o ps.,ido-elliptic canopy of 25.6m2 lper
tinentchord distribution is givenby (A6)in Appcndix
Al, with midchord of 3.2m and span of 10.5m; thecanopy
iscurved intoan86'arcof radiusTm, centercd aboutthc
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pilot- The canopy h:rs 15'1, thick cross section with 2',1,

camber. 175 lines, each about 2.2m lon8 and 1mm in
diameter are attachcd to the canopy in 5 rows; these
lines mcrge into 42 lines attached to the pilot, each about
4.8m long and 1.smm in diameter. The vessel weighs
910N and its center ofgravity is located approximately
0.5 meterabove the ccnter of th€ canopy's arc.

The parachute is equipped with full'span elevors,
located between the trailinS edgeand the fourth row of
lines; the latter beinS connected at the respective
80%-chord points. S'nce the shape that the canopy ac-
cepts with the pull on the trailing edge is difficult to
predict, it was simulated usingseveral simplified mod'
els. Two ofthese modelss'ill bediscussed below. Mod€l
A assumes that the elcvonsbehave as 2o'Z"chord plain
flaps of variable deflection angle; the latter chan8es
between 0" at 6rrir and 60' at 6rrnr. Model B assumes
that the elevons behave as lsldown plah flaps ivith
variable chord; the latter changes bchv€€n 0'2, at 6"rir
and 20v, at 6,rrr.. For ihe sake of display, we shnll set
henceforth 6r'irr = 0 and 6',n! = 1

Asmallcodelvasu,ritten to reduce this data toa form
which is readily usible in equations displayed above.
Pertinent formulaearelisted nr Appcndix A. The result-
ing coefficients at 5c = 0 are followiuS

n=J.1. (=0.1, j..q=2.13
//= Ll8, ,\'=o), +=2.62CDI 0.03, CDr,=0.02, Cp,14 - 0.03,
CL,o=0.16, CM,1t0 = -0.06, C,tt,o = 0.0.t5

Trim condi tions as functiolls of elcvons deflectiolr are
presented in figures 2 and 3 for the two models of
elcvons dellection. In ench figure, the top h{o graphs
representequations(6) nnd(7).Thethird graphfrom the
lop represents flight velocitv, ascomputed f rom CL,tr,n
at standard se;r level conditions. The bottom Sraph
represents the Slide ritio, viz.

cL -
cD (31)

Consider FiSure 2 first. With tlre cente.-of-grnvity
positioned forward of .\?r+ 0.02, thest.t;c stabili$'i\'ill
be lost for some range o f elevon s deflcciions (cen tered a t

about 30',{, of maximal deflectio'l)- see dle top grnph nr
Figure 2. Hence, rir, + 0.02 is the most for$'ard
c€nter-of-gravity positiorl thit allows a stcad)'flight
rvithout activ€ stnbilization. This limit corresponds to
r.c I - sclr sectirrn 2.

'W'lh the cenlcr ol $r.rtrt\' p(\rlroncd bl]ltleen \r' I

0.02 nnd.r-ru, thc parachute is siaticnlly stable, but the
elevons control is reycrsed,for small deflections - the
spccd incrcases lvith thc'pull on the lirres'see the third
grnph nr FiSure 2. This behavior infers poor handlinS
qualities, and theref()re r-&, is the mosl fori{nrd
ccrlter-of-gravity position thatnllowsn prediciablecolr

C11.*s+ Cy11+ Cpn + KC1.x
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Figure 3. Trinr conLlitiuE as fLlr. tions of e le! ons dcllccijon
Model B.

nr, |8 lO d,

l5

1.0

0

Iigure 2. Trim conditions as f unctions of elevons

trolof theprrachule Thi\ Irmrt,orrespond5 ror.3 2 -.ee
Section3.

With thecenter-of-travity limit€dby jrrr, the minimal
liftcoeffici€ntatwlich the parachute can be trimmed is
about 0.45 - see the second graph in FiSure 2- It corre-
sponds to the top speed of aboui40km/hr at standard
sealevel condiiio!'$ - see th€ third traph h Figure 2.

