#### Calculating the Benefits of Dynamic Soaring

#### By Taras Kiceniuk

Previously published in *Sailplane Builder*, *Free Flight* Magazine and *Today's Pilot*.

The average climb or sink rate of a dynamiic soaring glider is calculated at different speeds. This average vertical speed is a useful measure of a glider's energy exchange with the atmosphere; although in dynamic soaring, a glider often gets much energy in a kinetic form, as extra forward speed. Figures are presented here showing graphs of equivalent average vertical speed calculated at increasing g forces in a dynamic soaring cycle. The calculations are done with a spreadsheet under various simplified atmospheric conditions. The air conditions used here can be viewed as a single dynamic cycle or as a repeating cycle of air motion made up of uniform air blocks. As used here a cycle has two air block types, which have two types of vertical motion; for example--we can assume the glider encounters a 100 foot long block of air rising at 5 foot per second followed by a 100 foot long block of air sinking at 2 Vs., then the two blocks repeat with another 5 Vs rising section again, and so on.

Each figure is for a given set of air conditions. All the graphs shown here are for the same glider performance, a 40:1 L:D ratio, with a one g best L:D speed of 100 feet/second. Eight cases of dynamic soaring technique are presented in columns across each graph. The different cases employ different degrees of varying g force. The first column case is steady one g flight; the other columns use increasing g fluctuation. All the techniques used here have one g of net upward lift. For added clarity, lines of equal speed connect the different column cases. In these calculations, we assume that the glider's speed does not change significantly during a dynamic soaring cycle. The benefits of dynamic soaring can be seen in the graphs by faster forward speeds and larger climb rates.

#### Structure of the figures

The top of each figure shows the glider characteristics used in that sheet of calculations. Below this glider specification box are the assumed air conditions. Then comes a graph showing the glider's calculated performance (presented as average vertical speed) with different dynamic soaring techniques. Average vertical speed is used to represent the glider's net power situation while the glider employs different g force profiles. Lines connect data points of various approximately uniform forward speeds. Directly under the graph are shown the cyclic g forces employed in the different cases. At the bottom of the figure are the cyclic changes in vertical glider speed and the cyclic changes in the angle of the glider's path. (Path angle is similar to pitch angle when one deducts the glider's angle of attack.) The forward speed of the glider is taken to be approximately constant throughout each dynamic soaring

#### cycle. Description of the figures

The first figure is for continuous 5 foot per second updraft. The best performance at all speeds is found in the first column case, which is constant I g flight. This tells us that in uniform air, smooth flight is best and there is no benefit to tying dynamic soaring. The fastest level running speed with no net climb or descent is 150 Vs, it is found in Case I by interpolation between the speed lines marked with triangles and with squares.

Figure 2 is mixed updrafts and stationary air. The horizontal sizes of the air mass blocks are both taken to be 200 feet. 200 feet of 5 Vs updraft is followed by 200 feet of still air. Here the best average climb rate is found in Case 3 at a speed oflOOfeet/second. This climb rate is about 1.5 f/s, which compares favorably to zero in Case 1, smooth I g flight. Case 3 uses a pull up of 2 gs in the updraft and 0 g in the still air. Fastest level running speed is 135 Vs with a Case 3 g force profile.

Figure 3 is turbulence with no net vertical flow, equal size up and downdrafts of 5 Vs strength. With no net up flow, this figure shows pure dynamic soaring. Here the best climb rate is found in Case 6 at a forward speed of 140 Vs. The fastest level running speed of about 173 Vs is found in Case 7. The g forces in Case 7 are +4 g and -2 g. This speed is faster than the level speed in Figure 1, which flies a constant 5 Vs updraft. The comparison with Figure I shows how with dynamic soaring a mixture of updraft and downdrafts can be a stronger source of energy than pure updraft alone.

In Figure 4 the downdraft is twice as strong as the updraft, 10 Vs versus 5 Vs. Despite the net down flow of 2.5 f/s, the increased wind shear gives dynamic soaring a big jump in speeds and energy- note the changes in graph scale. The best climb of 6 Vs is attained at a speed of 180 Vs 'in Case 5. The fastest level running speed is 250 Us 'in Case 8, with g forces of +8 g and -6 g.

Figure 5 is for mixed sink and still air-- 20 Vs downdrafts alternating with blocks of air at rest. Here there are some more graph scale changes. The best climb of about 9 Vs is produced at a speed of 270 Vs in Case 6, which uses plus 8.5 g and minus 6.5 g The fastest level running speed shown is about 320 Vs in Case 8. It is remarkable that a glider can fly so fast using only the energy from sinking air.

Figure 6 is for turbulence of mixed 20 Vs updraft and 20 Vs downdraft. The best rate of climb is 135 f1s at a speed of 390 Vs (Case 4). The fastest horizontal running speed is off the graph- more than 650 feet/second. The associated g forces are over +36 g and -34 g. With such high g maneuvering the effects of the one g force of gravity are relatively small and the glider's flight path can be quite inclined for short periods of time. These energy calculations are considered to be valid when the wind shear is approximately cross- wise to the glider's flight path, this includes vertical wind variation as well as side to side. Fore-aft wind variation is difficult for a glider to utilize to any large extent.

Figure 7 makes a comparison with Figure 2; in Figure 7 the updraft blocks are twice as strong, but twice as far

TECHNICAL SOARING

17

apart. The case I performance is the same in figures 2 and 7, but the stronger gusts in 7 can give better dynamic soaring results.

Figure 8 shows the problem that occurs when the air blocks are too big. The graph looks the same as 'in Figure 3, but looking at the chart below the graph we can see that \*in many of the higher g cases the +- change in path angel exceeds 30 degrees and the assumptions used in the calculations are no longer accurate. The two simplif~dng assumptions used here are that the glider's speed does not change much throughout a dynamic soaring cycle and that the wind shear is approximately perpendicular to the glider's flight path.

