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Abstract

An inverse method for designing airfoils, in which final
profilesare determined from prescribed pressure distribu-
tions, is researched. First, an inverse method using the
panel method is briefly introduced. Then, a method using
a non-linear equation as the governing equation is pro-
posed. Due to the treatment of the boundary condition on
the airfoil surface, modification of the airfoil geometry is
complicated, so an iterative direct-inverse approach is
applied. Residual of the calculated pressure distribution
by the direct method solving compressible Navier-Stokes
equation and the prescribed pressure distribution will be
minimized by a numerical optimization method. The pro-
cedure is repeated until good convergence is attained in
the final profile. A brief result of a non-lifting case isshown.
1. Introduction

Due to the cost of wind tunnel testing and improvement
in the performance of computers, designing components
of airplanes using computers is playing an important part
inthe designstage today. Direct method whichanalyze the
flow around anairfoil whose shape is prescribed is used as
a tool for designing airfoils in the industrial stage. Inverse
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method, which determines the airfoil shape satisfying the
prescribed flow condition, however, is still in the experi-
mental stage.

Although the inverse method has a possibility of not
having a solution to the prescribed condition, it also has a
possibility to obtain a breakthrough to the performance
which may be difficult to attain using the direct method.

Inverse method can be divided into two categories:
analytical method and computational method. The ana-
lytical method which transforms an airfoil into a circle
whose solution is known using conformal mapping was
used by Lighthill™ and Sato®. This method is limited to
only solving a two dimensional problem.

Oneofthe mostsimple waystosolve aninverse problem
::nmpulatinnnl]y istoassume the flowasaa potential one,
and use the Laplace equation as the governing equation.
Forexample, the method by Bristow and Grose ™ can cover
a wide range of inverse problems, including designing a
portion of an airfoil, with the remaining portion already
designed.

2. Inverse Panel Method bv Shigemi
The panel method is one of the most widely used tools to
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Nomenclature

Symbols:

e internal energy per unit mass

l,- length of the panel

m number of node at trailing edge

b static pressure

r distance from trailing edge

u, v velocity components in a Carte-
sian system

C surface curvature

¢, pressure coefficient

J Jacobian

M local Mach number

7l temperature

uv contravariant velocity compo-
nents

U, free stream velocity
angle of attack

7 vortex strength of i-th panel
coefficient of bulk viscosily

U coefficient of viscosity

&1 transformed coordinates
density

T shear stress

Suflfix

(n) normal

(1) tungential

o0 uniform flow

solve a potential flow problem. Although the flow solved
by the panel method is inviscid and incompressible, it
approximates the flow around an airfoil very well in case
the flow is in a low Mach number region and has no large
separations. The panel method, which was originally de-
veloped to solve the direct problem, can also be applied to
the inverse problem.

Webriefly introduce the panel method whech was modi-
fied by Shigemi“"®. First, we give the principle of the panel
method as a solution to the direct problem, then we apply
it to the inverse problem.

An airfoil is discretized to mi-1 nodes, starting counter
clockwise from the trailing edge, so the trailing edge point
is counted again as the m-th node. The density of the
distributed vortex is Y, at the i-th node, and varies linearly

from Y. to v, along the i-th panel.

At the i-th control point (x,,) of the i-th panel (typically
the midpoint), the velocity component normal to the sur-
face v," is given as follows:
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and I ~I, are coefficients which are functions of xand y. U_
and o are the free stream velocity and angle of attack,
respectively. Boundary condition of zero normal velocity
at the body surface is given by setting the left hand side of
Eq. (1) to zero, which will be rewritten as follows:

mil AI)’} ":IE'”’;‘H
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=2xU,(Y;cosa - X;sina)

(i=1,2-,m-1) (7)

The Kutta condition at the trailing edge will be given in the
form of

Yi+7m=0 (8)

Y,can be obtained by solving the system of Egs. (7) and (8).

