THE OPTIMUM C.G. POSITION FOR A FLAPPED SAILPLANE

by F G Irving

Presented at the XXVI OSTIV Congress, Bayreuth, Germany
Introduction. At the XVIIth Congress of OSTIV, held at Paderborn, I submitted a paper entitled "The Optimum Centre of Gravity Position for Minimum Overall Energy Loss" (Ref 1), which was mainly concerned with fixed-geometry sailplanes. In this paper, and based largely on Ref 2 and Ref 3 , the following expressions were derived:

Loss of Total Energy per hour:

$$
\begin{equation*}
\left.\delta h_{e}=\left(1800 V_{c}{ }^{2} / E_{m} W^{2}\right)\left[\left(b_{1} / b_{2}\right)^{2}-1\right]\right]\left(L_{z c}{ }^{2} / V_{c}\right) P_{c}+\left(L_{28}{ }^{2} / V_{k}\right)\left(1-P_{c}\right] \tag{1}
\end{equation*}
$$

Proportion of flight time spent in circling flight:

$$
\begin{equation*}
P_{c}=\left[\left(V_{g} / V_{o}\right)^{4}+1\right] /\left[3\left(V_{g} / V_{o}\right)^{4}-1\right. \tag{2}
\end{equation*}
$$

Tail lift in circling flight:

$$
\begin{equation*}
L_{2 C}=\left[C_{\text {mox }} 1 / 2 P_{o} V_{c}^{2} S c+\left(h-h_{o}\right) c n W\right] / I_{t}^{\prime} \tag{3}
\end{equation*}
$$

Tail lift in straight flight:

$$
\begin{equation*}
\mathrm{L}_{2 \mathrm{~g}}=\left[\mathrm{C}_{\operatorname{mog}} 1 / 2 \mathrm{P}_{\mathrm{o}} \mathrm{~V}_{\mathrm{g}}{ }^{2} \mathrm{Sc}+\left(\mathrm{h}-\mathrm{h}{ }_{\mathrm{o}}\right] \mathrm{cW}\right] 1_{1}^{\prime} \tag{4}
\end{equation*}
$$

In the present paper, I will not repeat the proofs of these equations. It is worth noting, however, that Equn. 2 depends on the classical theory of thermal flying and the main assumption in deriving Equn. 1 is that the wing and tail and the vortex sheets of these surfaces lie close to the same plane. Also, it is now necessary to introduce two symbols for the pitching moment, one for straight flight, the other for circling flight, since the flap settings will generally be different for the two conditions. See Appendix I for a list of symbols.
Application to Flapped Sailplanes. When contemplating Standard Class machines, as in Ref. 1, the number of variables is relatively small, and it is possible ta come to some conclusions of quite general applicability. With flapped machines of spans around 25 m . and masses of the order of 750 kg . there are many more variables and the only solution is to perform calculations such as these for each particular case. Fortunately, the geometry of most sailplanes is such that we can continue to assume that everything lies in the same plane as indicated in Ref 4 . The procedure is as follows:

1. Choose a dimensionless centre of Favity position, h.
2. Estimate a likely speed, V_{f}, the load factor, n, and the flap deflection in circling flight.
3. Hence find the pitching moment coefficient in circling flight $\mathrm{C}_{\text {mox }}$ and hence $\mathrm{L}_{2 \mathrm{C}}$ the tail load in circling flight, from (3).
4. Choose a gliding speed, $\mathrm{V}_{8^{\prime}}$ and at the same time, the corresponding flap angle.
5. Hence find $C_{\text {mog, }}$, the pitching moment coefficient in straight flight. Please note that when finding the pitching moment coefficient both in straight and circling flight, spanwise variations in flap angle must be taken into account.
6. Hence find $L_{2 g}$, the tail load in straight flight, from (4).
7. Also find P_{c} from (2).
8. Substitute these values of $\mathrm{L}_{2 \mathrm{C}}, \mathrm{V}_{\mathrm{c}_{1}} \mathrm{~L}_{2 \mathrm{~g}^{\prime}} \mathrm{V}_{\mathrm{g}}$ and P_{c} in (l) to find δh_{e} per hour.
9. Repeat the procedure for different values of h, keeping the same value of V_{g}.
10. Plot δh_{e} per hour against h.
11. Repeat the whole procedure for a new value of V_{k}.

In applying this theory, consider the sailplane described in Appendix II. This is a machine of conventional proportions, having a span of 25 m . and a maximum mass of 750 kg . It is assumed that under circling conditions, the flap deflection is $+10^{\circ}$, for gliding speeds of 60 and 70 knots the flap is neutral, and for speeds of 80,90 and 100 knots the flap deflection is -10°. The flap span is 63% of the total span and if the flap deflection is , β, then the aileron deflection is 0.5β. If we assume that $C_{m o}$ corresponding to $\beta=0$ is -0.1 and $\Delta \mathrm{C}_{\mathrm{mo}} / \Delta \beta=-0.0087$ for a two-dimensional flap, then at $\beta=10^{\circ}, C_{\text {mox }}=-0.1707$ and at $\beta=-10^{\circ}, C_{\text {mog }}=-0.0293$, taking into account the diminished deflection of the ailerons.

It is assumed that, when circling in thermals, the speed is 47 knots ($87 \mathrm{~km} / \mathrm{hr}$) and the angle of bank 35°, giving a load factor of 1.22 .