#### Conclusions

The benefits of dynamic soaring can be very great if turbulence or wind shear is present in the atmosphere. A mixture of updraft and downdraft can be a much stronger source of glider energy than just updraft alone. This is particularly true as the updrafts become stronger. Large g forces can be beneficial in even moderate strength dynamic soaring conditions. To get all the energy from an updraft rising at twice a glider's normal sinking speed, the glider can pull four gs while flying at twice its normal best L:D speed. High g loads and turbulence scale may both limit dynamic soaring possibilities. Atmospheric flow variations are best for dynamic soaring when within a certain size range. If the air blocks are too large the required changes in aircraft path angle become too large and the speed changes also. The high frequency limit may come from the wing's size and from the rate of lift force change possible on the wing. In dynamic soaring the high gs and aerodynamic forces can extract much more energy from the atmosphere than can a gravity-limited glider flying at one g. If we can find consistent airways containing enough wMid shear and can tolerate the high g forces used, then dynamic soaring technique can enable very long and fast flights.

Simplified Two Air Block System at Different Speeds and Gee Loads

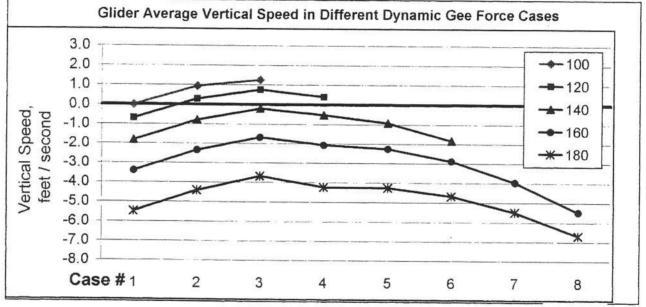
| Glider Specif                                                                                                                                                                                                                                                                          | fications:                                                     |             |                                                            |                   |             |                                                                                                                 |             |                         |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|------------------------------------------------------------|-------------------|-------------|-----------------------------------------------------------------------------------------------------------------|-------------|-------------------------|--------------------|
| All U<br>Fastest Glid                                                                                                                                                                                                                                                                  | Best L:D =<br>Speed of<br>Weight =<br>er Speed =<br>Increment= | 800<br>180  | to one<br>feet/second<br>lbs<br>feet/second<br>feet/second |                   | Indu        | ced Drag =<br>tion Drag =<br>70                                                                                 | 10          | lbs<br>lbs.<br>feet/sec |                    |
| Air Condition                                                                                                                                                                                                                                                                          | ns:                                                            | Smooth L    | .ift                                                       |                   |             |                                                                                                                 |             |                         |                    |
|                                                                                                                                                                                                                                                                                        | Air Block 1                                                    |             |                                                            |                   |             | Air Block 2                                                                                                     |             |                         |                    |
| p Air Motion =                                                                                                                                                                                                                                                                         | 5                                                              | feet/second | d                                                          | Upward A          | ir Motion = | 5                                                                                                               | feet/second |                         |                    |
| Hrz, Size =                                                                                                                                                                                                                                                                            | 200                                                            | feet        | ł                                                          | Horizontal B      | lock Size = |                                                                                                                 | feet        |                         |                    |
| G Load C1 =                                                                                                                                                                                                                                                                            | 1                                                              | x 32 f/s/s  |                                                            | Gee Load          | Case #1 =   | 1                                                                                                               | x 32 f/s/s  |                         |                    |
| G increment =                                                                                                                                                                                                                                                                          | 0.5                                                            | x 32 f/s/s  | ]                                                          |                   |             |                                                                                                                 |             |                         |                    |
|                                                                                                                                                                                                                                                                                        | Glider Av                                                      | verage Ve   | rtical Spee                                                | d in Differ       | ent Dyna    | mic Gee F                                                                                                       | orce Case   | es                      |                    |
| 3.0                                                                                                                                                                                                                                                                                    |                                                                | 10<br>10    |                                                            |                   |             |                                                                                                                 |             |                         | _                  |
| 2.0                                                                                                                                                                                                                                                                                    | <b>~~~</b>                                                     |             | _                                                          |                   |             |                                                                                                                 |             | ✤ 100                   |                    |
| 1.0                                                                                                                                                                                                                                                                                    |                                                                |             | 1                                                          |                   |             |                                                                                                                 |             | <b>-</b> 120            | $\left  - \right $ |
| - 0.0                                                                                                                                                                                                                                                                                  | -                                                              |             | -                                                          | <                 |             | A DEC STOLEN                                                                                                    |             | <b>★</b> 140            | -                  |
| Vertical Speed,<br>feet / second<br>-2.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-2.0<br>-3.0<br>-2.0<br>-3.0<br>-2.0<br>-3.0<br>-2.0<br>-3.0<br>-2.0<br>-3.0<br>-2.0<br>-3.0<br>-2.0<br>-3.0<br>-2.0<br>-3.0<br>-2.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3 |                                                                |             |                                                            |                   |             |                                                                                                                 |             | <b>•</b> 160            | -                  |
| ed 00 -2.0                                                                                                                                                                                                                                                                             | 4                                                              |             | -                                                          | X                 |             |                                                                                                                 |             |                         |                    |
| S = -3.0                                                                                                                                                                                                                                                                               | ¥.                                                             |             | ~                                                          | $\langle \rangle$ | <u> </u>    |                                                                                                                 |             | <del>≭−</del> 180       |                    |
|                                                                                                                                                                                                                                                                                        | *                                                              | ×           |                                                            | X                 | X           |                                                                                                                 |             |                         |                    |
| ertical Speed<br>feet / second<br>-7.0<br>-7.0<br>-7.0<br>-7.0<br>-7.0<br>-7.0                                                                                                                                                                                                         |                                                                |             |                                                            |                   |             | < < >                                                                                                           |             |                         |                    |
| la ⊕ -5.0                                                                                                                                                                                                                                                                              | 1                                                              |             |                                                            | *                 | 1           |                                                                                                                 |             |                         | _                  |
| -6.0                                                                                                                                                                                                                                                                                   | -                                                              |             |                                                            |                   | ~           | A                                                                                                               |             |                         |                    |
| -7.0<br>-8.0                                                                                                                                                                                                                                                                           |                                                                |             |                                                            |                   |             | 1                                                                                                               | × ·         |                         |                    |
|                                                                                                                                                                                                                                                                                        | se # 1                                                         | 2           | 3                                                          | 4                 | 5           | 6                                                                                                               | 7           | 8                       |                    |
| and a second                                                                                                                                                                         |                                                                | Gee For     | ces in the D                                               | )ifferent (       | ases        | a de la seconda de la secon |             |                         |                    |
| Case #                                                                                                                                                                                                                                                                                 | 1                                                              | 2           | 3                                                          | 4                 | 5           | 6                                                                                                               | 7           | 8                       |                    |
| Gee, Block 1                                                                                                                                                                                                                                                                           | 1.00                                                           | 1.50        | 2.00                                                       | 2.50              | 3.00        | 3.50                                                                                                            | 4.00        | 4.50                    |                    |
| Gee, Block 2                                                                                                                                                                                                                                                                           | 1.00                                                           | 0.50        | 0.00                                                       | -0.50             | -1.00       | -1.50                                                                                                           | -2.00       | -2.50                   |                    |
| Speed                                                                                                                                                                                                                                                                                  | Change i                                                       | in Vertica  | l Velocity, f                                              | /s and +          | Path A      | ngle Char                                                                                                       | ige, deg.   |                         |                    |
| 100                                                                                                                                                                                                                                                                                    | 0                                                              | 32          | 64                                                         | 271               |             |                                                                                                                 |             |                         | f/:                |
|                                                                                                                                                                                                                                                                                        | 0                                                              | 9           | 18                                                         |                   |             |                                                                                                                 |             |                         | d                  |
| 120                                                                                                                                                                                                                                                                                    | 0                                                              | 27          | 53<br>13                                                   | 80<br>18          | · · · ·     |                                                                                                                 |             |                         | f/.<br>d           |
| 140                                                                                                                                                                                                                                                                                    | 0                                                              | 6<br>23     | 13<br>46 <sup>-</sup>                                      | <u>18</u> 69      | 91          | 114                                                                                                             |             |                         | f/                 |
| 140                                                                                                                                                                                                                                                                                    | 0                                                              | 5           | 40<br>9                                                    | 14                | 18          | 22                                                                                                              |             |                         | d                  |
| 160                                                                                                                                                                                                                                                                                    | 0                                                              | 20          | 40                                                         | 60                | 80          | 100                                                                                                             | 120         | 140                     | f/                 |
|                                                                                                                                                                                                                                                                                        | 0                                                              | 4           | 7                                                          | 11                | 14          | 17                                                                                                              | 21          | 24                      | d                  |
| 180                                                                                                                                                                                                                                                                                    | 0                                                              | 18          | 36                                                         | 53                | 71          | 89                                                                                                              | 107         | 124                     | f/                 |
|                                                                                                                                                                                                                                                                                        |                                                                | 3           | 6                                                          | 8                 | 11          | 14                                                                                                              | 17          | 19                      | de                 |
|                                                                                                                                                                                                                                                                                        | 0                                                              | 3           | 0                                                          | 0                 |             | 17                                                                                                              |             | 10                      |                    |

