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Abstract

Longitudinal static stability and control of a gliding
parachute are analyzed both analytically and numeri-
cally. The origins of center-of-gravity and speed limits
are discussed.

1. Introduction

Typical gliding parachute is shown in Figure 1. Lon-
gitudinal and lateral control of the vessel is commonly
executed through lines attached to the trailing edge of
the canopy - a pull on these lines causes the trailing part
of the canopy to flex downward, serving much as a pair
of conventional elevons. In parachute’sjargon, the trail-
ing edgelines (and the part of the trailing edge attached
to them) are known as ‘brakes’. In some designs, a pilot
can also control the lengths of the lines attached to the
forward half of the canopy so as to move him or her self
(and the vessel’s center-of- gravity) forward and back-
ward relative to the canopy. In parachute’s jargon the
system of pulleys enabling a pilot to do so is known as
a ‘speed system’.

In Reference 1 a standard static stability analysis was
used to demonstrate a peculiar nature of longitudinal
center-of-gravity limits of a gliding parachute. It was
shown that the forward center-of- gravity position of the
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vessel is limited by a loss of control power whereas the
aft center-of-gravity position islimited by the stall of the
canopy.Itwasalsoshown thatthataloss of longitudinal
static stability and a loss of control power limit the top
speed of the vessel.

In this exposition we remove the most conspicu-
ous simplifying assumptions of Reference 1 re-
garding the behavior of control derivatives, and
deliniate the center-of-gravity and top-speed lim-
its numerically.

The static stability analysis of Reference 1, without
the pertinent simplifying assumptions, is recapitulated
in the next three sections. It will be followed by an
analysis of a model parachute.

2. Recapitulation - static stability

Consider a gliding parachute in a symmetric
unaccelerated flight. Following conventional definitions
of aerodynamic coefficients, let the projected wing area
and its mean aerodynamic chord serve as the respective
references.

Select a Cartesian coordinate system, with the x-, y-
and z- axes pointing forward, right and downward,
respectively. For the sake of being specific, it will be
assumed that the x-axis connects the trailing and the
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Figure 1. Notation.

leading edges of the mid-section of the wing.

Using wing’s mean aerodynamic chord as a unit of
length, let (x,zzp). (ICS’ZCS)' (x1,z}]) and {xp,:p} be the
respective dimensionless coordinates of the wing aero-
dynamic center, vessel’s center of gravity, lines’ center
of pressure, and pilot’s center of pressure - see Figure 1.
Also, let a be the angle of attack, measured between the
direction of the flow and “hex-axis. It will be assumed
that

(i) o issmall as compared with unity;

(ii) lift coefficient CJ is linear with the angle of attack,
viz.

C, =Cp+aa, (1)

where « is the lift slope coefficient, and CJ ) is the lift
coefficient at zero angle of attack;

(iii) drag coefficient Cp zpisgivenby the parabolic polar

CD,W = CD.WU + KC:! (2)

where Cp ¢y and K are independent of C ;

(iv) drag coefficients of the lines Cp j and of the pilot
CD,p are independent of the lift coefficient;

(v) thereare no elastic deformations of the canopy and
of the lines with the change in lift coefficient - elevons
held constant.

Under these assumptions, the pitching moment coef-
ficient Cpj of the vessel about its center of gravity takes

on the form |
Chy = C_.tm +[(x,, —-‘q,-) = HCI,.{J(:“- — oy }]CJ.
M o ()

+ {—'!(l* akXz,,
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:?CM/&CL = f,’.’n.

where

CM.ﬂ &= CM.hﬂ = C.J'),u{)(:\l' = :r,n;)
_C!).f( ‘-'r'll - :lg) a CD.F( :';: - z('_;;} 2 (4)

Here, Cp 0is the pitching moment coefficient of the
canopy aboutitsaerodynamic center. By interpretation,
CM,01s the hypothetical pitching moment coefficient of
the parachute about its center-of-gravity when the
canopy produces no lift.

If a vessel is to hold its attitude, then Cpf needs to be
zero. With (3), this requirement yields quadratic equa-
tion
aC.‘-f,{) + Ia(.t'w - .\".j‘,) - CL,H(:W S :r'g)!cf.m'm

+ ( 1= ak X:w oz :t‘g )sz g = 0 (D)

for the lift coefficient C[ tyip; at equilibrium (trim).