An equivalency between the tangential velocity v and
the vortex density is held on the surface of the airfoil can be
proven.

i (9)

The principle of solving the inverse problem using the
panel method is to specify a set of coordinates (x, y) of
nodes of the polygon which satisfies Eq. (7), where ¥, is
already given. If the prescribed condition is givenas veloc-
ity distribution, itcanbe converted into vortex distribution
by Eq. (9), and if the prescribed condition is given as
pressure distribution, it can be converted into velocity
distribution by the following equation.

ul+ vt

2
Um

(10)

Itissufficient tosetonly y (or Y,)as unknowns. Although
Eq. (7) is a linear equation of y, it becomes nonlinear with
regard to Y, so the solution is attained only iteratively, for
example, by using the Newton-Raphson method. Eq. (7)
can be rewritten as follows:
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a; y+bi=0 (i=1,2 - m-1) (1)
where

“-‘=(ai.' By o4 a,-_)

y=(}’], Yay ym)

b,=2nU (Y, cosa— X;sina)
and a;, b;are [unction of Y =(Y,V,,.-,¥V,).

The initial guess (Y%, Y.’,....Y,, ) to the solution of Eq. (11)
can be expanded into a Taylor series, neglecting higher
orders.

m-1,m da.. dab.
— B S5
=L (Eggtr i+ ) ov (12)

When &Y, is obtained as the solution of Eq. (12), Y im-
provesto Y /+8Y,and the same procedureis repeated until
the solution converges.

Eq. (12) represents m-1 equations, while the number of
unknowns is m. Tn order to close the system of equations,
one of the values of 8Y " must be fixed. Itis natural to fix the
leading edge point, and so the shape of the whole airfoil is
improved by moving the relative position of each node
with respect to the leading edge point.
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Figure 1. Panel Method Computation for NACA 4415

The flow chart of this procedure is given in Fig. 1, and a
result using this procedure is shown in Fig. 2. The number
at the left side indicates the number of iteration and 0
corresponds to the initial profile. In this case, the Iinal
profile is attained after 5 iterations. Target pressure distri-
bution is NACA 4415, which is represented with a solid
line, obtained from experimental data, with the Reynolds
number of 1 x 10° and o = 0°. The difference at the upper
surface near the trailing edge is thought to be the effect of
the boundary layer.
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Figure 2. Flow Chart of Panel Method Computation

3. Inverse Method Using Navier-Stokes Equation
Using the panel method, the final profile can be obtained
easily, however, due to the governing equation, the appli-
cationisrestricted toalow Machnumber regionand hasno
large separations. In order to solve transonic flow prob-
lems, using Navier-Stokes equation as the governing equa-
tion would be a natural approach. Due to the treatment of
theboundary condition on theairfoil surface, modification
of the airfoil geometry is complicated, so what is called an
iterative direct-inverse approach will be applied.
3.1 Grid Generation
Computational grid system is generated using Poisson
equation.
Caxt &, =PE ) 0+, =00 1) (13)
The actual solution of Eq. (13) is carried out in the compu-
tational (E, n) domain. In this domain, Eq. (13) will be
transformed to

LXI::— Zﬁth”"'}’x””: __)(_Z(PI':“FQX”)

Yes=2BYey+¥Yyy=-J2(Py:+Qy,)
where
J =29, 3,2,

_ 2 2 _ - 2
a=x,"+y,°, ﬂ-x;y,j+y§xq. YEXSAY,

(14)

and P, Qare {unctions used to control interior grid cluster-
ing.

P(f, J?): pl((f)e--uml_'_pz(‘f)g LT

(15)
Q& =g, (A_f)ﬁ’""‘” +qy (,_f)g"f‘a(frm -0

wherea,,a, b ,b,areconstantsand P, P, q,,q,arefunctions
of &.

The type of grid which is said to be most suitable to
calculate the flow around an airfoil is what is called a
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C-type. In this type of grid, treatment in the vicinity of
trailing edge is most important, however, it is quite diffi-
cult to maintain the orthogonality.

Orthogonality in the region of the trailing edge can be
obtained using the method proposed by Catherall ™ which
adds the following doublet term to Eq. (15).