Figure 1. Loss of performance produced by varying gee force when soaring uniform lift. At lower speeds the glider wing can stall and not make a high gee data point.

19

VOLUME XXVI - January, 2002

5


5

Simplified Two Air Block System at Different Speeds and Gee Loads

| Glider Specifications: | and the second sec |             |                    |            |             |          |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|------------|-------------|----------|
| Best L:D =             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to one      | Drag @ B           | Best L:D s | speed & 1 g | iee      |
| @ Speed of             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet/second | Induc              | ed Drag =  | = 10        | lbs      |
| All Up Weight =        | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lbs         | Fricti             | on Drag =  | = 10        | lbs.     |
| Fastest Glider Speed = | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet/second | Stall Speed +&- G= | 70         | 100         | feet/sec |
| Speed Increment=       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet/second | Neg G drag factor= | 1.25       | ratio       |          |

|                 | AIL BIOCK | . 1         | F                       | Air Block | 2           |
|-----------------|-----------|-------------|-------------------------|-----------|-------------|
| Up Air Motion = | 5         | feet/second | Upward Air Motion =     | 0         | feet/second |
| Hrz, Size =     | 200       | feet        | Horizontal Block Size = | 200       | feet        |
| G Load C1 =     | 1         | x 32 f/s/s  | Gee Load Case #1 =      | 1         | x 32 f/s/s  |
|                 |           |             |                         |           |             |