Among two possible solutions of (5), if exist, we shall

choose the oneatwhich the vessel is statically stable; i.e.

we shall choose the solution for which the derivative

" | - 2

g (6)
+5(l=aK Xz, — 200,

is negative at CJ = CJ_ tpjy;. It may be easily verified by

direct substitution that such a solution is

|
Cr.avim = 0 aK Nz, :,-;_.J{”d (=)
+C 100 = Sg)
—“H(.f“, = ry)“cf ol — 2 l;)[»
~4aC 1ol —aK )z, ~ 2 P} (7)

Since both Cpg g and C g are functions of the (general-
ized) elevons deflection &,, equation (7) defines C[_ tyim
= CL,:‘J'huf-‘-'cg;SL‘)v

It is clear that (7) exists only if the expression under
the square-root is non-negative — that is, it exists only if

[alxy =) = Crpbzy = 2e0)l”
2451(1”(](1‘“(31{){‘_"_«‘,‘.)

In(14), theleft-hand side is nonnegative, whereas the
right-hand sideis either positive ornegative, depending
on signs of the respective multipliers. Under normal
circumstances aK< 1, whereas z; - zpq is negativ eby the
choice of the coordinate system - see Figure 1. Hence, if
Cp . 0is nonnegative, then (8) holds unconditionally. If,
on the other hand, Cpj () is negative, then there exist

(8)

Ji
Xe = Xy — Ca’ H( e T :1"3)
x-{'-f J4u(.“l.\,_“(l —ak) (5, — )y (9)

such that (8) holds if either

£ SH_ (10)
or
X,.u= Xy
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For Xcg =X, the absolute value of CJ_ ¢pim is

& ow aCr0

tol \!(1 - aK)(z, —Zeg) (12)
whereas
Crimz Cr, for each x., <x, (13)
Cririm < ~C,., foreach x,, = .x,. (14)

by (7) and (9). Since negative values of C[ trim are
irrelevantin the present discussion, (11) is ruled out by
(14); in which case the center-of-gravity should be posi-
tioned behind x_. From (13) it thus follows that there
exist a lower bound on the lift coefficient possibly
attainable at trim.

Note that a gliding parachute with Cp,0 < 0 is neu-
trally stable at xcg = x_, by (6), (9) and (12). Since, by
assumption, the vesselis supposed tobe statically stable
if (6) exists, moving the center of gravity backward
seems to have a stabilizing effect.

Under normal circumstances, the sum of drag contri-
butions to Cp,0 is usually positive. Hence, at least in
principle, by flattening the profile one can design a
vessel with positive Cpf 0. As already cited above, such
avessel willhave noapparent limitations onits longitu-
dinal center-of- gravity position, and therefore it could
be designed to fly at any desired lift coefficient below
stall [see (13)]. At the same time, it seems improbable
that one can design an elevons-controlled gliding para-
chute in such a way that it will have a reasonable range
of accessible lift coefficients on the one hand, and non-
negative Cpf 0. for all possible elevons deflections on
the other. But in order to trim the vessel with negative
CM,0-,the most forward center-of-gravity position
should be limited by (10). Thus, given the range A =
(8111i11,8max) of usable elevons deflections, the require-
ment that a trim condition should exist for each 8¢ in A,
limits the forward center-of-gravity position by

xcg‘lzinf{x_(ﬁe) | 6-6 €A and Cﬂf‘o(ag)SO}. (15)

3. Recapitulation - control

Consider the derivatives dC[, trin/08e and 9CL trim/
dxcg. Differentiate, in turn, on both sides of (7) with
respect to §¢ and xg, and use (7) in the resulting expres-
sions so as to obtain

2
aCLJrim - ‘f.!’...'rim

16
0% g H (26)
2
6C!.Jrlm o (zw = Zr.‘g)c.!’..!rl'm 5CL_0
ad, ‘' H dé,
. ‘CLJn'm dCM,() .
H  3s, (17)

where

H=-aCy o+ (1 -aK)(z, - zc'g)cfz,.n'im' (18)

From(18),(13)and (8) it follows that Hisnegative for
each x¢q < xcq,1. Hence,
ICL primf 9xcg < 0 for each Xou % X i (19)
that is, moving the center-of-gravity forward reduces
the lift coefficient at trim - as in a conventional vessel.
Predictable longitudinal control of a gliding para-

chute dictates that the lift coefficient at trim should be an
increasing function of controls deflection, viz.

dC; 1rim/ 30, >0 foreach 8, in A (20)

From(17),itimmediately follows thatin order tosatisfy
(20) for some x¢g < Xcg,1., one needs
L& (=

aCy o dCp0
—.{ <0
a0, 0

(] ¢

(Zu' — ey )C!,..‘n'm (21)

for each 8, in A. In (21), dC[, /95, is normally positive,
whereas zy, - z¢¢ is negative. Hence, with

a ‘5'(7;«411/ do, (22)
Zr‘g - JC.I'..”/(?‘SC’