This is themaximalspeed atwhich theparachutecanbe
predictably trimmed, i.e. the absolute top speed of the
vessel - see Section 4.

The use of model B to simulnie elevons dcflectiotl
yieids qualiiaiiveiy similar resl'lts, although tire limits
.\.r I JIrd -rrt 2 move Jft by .rl,uul 0.1, lhe m nrrnJl lrfl
coillicient iircreJses to rbo,rl 0.b. -rd tl,c top spe<d
reduces to aboLrt 3skm/hr. The scnsitivity of the for'
ward center-of-graviiy limit io the nodellinS of ihe
elevons deflection suggests ihn t experimenta I stu.ly of
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ihe flexible elevons is hdispensable.
It is commonly accepted !vith pnrachute designers

thatC[.h.nlJ withbrakes r. ]..' rd is set tobe sliShtly less

than ihe lift coefficient al,tt Jc givhg the best glide
ratio; this setting seems to 6" 'he most corvenient for
recreatioral soarhg. Ilence,. -lesigLrer'!vould, Prob-
ably, set the center ofgraviiy ni (or somewhat fori!nrd
of)-rlu-0.26 see bottom graph ir ritLrres2and3.lnihis
casc tllc mnximal spcccl of tl\e lmrachLrte (wiih brikes
rclcased) is only atrout 30km/hr see thircl triph fronr
ihe top in Figures 2 and 3. I Icncc, ir order to utilizc the
maxinrrlspeed potcntial of the vessel,r!hich r!'asshor!'n
above tobesomc!vhcrebeiween35 and 10 krn/hr, there
should be an in flight possibilit), to movc thc
ccnter-of gravity forwird. This is ihc plrrPose ol the
'sPeed system'.

The analysis of seciion 2 inrplies thnt stntic siabilii]
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imposes no limit on the aft center-ofgravity position.
This result is cl€arly elucidated by the top Sraph in
IiBures 2and 3. Analysis ofsection 3 implies that CL,r/t,
increases as cen ter-of-gravj ty moves aft, elcvons fixed.
This result issupporteC by thesecond graph inFigures
2 and 3. Thus, the aft center-of-grnvity position is lim-
iicd by the canopy s s(all only.
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Appendix A - Estimates ofth€ pertin€nt a€rodynamic
coefficients
Prolile

Figures 7 and 9 of Reference 2 infer that the parasite
drag coefficient Cd,?uo of LS1-0417 profile varies from
about0.01 to about0.05, deoending onthesizeof the air
intakes. The corresponding separation drag coefficient
(thecoefficientof thedra8polar) varies from0.01 to 0.1,

and thelift-slopecoefficienta2Dva.iesfmm5.5 to5. We
assume that these f igures are typical foranyprofile used
in gliding parachu tes.

Withnodata onsizeand location of theairintakeson
the particula r canopy, we choose r€presentativ€ values,
\iz. Cdw1 = 0.03, ks = 0.02 and n2D =5. Note that by
neglectinS aerod),namic interferencebetween the canopy
and th€ lines, one has that CD,u0 = Cd,w1.

Assume that the win8's profile has a circular aLc

mcan camber line. Thcn, the pitching mornent coeffi'
cicnt C,,,rc nhout thc quarter chord point, and ihe lift
co€fficient Cl,0 at zero angle ofattack, canbe cstimated
from the thin airfoil ihcory (see Refererre 3) bbe

C^.,, = - tl,

VOLUME XXI, NO.2

(A2)

where ( is the maxlnlal relaiive camber. In the prcseni
case, ( = 0.02; hence C'',n. - -0.063 nnd Ci 0 = 0.25.
Elevons

Assume that the effcct ofclcvorls on the profile char-
act€ristics is simila r to tha t produc€d by plainflaps. Let
.e and 6 be the relative elc(ons chord and elevons
deflection angle, respecti! ely. Let, also, e = arccos( I -
2..). Then, from lteference 4,

C 1.n = 4tr'('

ACro - 2(0+ sinfr)4d, 
.