G increment = 0.5 x 32 f/s/s



|              |           | Gee Forc   | es in the | Different ( | Cases      |           |          |       |      |
|--------------|-----------|------------|-----------|-------------|------------|-----------|----------|-------|------|
| Case #       | 1         | 2          | 3         | 4           | 5          | 6         | 7        | 8     |      |
| Gee, Block 1 | 1.00      | 1.50       | 2.00      | 2.50        | 3.00       | 3.50      | 4.00     | 4.50  |      |
| Gee, Block 2 | 1.00      | 0.50       | 0.00      | -0.50       | -1.00      | -1.50     | -2.00    | -2.50 |      |
| Speed        | Change ir | n Vertical | Velocity, | f/s and ·   | + - Path A | ngle Chan | ae, dea, |       |      |
| 100          | 0         | 32         | 64        |             |            |           |          |       | f/s  |
|              | 0         | 9          | 18        |             |            |           |          |       | deg  |
| 120          | 0         | 27         | 53        | 80          |            |           |          |       | f/s  |
|              | 0         | 6 ·        | 13        | 18          | 122        |           |          |       | deg  |
| 140          | 0         | 23         | 46        | 69          | 91         | 114       |          |       | f/s  |
|              | 0         | 5          | 9         | 14          | 18         | 22        |          |       | deg. |
| 160          | 0         | 20         | 40        | 60          | 80         | 100       | 120      | 140   | f/s  |
|              | 0         | 4          | 7         | 11          | 14         | 17        | 21       | 24    | deg. |
| 180          | 0         | 18         | 36        | 53          | 71         | 89        | 107      | 124   | f/s  |
|              | 0         | 3          | 6         | 8           | 11         | 14        | 17       | 19    | deg. |

Taras K August 2002

#### Dynamic Soaring of Patchy Lift Net Up Flow 2.5 f/s Figure 2.

Wind Shear 5 f/s

5

0

TECHNICAL SOARING

| lider Spec                                                              |                                         |                                                                                                                  | at Different S        | speeds ar                                     | id Gee Loa                                                                                                       | lus                                                                                                              |                               | 5 .             | -5      |
|-------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|---------|
| inder oper                                                              |                                         |                                                                                                                  |                       |                                               | D @                                                                                                              | De et L.D.                                                                                                       |                               |                 |         |
|                                                                         | Best L:D =<br>@ Speed of                | and the second | to one<br>feet/second |                                               |                                                                                                                  | ced Drag                                                                                                         | speed & 1 ge<br>= 10          | e<br>lbs        |         |
|                                                                         | Up Weight =                             |                                                                                                                  | lbs                   |                                               |                                                                                                                  | tion Drag :                                                                                                      |                               | lbs.            |         |
|                                                                         | der Speed =                             |                                                                                                                  | feet/second           | Stall Spe                                     | ed +&- G=                                                                                                        | 70                                                                                                               | 100                           | feet/sec        |         |
| Speed                                                                   | Increment=                              | : 20                                                                                                             | feet/second           | Neg G d                                       | rag factor=                                                                                                      | 1.25                                                                                                             | ratio                         |                 |         |
| ir Conditio                                                             | ns:                                     | Turbulen                                                                                                         | ce Equal              | Up and De                                     | owndrafts                                                                                                        |                                                                                                                  |                               |                 |         |
|                                                                         | Air Block                               | 1                                                                                                                |                       |                                               |                                                                                                                  | Air Block                                                                                                        | 2                             |                 |         |
| Air Motion =                                                            | 5                                       | feet/secon                                                                                                       | d                     | Upward A                                      | ir Motion =                                                                                                      | -5                                                                                                               | feet/secon                    | d               |         |
| Hrz, Size =                                                             |                                         | feet                                                                                                             | F                     |                                               | lock Size =                                                                                                      | 200                                                                                                              | feet                          |                 |         |
| G Load C1 =                                                             | 1                                       | x 32 f/s/s                                                                                                       |                       | Gee Load                                      | Case #1 =                                                                                                        | 1                                                                                                                | x 32 f/s/s                    |                 |         |
| G increment =                                                           |                                         | x 32 f/s/s                                                                                                       |                       |                                               |                                                                                                                  |                                                                                                                  |                               |                 |         |
| in an                               | Glider A                                | verage Ve                                                                                                        | ertical Speed         | in Diffe                                      | rent Dynai                                                                                                       | nic Gee                                                                                                          | Force Cas                     | ses             |         |
| 3.0                                                                     | 1                                       |                                                                                                                  |                       |                                               | and the second |                                                                                                                  |                               |                 |         |
| 2.0                                                                     | · · · · · · · · · · · · · · · · · · ·   |                                                                                                                  |                       |                                               |                                                                                                                  |                                                                                                                  |                               |                 |         |
| 1.0                                                                     |                                         |                                                                                                                  |                       | _                                             |                                                                                                                  |                                                                                                                  |                               |                 |         |
| . 0.0                                                                   | - 4000-00000000000000000000000000000000 |                                                                                                                  | $\langle -$           |                                               |                                                                                                                  |                                                                                                                  |                               |                 |         |
| P - 1.0                                                                 |                                         |                                                                                                                  |                       | -                                             |                                                                                                                  | *                                                                                                                | *                             | *               |         |
| Vertical Speed<br>feet / second<br>-2.0<br>-2.0<br>-2.0<br>-2.0         | /                                       | ///                                                                                                              | -                     |                                               | *                                                                                                                | and the second | 1011-1725                     |                 |         |
| ertical Speed<br>feet / second<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | */                                      |                                                                                                                  |                       |                                               |                                                                                                                  |                                                                                                                  |                               |                 | 7       |
|                                                                         |                                         |                                                                                                                  | *                     |                                               |                                                                                                                  |                                                                                                                  |                               |                 |         |
| 0.4- get ution                                                          |                                         | /                                                                                                                |                       |                                               |                                                                                                                  |                                                                                                                  |                               |                 | ľ       |
| ē_₽5.0                                                                  | /                                       |                                                                                                                  |                       |                                               |                                                                                                                  |                                                                                                                  |                               |                 | -       |
| -6.0                                                                    |                                         | $ \frown $                                                                                                       |                       | and antisense and second — 1, 5 + 1, 10 Minut |                                                                                                                  |                                                                                                                  |                               | 160             | 1       |
| -7.0                                                                    |                                         | /                                                                                                                |                       | 1 mml (11 ) mm - 4 mm                         |                                                                                                                  |                                                                                                                  |                               |                 | ł       |
| -8.0                                                                    | -*                                      |                                                                                                                  |                       |                                               |                                                                                                                  |                                                                                                                  | ann e 6 - 7 - al (1) (10-10-1 | -*- 180         |         |
| Ca                                                                      | <b>ise #</b> 1                          | 2                                                                                                                | 3                     | 4                                             | 5                                                                                                                | 6                                                                                                                | 7                             | 8               |         |
|                                                                         |                                         | Gee For                                                                                                          | ces in the D          | ifferent C                                    | ases                                                                                                             |                                                                                                                  |                               |                 |         |
| Case #                                                                  | 1                                       | 2                                                                                                                | 3                     | 4                                             | 5                                                                                                                | 6                                                                                                                | 7                             | 8               |         |
| ee, Block 1                                                             | 1.00                                    | 1.50                                                                                                             | 2.00                  | 2.50                                          | 3.00                                                                                                             | 3.50                                                                                                             | 4.00                          | 4.50            |         |
| ee, Block 2                                                             | 1.00                                    | 0.50                                                                                                             | 0.00                  | -0.50                                         | -1.00                                                                                                            | -1.50                                                                                                            | -2.00                         | -2.50           |         |
| peed                                                                    | Change                                  |                                                                                                                  | I Velocity, f/        | 's and +                                      | Path Ar                                                                                                          | ngle Cha                                                                                                         | nge, deg.                     |                 |         |
| 00                                                                      | 0                                       | 32                                                                                                               | 64                    |                                               |                                                                                                                  |                                                                                                                  |                               |                 |         |
| 20                                                                      | 0                                       | 9                                                                                                                | 18                    |                                               |                                                                                                                  |                                                                                                                  | ***                           |                 |         |
| 20                                                                      | 0                                       | 27<br>6                                                                                                          | 53<br>13              | 80<br>18                                      |                                                                                                                  |                                                                                                                  |                               |                 |         |
| 40                                                                      | 0                                       | 23                                                                                                               | 46                    | 69                                            | 91                                                                                                               | 114                                                                                                              |                               |                 | 25 m 25 |
| 1997))                                                                  | 0                                       | 5                                                                                                                | 9                     | 14                                            | 18                                                                                                               | 22                                                                                                               |                               |                 |         |
|                                                                         | 0                                       | 20                                                                                                               | 40                    | 60                                            | 80                                                                                                               | 100                                                                                                              | 120                           | 140             |         |
| 60                                                                      | 0                                       |                                                                                                                  |                       |                                               |                                                                                                                  |                                                                                                                  |                               |                 |         |
| 60                                                                      | 0                                       | 4                                                                                                                | 7                     | 11                                            | 14                                                                                                               | 17                                                                                                               | 21                            | 24              |         |
| 60<br>80                                                                |                                         |                                                                                                                  | 7<br>36<br>6          | <u>11</u><br>53<br>8                          | 14<br>71<br>11                                                                                                   | 17<br>89<br>14                                                                                                   | 21<br>107<br>17               | 24<br>124<br>19 |         |