Cra=-

equation (20) imposes a restriction

Cf,.frmi('r:'g’du) = CLZZ( Qf] (23)

on the lift coefficient that is predictably controllable
with elevons deflected at be. Concurrently, it also im-
poses an additional restriction on the most forward
center-of-gravity position. With

Xegarim(Cr.,0¢) = X,y + Cpy 0(8,)/Cy.
(2o =2, Cp0(8,) - (1 -aK)C, |fa, (24)
the longitudinal center-of-gravity position needed to

trim a vessel at lift coefficient C] with elevons deflected
at 5,-3, and

CL12(8,) = sup{Cy,1(8,), C; ()}, (25)

this restriction takes on the form

xcg < Xcg, 20 (26)

where

Xeg2 = inf{xcg.m'm(cf_z(ae)'ée) 1 6363}- (27)

From;(19) and (20), the minimallift coefficientCJ, min
possibly attainable at trim corresponds to the most
forward center-ofgravity position, i.e. xg = X¢g,2, and
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elevons released, i.e. §p = 8y ; explicitly,

Cf..m:'n - CLJrim(xc'g,Z'émfrl)' (28)

4. Forward center-of-gravity and minimal lift coeffi-

cient limits

Theresults of the preceding two sections suggest that
the existence of the minimal lift coefficient limit, and,
concurrently, of the forward center-of-gravity limit, isa
direct consequence of requiring a predictably control-
lable trim condition for all possible elevons positions. A
parachutewith Cpf,0(8yyin) > O utilizing center-of-gravity
movement for longitudinal control (elevons released
and ‘fixed’) can, in principle, be predictably trimmed at
any desired lift coefficientbelow stall [see (12) and (19)].

The minimal lift coefficient of an elevonscontrolled
parachute depends on several design parameters, of
which the most noticeable are CM,0 and the ratio of the
derivatives dCM,0/08, and dC[,(0/8,.

Unless the canopy is stalled, the last derivative is
positive. The first derivative,

_ 9Crmwo _ ICpwo

36, 8,

6CM”
b

(2w = 2ep)s (29)

€
[see (4)] is either positive or negative, depending on the
relation between the drag (positive) and pitching mo-
ment (negative) contributions. If it could have been
made positive for the entire range of elevons deflec-
tions, the parachute with Cpq,0(8);) > 0 would have
had no restrictions on the minimal lift coefficientand on
the most forward centerof- gravity position.

Typically, the derivative dCp,0/08, is negative for
small elevons deflections and positive for large ones.
Since for small deflections Cpg,0 can be designed posi-
tive, the predictability of elevons control at small deflec-
tions is, perhaps, the most significant design criterion
that determines the minimal lift coefficient and the
forward center-of-gravity limit. Numerous numerical
simulations thathave been done during this study seem
to support this conclusion.

Forsmallelevons deflections one can usually assume
that C[,,2 is a decreasing function of ;. In this case, (20)
and (23) imply that

Cl.Jn'm(x cg.2 '6:"1 n) > CI.,Z( 6ml'n); (30)

viz., CL,2(8nin) is thelower bound on the lift coefficient
possibly attainable at trim. The concurrent
center-of-gravity limit is ICS’“-1'”;((:[_'2(6””'”)6”“'”).
5. Numerical example

We turn now to implement the above theory for a
typical recreational gliding parachute. The vessel to be
discussed has a pseudo-elliptic canopy of 25.6m? [per-
tinent chord distribution is given by (A6) in Appendix
A],withmidchord of 3.2mand span of 10.5m; the canopy
iscurved intoan 86°arcofradius 7m, centered about the
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pilot. The canopy has 15% thick cross section with 2%
camber. 175 lines, each about 2.2m long and 1mm in
diameter are attached to the canopy in 5 rows; these
lines merge into42 lines attached to the pilot, each about
4.8m long and 1.5mm in diameter. The vessel weighs
910N and its center of gravity is located approximately
0.5 meter above the center of the canopy’s arc.

The parachute is equipped with full-span elevons,
located between the trailing edge and the fourth row of
lines; the latter being connected at the respective
80%-chord points. Since the shape that the canopy ac-
cepts with the pull on the trailing edge is difficult to
predict, it was simulated using several simplified mod-
els. Twoof these models will be discussed below. Model
A assumes that the elevons behave as 20%-chord plain
flaps of variable deflection angle; the latter changes
between 0° at 8,75 and 60° at 8,5y Model B assumes
that the elevons behave as 45°-down plain flaps with
variable chord; the latter changes between 0% at 8,
and 20% at &;yqy.. For the sake of display, we shall set
henceforth 8,;;; = 0 and &;qx. = 1.

