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SUMMARY

Glides around a turnpooint, on course or to a finish, are
an important feature of sailplane racing, and the traditional
approach of adopting a singlespeed to fly, or MacCready
setting, for legs with different winds can be significantly
sub-optimal. The best glide angle over the ground is
achieved at lower speeds with a tail wind and at higher
speeds with a head wind. Thus, a pilot who flies at the
speed for the best glide angle over the ground for each leg
can start the final glide at a lower altitude than a pilot fly-
ing the same speed for each leg. Similarly, a pilot flying at
the appropriate speed for the wind on each leg will arrive
at the goal sooner than the pilot flying at a constant speed.
The methodology for determining the altitude required to
achieve a goal and the optimal speeds to fly for multiple
legs with differing wind speeds, as well as representative
results, are presented.

INTRODUCTION

The altitude required and speed to fly to achieve a
distance over the ground in the presence of wind have
been discussed many times, e.g. Reichmann (1) and the
calculation is readily performed on many graphical
devices (“prayer wheels”) or electronic flight computers.
Frequently, particularly in competition, changes in the
flight direction are imposed close enough to the goal that
the comutation of the altitude required and the speed to
fly for the final glide must take into account differing wind
speeds; for example a tail wind before the final turn and a
head wind after it. This is typically addressed by selecting
a speed to fly and then calculating the altitude loss for each
of the remaining course segments, or “legs,” to ascertain
whether or not the goal can be achieved at that speed.

Intuitively, however, one might expect that flying slowly,
at a lower sink rate, with a tail wind and faster into a head
wind would yield the greatest distance covered from a
given altitude, or alternatively a minimum altitude re-
quired to cover a given distance. Furthermore, starting
from an altitude above the minimum required to achieve
the goal, flying slower with a tail wind and faster into a
head wind should reduce the energy loss on each leg, or
result in “maximum energy legs.” The calculation below,
of the minimum altitude required to achieve a distance in
the presence of differing winds confirms this intuition. The
difference in altitude required between flying at a constant
air speed and flying so as to maximize the energy on each
leg is not great for typical conditions; less than 100 meters.
However, the speed achieved to the goal can be signifi-
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cantly greater using variable air speeds, maximum energy
legs (MEL) — rather than a constant air speed (C5); as much
as 10 kph for not unreasonable conditions.

After developing the methodology, results for three rep-
resentative modern sailplanes (PW-5, LS-8 and ASH-25)
are presented.

DISCUSSION

For simplicity, consider winds parallel to the flight path;
that is ignore any cross wind component compared to the
air speed as is the custom. Cross winds are not a problem,
they just clutter up the discussion of the very simple idea
that that is being presened here. Then
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where d, is the length of leg i, v, is the air speed on leg |,
w is the wind speed on leg i, , is the time spent gliding on
leg i, h_is the altitude loss on leg i, and s, is the sink rate at
v, or the “Polar.”

The best glide on each leg is just given by minimizing
the altitude lost on the leg:
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which is the basis for the familiar graphical solution that
the best L/D ratio is achieved at the tangent to the polar
shifted by the wind speed.

Similarly, for varying wind speeds but constant air speed
(the CS solution) on all of the legs (v = v; ), the best glide
is just given by
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T

while for maximum energy legs (the MEL solution) equa-
tion 3 obtains for each leg separately.

To illustrate the differences between the CS and the MEL
glides, consider just two legs each of 40 km length, with
the wind of the same magnitude on both legs but of oppo-
site direction; that is, a tail wind on the first leg and a head
wind on the second. Figure 1 shows the minimum height
required to achieve a final glide.
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Figure 1: Minimum height to reach a goal with two 40
km legs, and a tail wind on the first leg and head wind on
the second of the same magnitude, for an LS-8.

The height difference is not very great.