Taras K August 2002

#### Figure 3. Equal Strength Mixed Updrafts and Downdrafts Wind shear 10 f/s

TECHNICAL SOARING

Simplified Two Air Block System at Different Speeds and Gee Loads

5 -10 **Glider Specifications:** Drag @ Best L:D speed & 1 gee Best L:D = 40 to one @ Speed of 100 feet/second Induced Drag = 10 lbs All Up Weight = 800 lbs Friction Drag = 10 lbs. Fastest Glider Speed = 260 100 feet/sec feet/second Stall Speed +&- G= 70 Speed Increment= 40 1.25 feet/second Neg G drag factor= ratio Air Conditions: Net Downflow-- Downdrafts Stronger than Ups Air Block 1 Air Block 2 Up Air Motion = 5 feet/second Upward Air Motion = -10 feet/second Hrz. Size = 200 feet Horizontal Block Size = 200 feet G Load C1 = 1 x 32 f/s/s Gee Load Case #1 = x 32 f/s/s 1 G increment = x 32 f/s/s 1 Glider Average Vertical Speed in Different Dynamic Gee Force Cases 10.0 5.0 0.0 **/ertical Speed** feet / second -5.0 -10.0 -100-15.0 -140 -20.0 180 220 -25.0 **★**260 -30.0 Case #1 2 3 4 5 6 7 8 Gee Forces in the Different Cases

| Case #       | 1        | 2          | 3         | 4       | 5                   | 6         | 7                 | 8     |      |
|--------------|----------|------------|-----------|---------|---------------------|-----------|-------------------|-------|------|
| Gee, Block 1 | 1.00     | 2.00       | 3.00      | 4.00    | 5.00                | 6.00      | 7.00              | 8.00  |      |
| Gee, Block 2 | 1.00     | 0.00       | -1.00     | -2.00   | -3.00               | -4.00     | -5.00             | -6.00 |      |
| Speed        | Change i | n Vertical | Velocity, | f/s and | + - Path Ar         | ngle Chan | ige, deg.         |       |      |
| 100          | 0        | 64         |           | -       | 8 <b></b> 8         |           |                   |       | f/s  |
|              | 0        | 18         |           |         |                     |           |                   |       | deg. |
| 140          | 0        | 46         | 91        |         | N <del>917</del> 81 | 199       | ((66.)            |       | f/s  |
|              | 0        | 9          | 18        |         | <del></del> )(      |           |                   |       | deg. |
| 180          | 0        | 36         | 71        | 107     | 142                 |           | 1.55              |       | f/s  |
|              | 0        | 6          | 11        | 17      | 22                  |           | 3 <del>75</del> 3 |       | deg. |
| 220          | 0        | 29         | 58        | 87      | 116                 | 145       | 1.55              |       | f/s  |
|              | 0        | 4          | 8         | 11      | 15                  | 18        |                   |       | deg. |
| 260          | 0        | 25         | 49        | 74      | 98                  | 123       | 148               | 172   | f/s  |
|              | 0        | 3          | 5         | 8       | 11                  | 13        | 16                | 18    | deg. |

