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As discussed in the article Dynamic Soaring and Sailplane
Energetics, there is just as much energy in the motion of
sinking air as in rising air. It is, however, quite a bit more
difficult for a glider to get power from downward moving
air. Getting energy from sink requires negative g’s or invert-
ed flight.

The energy a glider gets from sinking air generally
appears as extra speed (kinetic energy). There is also fre-
quently a loss of height as the kinetic energy increases. Still,
the increase in kinetic energy can far exceed the loss of
potential energy due to loss of height. Below are some cal-
culations demonstrating how sailplanes can get energy
from sinking air.

Before looking at the details of how the glider gets energy
from sink, let’s look at where the energy comes from. It
comes from the atmosphere. There is kinetic energy in a
mass of downward moving air. If the air pushes on some-
thing in the air’s direction of motion (down in this case) the
air loses energy at a rate where: HP = Force (lbs) x Velocity
(f/s) / 550.

This tells us that 10 f/s moving air can lose energy at 1.8
HP for each 100 Ibs of force. If the air is moving downwards
at 20 f/s and pushing with a force of 800 Ibs (minus 1 g in
an 800 Ib glider) then energy is lost by the air at a rate of 29.1
HP. Windmill designers use these kinds of calculations for
sideways moving air.

How much of this energy can a glider utilize to increase
its speed or height? That will depend on the L:D of the glid-
er. A glider with an infinite L:D could get all the energy lost
by the air, a real glider gets less. We can look at some vector
velocity and force diagrams to see how much power a glid-
er can actually get. We refer to the Dynamic Soaring Vector
Diagram, which shows how a glider can get energy from a
downward gust.

In the diagram we're looking at a glider’s situation just as
it has entered a strong sink pocket. Because of its inertia and
momentum the glider’s velocity has not yet changed signif-
icantly, remaining the same as it was in the still air. The glid-
er velocity is shown in the diagram as a slightly downward
sloping vector. A downward gust is shown as a downward
pointing vector. The relative wind experienced by the glid-
er at that moment is the glider’s velocity subtracted from
the gust vector. The angle between the relative wind and
glider velocity is labeled (a).

In addition to showing velocities the diagram shows the
aerodynamic forces on the glider. To extract energy in sink-
ing air the glider must push upward on the down gust. So
assuming it is right side up, the glider must be in a negative

g situation (we use minus 1 g in this example).

As in normal practice the lift force on the wing is defined
as perpendicular to the relative wind and the drag force as
parallel to it. The vector sum of the lift and drag is called the
total resultant aerodynamic force. The angle between the lift
and resultant force is labeled (b). The tangent of angle (b) is
the glider’s drag to lift ratio (at -1 g).

The smaller angle (b), the better for soaring. To determine
the angle (b) we need to know the glider’s drag and lift
forces in different situations of speed and g force. For this,
we can create a chart using equations found in chapter 16 of
New Soaring Pilot by Welch and Irving. The chart gives glid-
er drags at different speeds and g loadings. Angle (b) is the
arctangent of the L/D ratio. These drag values are very use-
ful when calculating powers and energies.

We separate the total resultant aerodynamic force on the
glider into two components or parts, one component paral-
lel to the glider’s velocity and one perpendicular to it. The
component of force perpendicular to the glider’s velocity
changes the glider’s direction of motion but not its speed or
energy. The force vector component parallel to the glider’s
velocity results in changes of speed and energy. This
dynamic soaring thrust vector is shown in bold on the dia-
gram. If angle (b) is too large relative to angle (a) this
“thrust” vector reverses and becomes a source of drag loss-
es.

Note that gravitational forces need not be considered in
this diagram. Thus the diagram can be tipped, and works in
any orientation. We include the angle (c) between the hori-
zontal and the glider’s velocity vector for reference, but it is
not used in the power calculations.

Gravity is represented by a conservative field, which
means that any kinetic energy picked up due to gravity is
precisely offset by a corresponding loss in potential energy.
The aerodynamic forces are the ones that change the glid-
er’s energy. We will look at some cases that consider gravi-
tational potential energy after going through the vector dia-
gram.