PD =ar,e—}'n'| Q.’J = aog‘?'n'

(16)

where

r =J(‘f—tf'r£)2 +(n—-nm)?

o, and o, are parameters, (£, 1, )are the coordinates of
the trailing edge in the computational domain, and ¥ 18
used to restrict the extent of the region surrounding the
trailing edge which is affected. The results are shown in
Fig. 3(a) and (b).
3.2 Governing Equations

The governing equation is compressible Navier-Stokes
equation ®. Two dimensional Navier-Stokes equation can
be written in generalized coordinates as follows:
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3.3 Updating Algorithm

The designing procedure is as follows. First, we assume
the target pressure distribution and initial geometry. Then
the flow around initial geometry is calculated using the
directmethod. The updating of geometry isdoneby chang-
ing the surface curvature, AC, which is related to the
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Figure 3 (a). Effect of Doublet Term on Trailing Edge (No
Control)

Figure 3 (b). Effect of Doublet Term on Trailing Edge (With
Control)

difference between target and calculated pressure distri-
bution, AC , using the algorithm developed by Campbell
i, i g g P y P

For subsonic and low-supersonic Mach numbers (Mg
1.1), the following equation is used.

4C=4C,- A(1+C*)" (18)

where A is a relaxation factor that is positive for the upper
surface and negative for the lower surface. The exponent B
may vary between 0 and 0.5, with higher values yielding a
fasterconvergenceratebutlessstability intheleading edge
region.

When the local Mach number is above 1.1, the equation
initially used is

oo dac,) AyM., -1 1

d 2 L5 e
{“(Siﬂ
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{b) Rotate entire surface fo recover original trailing-edge points,

Figure 4. Procedure for Modifying Airfoil Geometry

When the streamwise slopes of the calculated pressuresare
close to the corresponding slopes of the target distribution,
Eq. (18)isused in combination with Eq.(19) toobtain faster
convergence. Since Eq. (19) is not technically valid when
the free stream Mach number M_ less than 1.0, an effective
freestream Machnumber of 1.01 isapplied for the subsonic
cases.

These equations are applied at each point along the
airfoil surfaces, marching from the leading edge to the
trailing edge. The local curvature changes are made by
shearing the points aft of the current through a givenangle
(SeeFig.4(a)). Thisapproach resultsin minimal changes to
the curvatures at the other points, however, at the end of
the design sweep, the airfoil will typically have either an
openorcrossed trailing edge. To remedy this situation, the
surface is rotated about the leading edge back to the
original trailing edge location (See Fig. 4(b)). Smoothing is
applied toboth the airfoil surface and the nose camber line
to ensure that a reasonable airfoil geometry is maintained
throughout the design process.

Once a new surface is obtained, a new grid system is
developed and the same procedure is continued until

(START)

Igt initial profile
L

Generate grid around initial profile

by Eq. (14) L
+
Calculate the pressure distrubution
’ by Eq. (17) N
f’\’/(@zcEPS e ABS /ST__‘Q_P)
T
Update Profile |
by Ea. (1), 19) |

Figure 5. Flow Chart of Inverse Method Using N-S Equation
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Figure 6. N-S Computation (Initial NACA 0016, Final NACA
0012)

convergence is obtained. The flow chart of this procedure

is given in Fig. 5.

3.4 Computational Result
Fig. 6 shows the result obtained by the procedure in the

former section. At this level of development, a subsonic

and non-lifting case is the case that can be calculated. The
present iterative procedures converge well in this numeri-
cal experiment.

4. Conclusions
An inverse problem of obtaining an airfoil which satis-

fiesagiven pressuredistribution is researched. The present

research can be summarized as follows:
(1)Using the inverse panel method, the final profile can
beobtained easily, however, the application is restricted
to low Mach number region and has no large separa-
tions.
(2) A non-lifting subsonic airfoil inverse design is stud-
ied. An inverse method is introduced, and the present
method is found suitable to be employed in this case.
The Navier-Stokes equations have a possibility of solv-
ing the inverse problems where shocks and boundarylayer
separation can be seen. The future work is to apply the
present procedure to solving the high Mach number prob-
lems, as well as high angle of attack problems. Shortening
of calculation time is also expected.
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