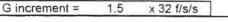
Taras K August 2002

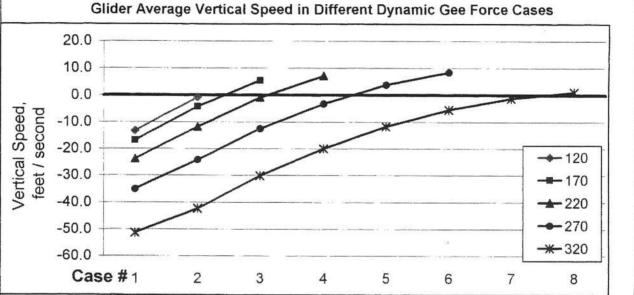
Dynamic Soaring in Net Down Flow. The updrafts are the same as the previou Figure 4. figure, the downdrafts twice as strong. Net Down Flow 2.5 f/s.

TECHNICAL SOARING

Simplified Two Air Block System at Different Speeds and Gee Loads

-20


0


| Glider Specifications: |     |             |                    |           | VARA NA ALE SURVEY |          |
|------------------------|-----|-------------|--------------------|-----------|--------------------|----------|
| Best L:D =             | 40  | to one      | Drag @ B           | est L:D s | speed & 1 g        | ee       |
| @ Speed of             | 100 | feet/second | Induce             | ed Drag = | = 10               | lbs      |
| All Up Weight =        | 800 | lbs         | Frictio            | on Drag = | = 10               | lbs.     |
| Fastest Glider Speed = | 320 | feet/second | Stall Speed +&- G= | 70        | 100                | feet/sec |
| Speed Increment=       | 50  | feet/second | Neg G drag factor= | 1.25      | ratio              |          |

#### Air Conditions:

Downdrafts Mixed with Still Air

|                 | Air Block | 1           | م                       | ir Block | 2           |
|-----------------|-----------|-------------|-------------------------|----------|-------------|
| Up Air Motion = | 0         | feet/second | Upward Air Motion =     | -20      | feet/second |
| Hrz, Size =     | 200       | feet        | Horizontal Block Size = | 200      | feet        |
| G Load C1 =     | 1         | x 32 f/s/s  | Gee Load Case #1 =      | 1        | x 32 f/s/s  |





#### Gee Forces in the Different Cases Case # 1 2 3 4 5 6 7 8 Gee, Block 1 1.00 2.50 4.00 5.50 7.00 8.50 10.00 11.50 Gee, Block 2 1.00 -0.50 -2.00 -3.50 -5.00 -6.50 -8.00 -9.50 Speed Change in Vertical Velocity, f/s and + - Path Angle Change, deg 120 0 80 -------f/s 0 18 \_\_\_ deg. --------..... 170 0 56 113 -----------f/s ----0 9 18 ------------deg 220 0 44 87 131 -------f/s ---0 6 11 17 ----225 --deg. ---270 0 36 71 107 142 178 -----f/s 0 4 8 15 11 18 \_\_\_ deg. 320 0 30 60 90 120 150 180 210 f/s 0 3 5

8

Taras K August 2002

16

18

deg.

Downdrafts and Still Air--Figure 5.