So first let's work a numerical example with the vector
diagram using a glider velocity of 100 f/s and a down gust
of 20 f/s. This gives an angle (a) between the glider veloci-
ty and relative wind of about 11.3 degrees. If we push for-
ward on the stick to get minus 1 g we will have a generally
downward lift force on the wing of 800 Ibs. The lift force is
perpendicular to the relative wind and thus points forward
relative to the glider’s velocity. This is similar to how a sail-
boat gets forward force from a crosswind.

For an inverted L/D = 25 we add a drag force vector that
is 1/25 of the lift and is parallel to the relative wind. The
resultant total aerodynamic force is tipped back from the lift
vector by an angle (b) of 2.3 degrees (the arc tan of 1/25).

To find the component of the resultant aerodynamic force
which is pushing the glider in its direction of motion; we
subtract angle (b) from angle (a), 11.3 - 2.3 = 9 deg.

Multiplying the total resultant force (very close to 800 Ibs)
by the sine of 9 degrees gives us the force in the direction of
motion. The result in this example is 125 Ibs. To get the
power extracted we multiply the force times the speed and
divide by 550.
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Calculated Glider Drags at Different Speeds and G Loads

Glider Specifications:

Best L:D 40 Drag @ Best speed &1 g
@ Speed of 100 Induced Drag 10
Weight 800 Friction Drag 10
Stall Speed 60 Negative G drag Factor 1.4
Inverted Stall Speed 90 Chart g start -3
Chart Speed Increment 25 Chart g Increment 0.5
Drag Chart:
Speeds on top row
50 75 100 125 150 175 200 225
G Load
-3 - 3 - - - 84 88 96
-2.5 - - - - 70 71 78 88
-2 - - - - 56 61 70 82
-1.5 - - - 42 46 53 64 77
-1 - - 28 31 38 47 60 74
-0.5 - 14 18 24 33 44 S 72
0 4 8 14 22 32 43 56 71
0.5 13 10 13 17 24 31 41 51
1 + 23 20 22 27 34 43 53
1.5 + 46 33 30 38 38 46 85
2 + e 50 41 40 44 50 59
2.5 + + 73 56 50 51 56 63
3 + + + 73 63 60 63 68
35 + + + 94 77 71 71 75
+ + + + 118 94 83 80 82
4.5 + + + ¥ 113 97 91 91
5 + + + + 134 112 103 100
5.5 + + + + 157 129 116 110
6 + + e + 183 148 130 122
6.5 + + + + + 169 146 134
7 + + + + + 191 163 147
75 + 2 + + + 214 181 162
8 + 4 + ¥ + 240 200 177

Notes: Units can be varied, though Lbs and feet/second could represent a modern 1 seater.
Friction drag assumed proportional to speed squared.
Induced drag assumed proportional to lift squared and inverse to speed squared.
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125 1bs x 100 f/s / 550 = 22.7 HP. This is the power deliv-
ered to the glider’s kinetic energy while it is in the down
gust. The immediate drag losses are already accounted for
by angle (b). The additional latter losses due to zooming up
and converting the additional kinetic energy into height
(after leaving the sink gust) should now be considered.

An 800 Ib sailplane with a 40:1 glide angle requires 3.6 HP
to fly at 100 f/s in a normal glide. When making a 2 g pull
up the drag and the power consumed increases. Looking at
our drag chart for a speed of 100 we see that between one
and two g’s the drag increases from 20 Ibs to 50 Ibs. So at 2
g’s the power consumption is about 9 HP.

Now let’s look at the whole cycle of a glider soaring in
and out of sink pockets. We need to fly a lift/g cycle that
provides enough average upward lift to support the glid-
er — by combining one second of minus one g push over in
sink and two seconds of two g pull up in still air we get an
average positive acceleration of one g. This will sustain the
glider against the normal one g acceleration of gravity.