Asmallcode was written toreduce thisdata toa form
which is readily usable in equations displayed above.
Pertinent formulaeare listed in Appendix A. The result-
ing coefficients at 8, = 0 are following

a=31, K=01, Zeg = 243,
zl= 118, L= []2, Ip = F).f)?.,
Cp,1=0.03, CpD,p=0.02, D,w0 = 0.03,
Cr,0=0.16, CM, w0 =-0.06, Cm,p =0.045

Trim conditionsas functions of elevons deflectionare
presented in figures 2 and 3 for the two models of
elevons deflection. In each figure, the top two graphs
representequations(6)and (7). The third graph from the
top represents flight velocity, ascomputed from C[_ ¢yim
at standard sea level conditions. The bottom graph
represents the glide ratio, viz.

G G
Co  Cpwo+Cps+Cpp+KGE' (31)

Consider Figure 2 first. With the center-of-gravity
positioned forward of xz, + 0.02, the static stability will
be lost for some range of elevons deflections (centered at
about 30% of maximal deflection) - see the top graphin
Figure 2. Hence, xy + 0.02 is the most forward
center-of-gravity position that allows a steady flight
without active stabilization. This limit corresponds to
Xcg,1 - see section 2.

With the center-of-gravity positioned between xz +
0.02 and xzp , the parachute is statically stable, but the
elevons control is reversed,for small deflections - the
speed increases with the pull on the lines - see the third
graph in Figure 2. This behavior infers poor handling
qualities, and therefore xy, is the most forward
center-of-gravity position thatallowsa predictable con-
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trol of the parachute. This limit corresponds to x¢g, 2 - see
Section 3.

With the center-of-gravity limited by x7,, the minimal
lift coefficient at which the parachute can be trimmed is
about 0.45 - see the second graph in Figure 2. It corre-
sponds to the top speed of about 40km /hr at standard
sea-level conditions - see the third graph in Figure 2.
This is the maximalspeed at which the parachute canbe
predictably trimmed, i.e. the absolute top speed of the
vessel - see Section 4.

The use of model B to simulate elevons deflection
yields qualitaiively similar results, although the limits
Xcg,1 and x¢g,2 move aft by about 0.1, the minimal lift
coefficient increases to about 0.6, and the top speed
reduces to about 35km/hr. The sensitivity of the for-
ward center-of-gravity limit to the modelling of the
elevons deflection suggests that experimental study of
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the flexible elevons is indispensable.

It is commonly accepted with parachute designers
that C[ trim withbrakesrelec odissettobeslightly less
than the lift coefficient C[, ¢! de giving the best glide
ratio; this setting seems to be the most corvenient for
recreational soaring. Hence, o designer would, prob-
ably, set the center of gravity at {or somewhat forward
of) x7-0.26 - see bottom graphin “igures 2 and 3. In this
case the maximal speed of the parachute (with brakes
released) is only about 30km/hr - see third graph from
the top in Figures 2 and 3. Hence, iv order to utilize the
maximal speed potential of the vessel, whichwasshown
above tobe somewherebetween 35and 40 km /hr, there
should be an in-flight possibility to move the
center-of-gravity forward. This is the purpose of the

‘speed system’.

The analysis of section 2 implies that static stability
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imposes no limit on the aft center-ofgravity position.
This result is clearly elucidated by the top graph in
figures 2and 3. Analysis of section 3implies that C[ tyinm
increases as center-of-gravity moves aft, elevons fixed.
This result is supported by the second graph in Figures
2 and 3. Thus, the aft center-of-gravity position is lim-
ited by tne canopy’s stall only.
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Appendix A - Estimates of the pertinent aerodynamic
coefficients

Profile

Figures 7 and 9 of Reference 2 infer that the parasite
drag coefficient C4 7y of LS1-0417 profile varies from
about0.01 to about 0.05, depending on the size of the air
intakes. The corresponding separation drag coefficient
(the coefficient of the drag polar) varies from 0.01 to 0.1,
and thelift-slope coefficientapp varies from5.5to 5. We
assume that these figuresare typical forany profile used
in gliding parachutes.