For a gliding speed of 80 knots ($148 \mathrm{~km} / \mathrm{hr}$), the losses of energy height are then as follows:

CG position	$\delta h_{e} / \mathrm{hr}$, feet (metres)		
h	Circling	Gliding	Total
0.25	9.44 (2.87	0.77 (0.23)	10.21 (3.10)
0.30	0.84 (0.26)	0.50 (0.15)	1.34 (0.41)
0.35	1.53 (0.47)	5.24 (1.60)	6.77 (2.07)
0.40	11.47 (3.50)	15.03 (4.58)	26.50 (8.08)
0.45	30.70 (9.36)	29.77 (9.07)	60.47 (18.43)
0.50	59.18 (18.04)	49.56 (15.10)	108.74 (33.14)

From this table, it will be seen that the loss of energy height/ hr in circling flight is not too different from that of the Standard Class machine of Ref.l, but that in straight flight (remembering that we will now have -10° of flap) is markedly different.

Figures for the total loss of energy height per hour are plotted for various gliding speeds in Figs. 1 and 2. Each curve has a minimum and, as with the glider of Ref. 1, the higher the speed during gliding flight, the further aft is the minimum. But the losses of energy height are very small for a reasonable range of C.G. positions, and in this case, a position between about 0.3 and 0.35 of the mean aerodynamic chord leads to losses less than 5 ft . per hour for a wide range of gliding speeds. However, the losses increase quite rapidly for more extreme values of the C.G. position. In the case of this particular aircraft, the stick-free neutral point would be at about 0.5 of the mean aerodynamic chord.

DOLPHIN FLYING.

The main effect of large amounts of dolphin flying would be to cause the factor n in Equn. 3 to be 1.0 or thereabouts. For a given gliding speed, it is likely that the proportion of time spent in the thermals would not be greatly different from that given by Equn. 1, and so we can investigate the effect by simply putting the load factor equal to 1.0 . In the case of gliding at 80 knots, the effect would be to diminish somewhat the figures in the second column. But the figures are so small that the effect on the total loss, near the minimum, would be negligible.

DISCUSSION.

The main effect of this example is to indicate that, as for Standard Class machines, the C.G. should be reasonably, but not extremely, far aft. A position of between 0.3 and 0.35 of the mean aerodynamic chord should be suitable. Again, it is extremely unlikely that any arrangement for varying the C.G. position in flight would be worthwhile. Once again, it ought to be remembered that these results only apply to one particular machine and ought to be worked out in detail for each type.

REFERENCES.

1. Irving, F.G. "The Optimum Centre of Gravity Position for Minimum Overall Energy Loss," OSTIV Publication XVl, Paderborn 1981.
2. Jones, R.T. "Minimising Induced Drag," Soaring, October 1979.
3. Irving, F.G. "An Introduction to the Longitudinal

Static Stability of Low-Speed Aircraft," Pergamon, 1996.
4. Laitone, E.V. "Positive Tail Loads for Minimum Induced Drag of Subsonic Aircraft," J. Aircraft, December 1978.

Appendix I: symbols.
V_{o} Speed for max. L/D.
E_{m} Max. L/D.
W Total mass of the laden sailplane.
b_{1} Wingspan.
b_{2} Tailplane span.
$\mathrm{L}_{2 \mathrm{C}}$ Tail lift in circling flight.
$\mathrm{L}_{2 \mathrm{~g}}$ Tail lift in straight flight.
V_{g} Speed in straight flight.
P_{c} Proportion of time spent in circling flight.
$\mathrm{C}_{\text {mox }}$ Pitching moment coefficient of the glider (without tail) about its aerodynamic centre in circling flight.
$\mathrm{C}_{\text {mog }}$ As above but in gliding flight.
P_{0} Standard sea-level air density.
S Wing area.
c Mean aerodynamic chord.
h Dimensionless C.G. position. (Actual position $=h \mathrm{c}$ aft of datum).
h_{o} Dimensionless position of the aerodynamic centre of the glider (without tail).
n Load factor, L / W.
LTotal lift.
I_{t}^{\prime} Distance between the aerodynamic centre of the glider (without tail) and the a.c. of the tail.
β Flap angle, positive downwards.
h_{e} Energy height.
APPENDIX II: a typical Open-Class Sailplane. $\mathrm{E}_{\mathrm{m}} \quad 60$.

W $\quad 750 \mathrm{~kg}, 1654 \mathrm{Ib}$.
$\mathrm{b}_{1} / \mathrm{b}_{2} \quad 8$.
$C_{\operatorname{mox}} \quad-0.1707$.
$C_{\text {mo }} \quad-0.1$.
$C_{\text {mog }} \quad-0.0293$
$P_{o} \quad 0.00238$ slugs $/ \mathrm{cu} . \mathrm{ft}$.
$V_{c} \quad 47$ knots.
S $\quad 175$ sq.ft.
C $\quad 2.1 \mathrm{ft}$.
$h_{o} \quad 2.14 \mathrm{ft}$.
$n \quad 1.22$.
V。 $\quad 52.6$ knots.
$\mathrm{l}^{\prime} \quad 17.06 \mathrm{ft}$.

Energy height loss vs. C.G. position (fig. 1) for gliding speeds of 60 and 70 knots and (Fig. 2) for speeds of 80,90 and 100 knots. In the former case, the flap deflection is zero and in the latter case it is -10°