(-1 gx1sec+2gx2sec)/ 3 sec total time = 1 g average

To calculate energy we look at the average power
over the cycle:

(+22.7HP x1ec-9 HP x 2 sec) / 3 sec = 1.6 HP

The net positive power of 1.6 HP corresponds to an aver-
age climb rte of about 1.1 /s for an 800 Ib glider (65 f/min).
In this example we are climbing by using “sink!”

Now let’s look a little more closely at the effect of gravi-
ty on the sailplane’s energy while dynamic soaring. As
noted above the effects of gravity are not of primary impor-
tance when dynamic soaring. Gravity does however limit
how much height change we can make before reaching
excessive speeds and as we noted above resisting gravity
requires maintaining an average upward lift equal to the
glider’s weight.

The mechanical energy of a glider has two parts: it's
potential energy due to height and its kinetic energy due to
speed. The potential energy equals mass times height times
the gravitational constant. The kinetic energy equals one
half of the mass times the speed squared.

E, potential =M xhx g
E, kinetic =1/2xM x V2

The Pythagorean relationship tells us that in a right tri-
anble; side A squared plus side B squared equals the length
of the hypotenuse squared. We can use this relation to sep-
arate the kinetic energy into two parts one due to horizon-
tal speed and one due to vertical speed. If we choose exam-
ples that keep the horizontal speed constant then the cal-
culations are easier.

Let’s calculate the total energy changes for a glider in two
different cases both where: horizontal speed = 100 ft/sec,
initial vertical speed = -3 ft/sec, weight = 800 Ibs, mass = 25
slug (one slug equals about 32 pounds mass).

First, normal glide,

In a time interval of one tenth of a second the glider
descends 0.3 feet. The loss of potential energy equals M x g
x h. The weight of 800 Ibs is equal to M x g. Thus the poten-
tial energy change is -240 ft-lbs (-0.3 feet times 800 Ibs).
There is no change in vertical or horizontal kinetic energy.
The total energy loss of 2400 ft-Ibs/sec coresponds to -4.36
HP.

Now let’s look at a second case where we encounter a
down gust which allows us to fly at minus one g and accel-
erate rapidly downward without losing forward speed. In
order to not effect horizontal speed, we require a total aero-
dynamic resultant force that is vertical. This means that the
angle (a) is equal to the sum of angles (b) and (c). This cor-
responds to a down gust velocity of about 7 feet/second. If
we fly minus 1 g without a down gust, we will lose forward
speed.

At minus one g we accelerate downward at 64 feet per
second squared (32 from gravity and 32 from the aerody-
namic forces). In this example, we do it for one tenth of a
second, resulting in an increase of sink rate from 3 f/s to 9.4
f/s. The average sink rate is 6.2 f/s and the height lost; in
1/10 second is 0.62 feet. The loss in potential energy is 0.62
feet times 800 Ibs or -496 ft-Ibs. There is no change in hori-
zontal speed or horizontal kinetic energy.

The change in vertical kinetic energy is from 3 f/s
squared to 9.4 f/s squared (both times 1/2 Mass). Which is:
9.4 squared - 3 squared = 88.4 - 9 = 79.4 feet squared /sec-
onds squared. Multiplying by a 1/2 Mass of 12.5 slugs gives
a kinetic energy increase of 992 ft-Ibs. We subtract the loss in
potential energy from the gain in kinetic energy. The total
energy change is a gain of: 992 - 496 = 496 ft-lbs (in one tenth
of a second). 4960 ft-Ib/sec corresponds to 9 HP. So while in
the sink at minus one g we are getting energy at a rate of 9
HP.

As we saw looking at whole cycles of dips and zooms 9
HP for only part of the time may not be enough to produce
a complete cycle that gains net energy. It may take stronger
sink than 7 ft/sec for that. In the 20 ft/sec down gust case
figured earlier there is considerable forward dynamic thrust
that increases the horizontal velocity and kinetic energy.
With 20 f/s gusts there is enough power to overcome the
losses of the periodic pull ups. If the pull ups can be made
in upward gusts then the dynamic soaring is particularly
effective.

The above calculations demonstrate how a high perform-
ance sailplane can stay up on a day with no lift, but only
periodic pockets of strong sink.
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