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SUMMARY

Four sets of atmospheric turbulence flight records have
been analyzed using NAPAM natural parameter based
assessment and analysis methods. Pre-processing opera-
tions included calculation of a suitable runnung mean
function. Values of the standard deviation o, of the
integral scale Land of Taylor’s scale & were calculated from
the definition formulae and checked by the spectral
density functions. Shape parameters for the generalized
Karman spectrum, too, were calculated and checked.
Experimental calculations indicate the existence of a dis-
crete frequency amplitude spectrum function and research
is proceeding to verify (or to disprove) this assumption.

Notation
n wave number [1/m]
q number of data points
r(n)  amplitude spectrum [m*/s]
w vertical component of the atmospheric turbulence  [m/s]
A peak coefficient
C constant
G(n)  (direct) spectral density function [m?/s?]
H wavelength [m]
L integrat csale [m]
R(c)  autocovariance function [m?/s?]
S(n)  (autocovariation) spectral density function [m?/s?]
a exponent
B frequency limit ratio
P8 Taylor’s scale [m]
a standard deviation [m/s]
S space displacement [m]
A difference, error
Q spatial frequency [rad/m]
Subscript
m measured (finite frequency band)
max maximum, limit
r from the record
v from the amplitude spectrum
w vertical component of the atmospheric turbulence
G from the direct spectral density function
S from the autocovariance spectral density function
0] theoretical value; O s ns =
INTRODUCTION

Turbulence analysis is one of the most important topics
in aeronautical research. Theoretical and experimental
investigations are equally important and must complement
and assist each other. Additionally, a correct and complete
analysis of the measured air/ fluid flow records is required
for atmospheric turbulence modeling as well as for
increasing the performance of sailplanes or another type
of aircraft.
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A key issue in this repect is the exact determination of the
natural parameters o, L A and complemented by the
calculation of the spectral density function shape
parameters a, A and . Not being fully satisfied with the
possibilities offered by the traditional statistical based
stochastic record assessment and analysis methods (seee.g.:
Bendat and Piersol (1,2)). A research program has been
started at the TU Budapest a few years ago. From time to
time the author has given account of improvements in par-
ticulars of the record assessment and analysis procedures
(Gedeon (3-5)).

Recent investigations have added a few new and unex-
pected perceptions (or rather guesses?) to previous work
(Gedeon (6,7)). So it seems the time has come to discuss
these new problems with both branches of turbulence
experts; with boundary layer flow specialists as well as
with researchers working in the domain of atmospheric
turbulence.

Basic laws and parameters of turbulence are indepen-
dent of size effects and of Reynolds numbers. For this reason
the difference of several orders in dimensions and in
Reynolds numbers between boundary layers and free
atmosphere is more assisting than hindering the success
of common research projects.

1. Basic Principles of the Natural Parameter Method

Turbulence research - While making extensive use of
statistical and probability calculation procedures turbu-
lence research is based on the solution of the Navier-
Stokes equations. This theoretical work cannot progress
without systematic verification. Neither can the engineer
do without reliable experimental data to base the dynami-
cal analysis and stressing on. A correct and efficient analy-
sis of stochastic measurement records is the instrument
for this work.

Traditional stochastic record assessment begins with the
calculation of the standard deviation o. In the theory of
turbulence there is also a second parameter, the so-called
scale of turbulence or rather there are two of them. The
first one is the integral scale

1 (9] (1)
L= lim [ [R()d
c1—x®|g 0

Another one of the candidates for this role is Taylor's

1
scale B 2)

l =
1/2
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[d%Reg)
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Both scale parameters were worked out for heat transfer
calculation and play simultaneously the part of a statistical
index-number for wave length. Their relation to each other
is not quite clear as yet. Taylor’s scale has been considered
to be the minor parameter, hence her French name “mi-
cro-echelle” which also indicates the belief it is associated
with the upper frequency limit of the spectrum. As will be
seen, our personal experience does not support this belief.
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Professor Kovasznay (8) starting from the Wiener-
Hintsin relationships proved that the zero value of the spec-
tral density function reads:

2
G(Q)a-0 = G(0) = ;ch (3a)

In his interpretation this implies the integral scale L to
be more than a special turbulence characteristic being a
natural parameter for all stationary stochastic processes,
equivalent with and complementary to the standard de-
viation o. Our concept started from this thesis with the
difference that we previously worked with the spectral
density as function of the wave number n. Our zero
formula reads therefore:

G(n)ao = G(0) = 4L57

Being based at the start on the Kovasznay theorem, our
stochastic analysis method was given the name Natural
Parameter Method, or for short the NAPAM method.

Practical calculation of the integral scale L using Eq. (1)
proved to be difficult or even impossible in some cases
because the numerical integration gave diverging oscilla-
tions. The problem could be traced back to the problem of
a correct mean value calculation before the correlation pro-
cess (Gedeon (6)). Pre-processing of the flight records in-
cludes therefore, calculation of a suitable running mean
function as shown schematically on Fig. 1.