Withnodata onsize and location of the air intakes on
the particular canopy, we choose representative values,
viz. Cdp0 = 0.03, kg = 0.02 and app =5. Note that by
neglecting aerodynamicinterference between the canopy
and the lines, one has that Cp 10 = Cd 200

Assume that the wing’s profile has a circular arc
mean camber line. Then, the pitching moment coeffi-
cient Cyy,q¢ ahout the quarter chord point, and the lift
coefficient C] g at zero angle of attack, can be estimated
from the thin airfoil theory (see Reference 3) to be

(Al)
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CI.U = 4JTC (Az)

where ( is the maximal relative camber. In the present
case, { = 0.02; hence Cy g¢ = -0.063 and Cj g = 0.25.
Elevons

Assume that the effect of elevons on the profile char-
acteristics is similar to that produced by plain flaps. Let
ce and O be the relative elevons chord and elevons
deflection angle, respectively. Let, also, 6 = arccos( 1 -
2¢e). Then, from Reference 4,

ﬁC‘_n = 2(9 + Sil‘lml]ﬁ. (A:‘_\
AC,, 4 = -0.25(20 - sin20)nd, (A4)
AC 0= l.?t.‘e":‘xsinzﬁ. (A5)

where 11 is an empirical correction factor found as a
function of & in Figure 3.33 of Reference 4. Its value
varies fromabout0.8at§** 0 toabout0.4asdapproaches
unity.
Canopy

Let R and ¢, be the radius and half the angle of the
wing’s arc. With ¢ in (-0p,,00,), let the local chord ¢(¢) of
the wing be given by

(lanz%-'-—lnn?'-‘-;-);-

(@) = ¢ .
® tan £-(1 + tan® %

(A6)

where ¢, = ¢(0) is the chord length at the midsection of
the wing,.

Let t = -tan2(¢y/4).. It is shown in equation (6.73) of
Reference 5 that for such a wing, the mean aerodynamic
chord can be approximated by

Cﬁ v

= ¢y [1+0.67 + XT)). (A7)

Under the present circumstances, where ¢p,= 43" and
co=3.2m, (A7) yields cap = 2.7m.

With: Sbeing the wing area, let A = 4R2sin(0,/2)/Sbe
the respective aspect ratio. We now use the lifting line
theory developed in References 5 and 6 to obtain the
following approximate formulae

GpAl = 1)l aypa(l +47) + Gy 1+ 27))

C,r_ Al - 17)" + t-!:“” +T }:‘ (‘\8)
1+2t
(‘.‘JI‘. = x A (‘J 2
o (A9)
and

C.U_n'(] - (':H ,m'( 1+ 0.6257) ’ (,\ I O]

for the wing's lift, induced drag and pitching moment
coefficients, as well as
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z= R(1+27) (A11)
for the distance between the wing’s aerodynamic center
and the center of the wing’s arc. The accuracy of the
above formulae with respect to the exact formulae of the
lifting line theory is estimated to be of the order of 2
Under present circumstances, (A8), (A10) and (All)
yield

Cy ~3 la + 0.67C ¢, (A12)
Crrwo = -0.06, (A13)
w= 0.2, (A14)

Following equation (4.31) of Reference 4, (A9) im-
plies that K can be approximated by

2
l;A-r*.k“

(A15)

where ks was already estimated above. Thus, K= 0.1.
Lines

Assume all lines to be almost perpendicular to the
flow, and no aerodynamic interference between them.
Given typical flight velocity of 10m/sec, the correspond-
ing cross flow Reynolds number on a single line turns
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out to be of the order of 103; whence the drag coefficient
of all lines, based on their frontal area, should be about
1.1, by figure 4.6 of Reference 4. Accordingly, Cp =
0.03.

Assume that the density of the lines per unit angle of
thewing’sarcisconstant(itisallowed, however, tovary
with the distance from the center of the arc). In the
present case, the density of the lines is about 30 per
radian of the wing’s arc at all distances which are less
then 4.8m from the center of the arc, and about 117 per
radian for all distances grater than that. For constant
density lines located between radii Rg and Rj, the
distance z between their centerof-pressure and the cen-
ter of the wing’s arc is, simply,

R, + R, sing,,

z (A16)
2 ¢l)
A detailed computation based on this formula yields
z]=1.18.

Pilot

Assume thata pilotholds a sitting position. Then, the
effectwe flat-plate area of the pilot should be about
0.5m?2, by Reference 7; whence Cp p = 0.02. Since, by
assumption, the pilot is located at the center of the
wing’s arc, therefore zp = 2.62. Note that with the
center-of-gravity located 0.5m above the center of the
wing's arc, and cgp = 2.7m, one has that Zeg = 2.43.
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