L,C nt d,. z -O.25120 - sin2Dtfi.

aC4no = l'7t- rl 
3ssin2tt,

where I is an empirical correction ficior found is a

function of 6 irr Figure 3.33 of Rcferencc,l. Its value
varies fromabout0.SatS-.0 toabort0.las6app.oiches
unity.
Canopy

Let R and Oo, b€ the radius and half the anglc of the
iving'sarc. WithO in COo,,Oo,),let the local chord c(d)of
thewing be given by

(Ar\

(A1)

(As)

(A6)f(C) - .;
(- 2+ -,;,'g)+
run$tr*r"n'{l'

where co =lr(0) is the chord lcngth at lhe midsection of
thewinS.

Let | = -tn 2@.)/q..It is shown in cquation {6.73) of
R€ference 5 that forsuch a lvnrg, th€ nrcnnnerodynnmic
chord can be approximated by

c.,,, -.i,+[r * 0.6, * a,\ 

") 
l. (^7)

Under the presentcircumstances, \a4rere Oo,= 43 " and
to = 3.2nt, ( A7) yields tnu= 2.7,t

wrrl: S be'ng rhe wintJ rcr.letA t ,in)@oLlsbe
the respective aspect ratio. We no!v usc the liftin8 line
tleory developcd in References 5 and 5 to obtain fte
followirg approximate forrnula€

^ 6 t1,41 - rtt l r2t )t4l +.r r l + c;,,r l+ 2!rl

" --;;;I;.r-t r1dr

^ l+21 ^ 2. ,,- ,.1 
.,

(r\9)

C\/,,r) - q,,,,, ( l+ 0.62,5r), (.rtO)

for thL! r{in8's litt, jnduccrl ,1rig a,rd filching nronrcnt
col]fficicnts, ns rr'el1 rs(Al)
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(A11)

for the distancebetween the wing's aerodynamic center
and the center of the wing's arc. The accuracy of the
above formulae with respect to theexactformulae ofthe
liftinS line theory is esd;ated to be of the order of 12.

Under present circumstances, (A8), (A10) and (A11)
yield

z = R(1+2r)

Ct-3.1a + O.67-Cr,o,

CM,,o i -0.06,

.. l+21

Following equation (4.31) of Reference 4 (A9) im-
plies that K can be approximated by

out tobe oftheorder of1O3;whence the drag coefficieni
of all lines, based on their frontal area, should be aboui
1.1, by figure 4.6 of Reference 1. Accordingly, CD,l =
0.03.

Assume that the density of the lines per unitangle of
the wing's arc isconstant (it is allowed,however, tovary
with the distanc€ from the center of the arc). In lhe
present case, the density of the lines is about 30 Per
radian of the winS's arc at all distances which are less

then 4.8m from the center of the arc, and about 117 per
radian for all distances grater than that. For constant
density lines located between radii RO and RI, the
distance z between their centerof-pressure and the cen-
ter of the wing's arc is, simply,

4, + Rr sino,,

2 0,,
(A16)

Adetailed computationbas€d on this formula yields
4 = 1.78.
Pilot

Assume thatapilotholdsa sittingposition-Then, the
effective flaL-Dldte.rreJ of lhe oilot.hould be;bout
0.5m2, by Refererce 7: whence CD.p.0.02. Sin(e. by
assumpLron, the pilol is locrled rt tl)e cerrtet of lhe
wing's arc, therefore zp = 2.52. Note that with the
c€nter-of-gravity tocaiea 0.5m above the center of the
wint's aic, and .n7,l = 2.7m, one has that z..g = 2.43.

(A12)

(A13)

(A14)

(A1s)

where r(s was already estimated above. Thus, K = 0.i.
Lines

Assume all lines to be almost perpendicular to the
flow, and no aerodynamic interference between them.
Given typical flight velocity of lorrrec, the correspond-
ing cross flow Reynolds number on a single line turns
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