(3b)

Y,

Fig. 1: Calculation of the running mean function

Presumably induced by the aforementioned extrapolation
problems it is customary to run the numerical integration
in (1) only up to the first zero crossing of the autocovariance
function and accept this value as correct. After introduc-
tion of the running mean calculations this expectation
proved to be wrong. Running the extrapolation process
as pictured on Fig. 2 previously give end values 2.5 to 3
times less than the first peak on the integration curve.
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Fig. 2: Determination of the integral scale L

Calculation of Taylor’s scale A starts with a smoothing
of the beginning of the autocovariance function curve (Fig. 3).
Duplicate differentiation of the smoothing curve equation
then provides the value of the second derivative needed
for substitution in (2). The geometrical form correspond-
ing to this formula is a vertical parabola. Intersection of
this parabola with the horizontal axle gives the value of A.

RC(5>

i

Fig. 3: Calculation of Taylor’s scale A

Statistical and correlation analysis is to be complemented
with the calculation of spectra. As reported already earlier
(Gedeon (4)) direct PSD spectra keeping the respective
phase angle values as well are preferred, (but this time
both), correlation spectra as well as direct ones, were calculated.
This duality was advisable for checking the values of the
natural parameters and of the spectrum shape parameters.

For smoothing of turbulence spectra we prefer to use
the original Karman spectrum (Karman (9)):

[ 1+ % (133001)? (%)
Su(Q) =02 =3
pu 11176
[1 +(13390L) ]
in a generalized form:
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1+ A(CLn)? )

Gu(n) = 4La, 5
[1 +(CLn)? /(1- ﬂLn)]

In (5) the exponent a, the peak coefficient A and the
frequency limit ratio
1 (6)

Lnmax

p=

are to be determined by smoothing of the raw spectrum.
The constant C is function of a, A and 3, its numerical value
being determined by the postulate

o ) 72)
[Gy (n)dn = op
0
respective by
oo
15, (n)dn = o e

-0

Shape parameters in Eq. (5) are the exponent a, the peak
coefficient A and the frequency limit ratio, p, respectively.
A correct smoothing of the raw PSD spectra using Eq. (5)
is expected to give values for a and A close to the theoretical
ones in (4).

The spectral density functions calculated nominally by
Fourier transform of the autocovariance function are sup-
posed - at least implicitly - to be continuous. Excessive
random fluctuations found permanently in the sequence
of the calculated spectrum points are hardly compatible
with this. Investigation in this line has provided the
following results so far.

As a matter of fact, the course of a continuous and
stationary stochastic function can be approximated within
acceptable error margins by several different harmonic
series. Practical adoption of PSD spectra including input-
output calculations seems to give satisfactory results. Nev-
ertheless, research on the possibility of a discrete ampli-
tude spectrum and (if its existence should be proved) on
its fine structure promises to give substantial benefits.

It is easy to prove that Fourier series expansion is giv-
ing correct results if (and only if) the pericd is exactly
known. Otherwise the integration giving the Fourier co-
efficients is not extended over whole periods resulting in
nonzero values even for non-existing components. But this
investigation also showed a possibility to develop a pro-
cedure for finding the “true” Fourier components. First
preliminary results were reported recently by Gedeon (7).

It is probable that atmospheric turbulence records can
be expanded to discrete amplitude harmonic series too
(Fig. 4). These harmonic series have a peculiar frequency
sequence, linear altogether but not following the sequence
of whole numbers. Research is on going and more records
of measurements are needed to make the details clear.
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Fig. 4: The shape of the discrete amplitude spectrum

2. RESULTS OF THE ANALYSIS

Four atmospheric turbulence vertical velocity records
were analyzed from the research program LOTREX/
HIBE’89 (Jochum et al. (10)) measured in runs FJl, FJ2, JFl
and JF2 respectively. Standard deviation as calculated from

the records:
1 g 1/2
o[ 107]
qi=1

@)

is given in the first row of Tab. 1.

Pre-processing by calculation of a running mean func-
tion gave good convergences for the calculation of the in-
tegral scale using (1). The nominal values for the four flights
are given in the first row of Tab. 2. As shown by the dia-
gram in Fig. 2, they turned out to be substantially smaller
than in most publications. A considerable scatter in the
values given, indicates however some problems still re-
maining in the exactness of this calculations.

Taylor’s scale A determined according to (2) is given in
the first row of Tab. 3. Range as well as scatter of the re-
sults is up to expectations. We do not regard as yet values
obtained tentatively for the upper frequency limit n__ of
the power spectra to be definitive but nevertheless, they
exclude the possibility of Taylor’s scale being the inverse
of them.