The 100 meter difference in the minimum height required
for rather extreme conditions (50 kph wind) might lead
one to think that it would not be worth the trouble to worry
about flying at different speeds on the two legs. However,
Figure 2 shows the time required to arrive at the goal for
the two solutions, and now one sees that the MEL solution
can result in a minute or two difference in arrival time,
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Figure 2: The time to reach a goal with two 40 km legs,
and a tail wind on the first leg and head wind on the sec-
ond of the same magnitude, for an LS-8.

which is worth the trouble. In addition, for two pilots start-
ing side by side, one must add, to the CS time, the time
required to climb to the slightly higher altitude required.
This improvement in performance is achieved by flying at
significantly different speeds on the two legs as shown in
Figure 3.
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Figure 3: Speeds to fly to reach a goal with two 40 km
legs, and a tail wind on the first leg and head wind on the
second of the same magnitude, for an LS-8.

For initial altitudes above the minimum required to ar-
rive, which might be a bit nerve-wracking for these dis-
tances and winds, the speeds to fly are determined by mini-
mizing the total time

T 2
RACTSR 0
this is, solving for
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subject to the constraint that the glide reach the goal, given
by

H=Yh

which relates the v to v,

Figure 4 shows the speed to the goal for a representative
wind and a range of altitudes above the minimum for the
CS solution , and Figure 5 the corresponding speeds to fly.
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Figure 4: Speed achieved to a goal with two 40 km legs,
and a 40 kph tail wind on the first leg and 40 kph head
wind on the sec ond, for various altitudes above the mini-
mum required to arrive at the goal for the Constant Speed
solution, for an LS-8.
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Figure 5: Speeds to fly to reach a goal with two 40 km
legs, and a 40 kph tail wind on the first leg and 40 kph
head wind on the second for various altitudes above the
minimum required to arrive at the goal for the Constant
Speed solution, for an LS-8.

Another way of visualizing the performance advantage
of the MEL over the CS is shown in Figure 6, where the
two solutions start at the same height above the minimum
required for the CS to arrive at the goal.

=
=]
T

Lo b 0o v by vy

Speed [ kph |
=
=]

MEL

Constant Speed

86 —

2

I

[
gl_.._.l"lljlll_lllk

20 I 30 40
Wind [ kph ]

Figure 6: Speeds to reach a goal with two 40 km legs,
and a tail wind on the first leg and head wind on the sec-
ond of the same magnitude, for an LS-8 starting at 100
meters above the minimum altitude required for the Con-
stant Speed solution.

Finally, it is of interest to see how these results depend
upon the performance of the sailplane, and Figure 7 shows
the polars of the PW-5, LS-8 and ASH-25 taken from
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Figure 7: The quadratic representations of the polars used
for the PW-5, LS-8, and ASH-25.

Johnson's flight test evaluations (2,3,4). The quadratic rep-
resentation matches the best L/D ratio and the speed at
which it is achieved, as well as the speed at which a sink
rate of 2 mps occurs. Figures 8 and 9 show the results cor-
responding to Figure 6.
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Figure 8: Speeds to reach a goal with two 40 km legs,
and a tail wind on the first leg and head wind on the sec-
ond of the same magnitude for a PW-5 starting at 100
meters above the minimum altitude required for the Con-
stant Speed solution.
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Figure 9: Speeds to reach a goal with two 40 km legs,
and a tail wind on the first leg and head wind on the sec-
ond of the same magnitude for an ASH-25 starting at 100
meters above the minimum altitude required for the Con-
stant Speed solution.

CONCLUSIONS

Flying the correct speed to fly for the wind on each leg
of a multiple leg glide can lead to significant performance
improvements. The maximum energy legs (MEL) speeds
differ substantially from those of the traditional, constant
speed, the final glide. The algebraic details for the deter-
mination of these speeds are given in the Appendix.
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APPENDIX - ALGEBRAIC DETAILS

Polar:
The results presented in the body use a quadratic polar

of the form:

2

s=za+bv+cv Al

Minimum height to reach the goal:
For the MEL solution, each leg is determind by equa-

tion 3 and the speed to fly on leg i is given by the roots of
cv,2+2€w,-v¢-+(bw,-—a)=0. A2

The minimum height required is:
d;
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For the CS solution, the speed to flv is given by equation 4,
that is the roots of
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While the roots of this quartic are analytic, in practice a
simple newton-Rapheson iteration is simpler to implement,
and given o,

d;
v+w,
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Speeds to fly from an arbitrary altitude above the mininmum:

For the MEL solution, equation 6 becomes:
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and 3 is given by differentiating equation 7
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which for two legs is just
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