Wind Shear 20 f/s Net Down Flow 10 f/s

13

11

Simplified Two Air Block System at Different Speeds and Gee Loads 20 -20

| Glider Speci                                            | fications:                                                           |                   |                                                            |             |              |                                                                                                                 |             |                              |           |
|---------------------------------------------------------|----------------------------------------------------------------------|-------------------|------------------------------------------------------------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------|-------------|------------------------------|-----------|
| All L<br>Fastest Glie                                   | Best L:D =<br>@ Speed of<br>Jp Weight =<br>der Speed =<br>Increment= | 100<br>800<br>650 | to one<br>feet/second<br>lbs<br>feet/second<br>feet/second |             | Induc        | Best L:D s<br>ced Drag =<br>ion Drag =<br>70<br>1.25                                                            |             | e<br>Ibs<br>Ibs.<br>feet/sec |           |
| Air Conditio                                            |                                                                      | Strong Tu         | rbulence                                                   |             |              |                                                                                                                 |             |                              |           |
| an oonanto                                              |                                                                      |                   | Buloneo                                                    |             |              | Air Die ek 0                                                                                                    |             |                              |           |
| Jp Air Motion =                                         | Air Block 1<br>20                                                    | feet/second       |                                                            | I Inward A  | Air Motion = | Air Block 2<br>-20                                                                                              | feet/second | 4                            |           |
| Hrz, Size =                                             |                                                                      | feet              |                                                            |             | lock Size =  | 200                                                                                                             | feet        | -                            |           |
| G Load C1 =                                             |                                                                      | x 32 f/s/s        |                                                            |             | I Case #1 =  | 1                                                                                                               | x 32 f/s/s  |                              |           |
| G increment =                                           | 5                                                                    | x 32 f/s/s        |                                                            |             |              |                                                                                                                 |             |                              | -         |
|                                                         | Glider Av                                                            | verage Ver        | tical Spee                                                 | d in Diffe  | rent Dynar   | nic Gee                                                                                                         | Force Cas   | es                           |           |
| 200                                                     | )                                                                    |                   |                                                            |             |              |                                                                                                                 |             |                              |           |
| 150                                                     | S 16                                                                 |                   |                                                            |             |              |                                                                                                                 |             |                              | -         |
| 100                                                     | 1                                                                    |                   |                                                            |             | -            |                                                                                                                 |             |                              |           |
| 50                                                      | )                                                                    | /                 |                                                            | ~           | <u> </u>     |                                                                                                                 |             |                              | -         |
| Vertical Speed,<br>-200<br>-100<br>-200<br>-250<br>-250 | S 10 (1) (2) (2)                                                     |                   | 1                                                          |             |              | *                                                                                                               | Г           |                              | 7         |
| 0.50 -50<br>0.50 -100                                   |                                                                      |                   |                                                            |             | *            |                                                                                                                 |             |                              |           |
| R ~ -150                                                |                                                                      |                   |                                                            | *           |              |                                                                                                                 |             |                              |           |
| -200                                                    | S 8                                                                  |                   | *                                                          |             |              | Nicini<br>Nicini                                                                                                |             |                              |           |
| > -250                                                  | 1                                                                    |                   |                                                            |             |              | 1997 - San Anna an Anna |             | 520                          |           |
| -300                                                    |                                                                      | -                 |                                                            |             |              |                                                                                                                 |             | <del>-*</del> -650           |           |
| -350<br>-400                                            |                                                                      |                   |                                                            |             |              |                                                                                                                 |             |                              |           |
|                                                         | ase # 1                                                              | 2                 | 3                                                          | 4           | 5            | 6                                                                                                               | 7           | 8                            |           |
|                                                         |                                                                      | Gee Forc          | es in the D                                                | )ifferent ( | Cases        | a di di sena di secondo di second  |             |                              |           |
| Case #                                                  | 1                                                                    | 2                 | 3                                                          | 4           | 5            | 6                                                                                                               | 7           | 8                            |           |
| Gee, Block 1                                            | 1.00                                                                 | 6.00              | 11.00                                                      | 16.00       | 21.00        | 26.00                                                                                                           | 31.00       | 36.00                        |           |
| Gee, Block 2                                            | 1.00                                                                 | -4.00             | -9.00                                                      | -14.00      | -19.00       | -24.00                                                                                                          | -29.00      | -34.00                       |           |
| Speed                                                   | Change i                                                             | in Vertical       | Velocity, 1                                                | /s and -    | + - Path Ar  | ngle Cha                                                                                                        | nge, deg.   |                              |           |
| 130                                                     | 0                                                                    |                   |                                                            |             |              |                                                                                                                 |             |                              | f/s       |
| 260                                                     | 0                                                                    | 123               |                                                            |             |              |                                                                                                                 |             |                              | de<br>f/s |
| 260                                                     | 0                                                                    | 123               |                                                            |             |              |                                                                                                                 |             |                              | de        |
| 390                                                     | 0                                                                    | 82                | 164                                                        | 246         |              |                                                                                                                 |             |                              | f/s       |
| F0476476                                                | 0                                                                    | 6                 | 12                                                         | 18          |              |                                                                                                                 |             |                              | de        |
|                                                         | 0                                                                    | 62                | 123                                                        | 185         | 246          | 308                                                                                                             |             |                              | f/s       |
| 520                                                     | 0                                                                    | 3                 | 7                                                          | 10          | 13           | 16                                                                                                              |             |                              | de        |
|                                                         |                                                                      | 10                | 98                                                         | 148         | 197          | 246                                                                                                             | 295         | 345                          | f/s       |
|                                                         | 0                                                                    | 49                |                                                            |             |              |                                                                                                                 |             |                              | 0004/0    |
| 520<br>650                                              | 0                                                                    | 49<br>2           | 4                                                          | 6           | 9            | 11                                                                                                              | 13          | 15                           | de        |

Figure 6.

ę

÷

Stronger Atmospheric Turbulence No Net Vertical Flow 40 f/s Wind Shear

Simplified Two Air Block System at Different Speeds and Gee Loads

0

10

| Glider Speci                                                     |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                             |                                                                                                                |                      |                      |
|------------------------------------------------------------------|--------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| All L<br>Fastest Glic                                            | Best L:D =<br>@ Speed of<br>Jp Weight =<br>der Speed = | 40<br>f 100<br>800<br>180 | to'one<br>feet/second<br>lbs<br>feet/second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | Induc<br>Frict<br>ed +&- G= | ed Drag =<br>ion Drag =<br>70                                                                                  | = 10 I<br>100 f      | bs<br>bs.<br>eet/sec |
| Speed                                                            | Increment=                                             | 20                        | feet/second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Neg G d                  | rag factor=                 | 1.25                                                                                                           | ratio                |                      |
| Air Conditio                                                     | ns:                                                    | Patchy Li                 | ift Stronge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er Patches               | , Farther A                 | part                                                                                                           |                      |                      |
|                                                                  | Air Block '                                            | 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                             | Air Block 2                                                                                                    | 2                    |                      |
| Jp Air Motion =                                                  | 10                                                     | feet/secon                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ir Motion =                 | 0                                                                                                              | feet/second          |                      |
| Hrz, Size =<br>G Load C1 =                                       | 200<br>1                                               | feet<br>x 32 f/s/s        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Horizontal B<br>Gee Load | lock Size =<br>Case #1 =    | 600<br>1                                                                                                       | feet<br>x 32 f/s/s   |                      |
| G increment =                                                    | 0.5                                                    | x 32 f/s/s                | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                             |                                                                                                                |                      | -                    |
|                                                                  | Glider Av                                              | verage Ve                 | rtical Spee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d in Diffe               | ent Dynan                   | nic Gee                                                                                                        | Force Case           | S                    |
| 4.0<br>3.0<br>2.0<br>1.0<br>-1.0<br>-2.0<br>-3.0<br>-4.0<br>-4.0 |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | *                           | *                                                                                                              |                      | *                    |
| tical 3<br>-2.0<br>-3.0                                          |                                                        |                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                        |                             |                                                                                                                |                      |                      |
| ē, ₽ -4.0                                                        |                                                        | *                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                             | 901 million and a second s |                      |                      |
| -5.0                                                             |                                                        |                           | In the second se |                          |                             |                                                                                                                | 100                  |                      |
| -5.0                                                             | *                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                             |                                                                                                                |                      |                      |
| -5.0<br>-6.0<br>-7.0                                             | <b>se #</b> 1                                          | 2                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                        | 5                           | 6                                                                                                              | -                    | 8                    |
| -5.0<br>-6.0<br>-7.0                                             | 1                                                      |                           | 3<br>ces in the [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                             | 6                                                                                                              | <del>- ** </del> 180 | 8                    |
| -5.0<br>-6.0<br>-7.0                                             | 1                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                             | 6                                                                                                              | <del>- * 1</del> 80  | 8                    |