Direct spectral density functions G _(n) as well as corre-
lation spectra S_(n) were smoothed using (5). Shape pa-
rameters a and A determined this way are given in Tab. 4
and Tab. 5. While the exponents given by the least squares
procedures seem to be correct beyond expectations, no such
claim for the peak coefficients can be made. The integral
scale L and the theoretical standard deviation o ,, and o_
were determined also using the Karman formula and least
squares procedures.
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Taylor’s scale is associated to the second momentum of

the PSD function:
-1/2
o |T 2
—| [n*G(n)dn
oo
A similar formula can be composed for the correlation
spectrum S_(n).

As it can be shown, the measured standard deviation
can be calculated from the amplitude spectrum r_(n) the

following way:
1/2
« b
2 { ]

Scale parameters can also be checked using the ampli-
tude spectrum. In order to make the formulae more de-
scriptive the designation for the wave length

©)
AG =5

(10)

Omyv xr

=1

(11)

will also be used. The formula for the integral scale then
reads

q 2 q (12)
— Ersza
Vicam _ 1 =)
2n 4 2n 4
Erxz zr.l'2
i=} i=1
Taylor’s scale can be calculated using the formula:
(13)

g 1 172 1/2
A=—| T — Hi
\/_TE |:1§1n2:| fﬂ{;z :I

This relation also proves Taylor’s scale not to be the in-
verse of the limit wave number 3 A Moreover, it may turn
out to be the right choice for a statistical scale of wave
length.

3. ESTIMATION OF CALCULATION ERRORS

If turbulence would be a pure statistical phenomenon
then error estimation procedures as worked out for ex-
ample by Bendat and Piersol (1) could be used to check
the calculations. More strong laws than these apply to the
chaotic solutions of nonlinear simultaneous differential
equations, so it is advisable to look also for other reliabil-
ity estimation methods. One method might be a check on
the natural parameters and spectrum shape parameters.

The value o_, calculated directly from the record by (8)
is regarded to be the norm for standard deviation. Nomi-
nally the same value should be given by (7a) or (7b). If
not, then the spectrum calculation formulae could be
blamed first for the difference. The direct spectra G_(n)
passed this test with flying colors (Tab. 1, rows 2 and 3).
The correlation spectra S_(n) are not quite up to this high
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standard (rows 4 and 5) but the sign of the differences are
right, and the amount of bias errors are acceptable. The
ratios of the theoretical standard deviations (rows 6-8) also
support this theory.

Errors of the experimental amplitude spectrar _(n) (rows
9 and 10) indicate the basic concept to be probably right
but need some refinement in the calculation procedures.
Work is going on in this line.

The integral scale L (Tab, 2) did not figure well in the
checks. Even the scatter of the values given by (1) between
the individual runs (row 1) is too much. Quite unaccept-
able differences for the spectrum checks (rows 2-5) may
probably be traced back to uncertainties in the low fre-
quency end of the spectra. Scale parameter calculations
for the amplitude spectra using (12) and (13), respectively,
have been postponed until the revision of the spectrum
calculation procedures.

Taylor’s scale . (Tab. 3) passed the test substantially bet-
ter. Scatter/error values for (2) (row 1) as well as for Eq.
(rows 2-3) are within acceptable 5% error margins. The cor-
relation spectrum calculation (rows 4-5) is showing an
amount of bias otherwise in the 5% band.

Spectral density function shape parameters ‘a” and A
were checked against their theoretical values as given by
(4). Best fit smoothing values close to theoretical were ob-
tained for the exponent (Tab. 4). Regression values for the
peak coefficient A show unacceptable differences to the
theoretical value 8/3 as well as between themselves. This
strengthens the suspicions raised by the problems with the
integral scale concerning the reliability of the low frequency
end of the PSD functions.

CONCLUSIONS

« It is advisable to use a suitable running mean function
for pre-processing because it provides reliable and
reproducable natural and spectrum shape parameters.

*Calculation of the integral scale L from the
autocovariance function and by regression analysis from
the spectral density functions does not give acceptable
conformity. The source of the errors may be uncertainties
in the low-frequency end of the PSD functions. In spite of
these problems the analysis indicates values substatially
lower than customary for the atmospheric turbulence.

* Values for Taylor's scale & given by (2) and (9) respec-
tively are in good congruence, confirming the theoretical
models. There is no sign of A being the inverse of the limit
wave numbern__ .

*Regression values obtained for the exponent ‘a’ in the
Karman spectrum formula were in good agreement with
the theoretical value of 11/5. No such agreement has been
found for the peak coefficient A, the source of the errors
being probably the same as for the integral scale L.

* There are strong suggestions for to the existence of a
special discrete amplitude spectrum, too. The experimen-
tal spectrum calculation procedure isn’t perfect yet, but
further development may correct the insufficiencies.

The author would gratefully receive any contribution
and/ or turbulence records helping to clear up these problems.
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