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                     | 100 | 0 | 32 | 64 |    |     |             |              |     | f/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|----|----|----|-----|-------------|--------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                     |     | 0 | 9  | 18 |    |     | 1 <u></u> 1 | <u>19532</u> |     | deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 140 0 23 46 69 91. 114 137  f/s   0 5 9 14 18 22 26  deg   160 0 20 40 60 80 100 120 140 f/s   0 4 7 11 14 17 21 24 deg   180 0 18 36 53 71 89 107 124 f/s | 120 | 0 | 27 | 53 | 80 |     |             |              |     | the state of the s |
| 0 5 9 14 18 22 26  deg   160 0 20 40 60 80 100 120 140 f/s   0 4 7 11 14 17 21 24 deg   180 0 18 36 53 71 89 107 124 f/s                                   |     | 0 | 6  | 13 | 18 |     |             |              | 227 | deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 160 0 20 40 60 80 100 120 140 f/s   0 4 7 11 14 17 21 24 deg   180 0 18 36 53 71 89 107 124 f/s                                                            | 140 | 0 | 23 | 46 | 69 | 91. | 114         | 137          |     | f/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0 4 7 11 14 17 21 24 deg   180 0 18 36 53 71 89 107 124 f/s                                                                                                |     | 0 | 5  | 9  | 14 | 18  | 22          | 26           |     | deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>180</b> 0 18 36 53 71 89 107 124 f/s                                                                                                                    | 160 | 0 | 20 | 40 | 60 | 80  | 100         | 120          | 140 | f/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                            |     | 0 | 4  | 7  | 11 | 14  | 17          | 21           | 24  | deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 3 6 8 11 14 17 19 deg                                                                                                                                    | 180 | 0 | 18 | 36 | 53 | 71  | 89          | 107          | 124 | f/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                            |     | 0 | 3  | 6  | 8  | 11  | 14          | 17           | 19  | deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Figure 7.Patchy Lift with Stronger More Separated UpdraftsNet Up Flow 2.5 f/sWind Shear 10 f/s

TECHNICAL SOARING

Simplified Two Air Block System at Different Speeds and Gee Loads

| Clider Speci                                                    | ficationa   |                                             |                           |                                       |              |                                                      |                                                                                                                  |                                       |
|-----------------------------------------------------------------|-------------|---------------------------------------------|---------------------------|---------------------------------------|--------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Glider Speci                                                    |             |                                             |                           |                                       |              |                                                      |                                                                                                                  |                                       |
|                                                                 | Best L:D =  |                                             | to one                    |                                       |              |                                                      | speed & 1 ge                                                                                                     | e                                     |
|                                                                 | @ Speed of  |                                             | feet/second               | 1                                     |              | ced Drag =                                           |                                                                                                                  | lbs                                   |
|                                                                 | Up Weight = |                                             | lbs                       | n and analysis                        |              | tion Drag :                                          |                                                                                                                  | lbs.                                  |
|                                                                 | der Speed = |                                             | feet/second               |                                       | eed +&- G=   | 70                                                   | 100                                                                                                              | feet/sec                              |
| Speed                                                           | Increment=  | 20                                          | feet/second               | Neg G                                 | drag factor= | 1.25                                                 | ratio                                                                                                            |                                       |
| Air Conditio                                                    | ns:         | Turbulen                                    | ce Lower                  | Frequenc                              | у            |                                                      |                                                                                                                  |                                       |
|                                                                 | Air Block 1 | 1                                           |                           |                                       |              | Air Block                                            | 2                                                                                                                |                                       |
| Up Air Motion =                                                 | 5           | feet/secon                                  | d                         | Upward ,                              | Air Motion = | -5                                                   | feet/secon                                                                                                       | d                                     |
| Hrz, Size =                                                     |             | feet                                        |                           | Horizontal E                          | Block Size = | 600                                                  | feet                                                                                                             |                                       |
| G Load C1 =                                                     | 1           | x 32 f/s/s                                  |                           | Gee Load                              | d Case #1 =  | 1                                                    | x 32 f/s/s                                                                                                       |                                       |
| G increment =                                                   | 0.5         | x 32 f/s/s                                  | 7                         |                                       |              |                                                      |                                                                                                                  |                                       |
|                                                                 | Glider Av   | verage Ve                                   | rtical Spee               | d in Diffe                            | rent Dynar   | nic Gee                                              | Force Cas                                                                                                        | es                                    |
|                                                                 |             |                                             |                           |                                       |              |                                                      |                                                                                                                  |                                       |
| 3.0                                                             | Τ           | and a closed to constrain the second second | allowed . It shall with a |                                       |              |                                                      | - (14 million 17 million |                                       |
| 2.0                                                             | +           |                                             |                           |                                       |              |                                                      |                                                                                                                  |                                       |
| 1.0                                                             |             |                                             |                           |                                       |              |                                                      |                                                                                                                  |                                       |
| . 0.0                                                           |             | 4                                           |                           |                                       |              |                                                      | 17.0                                                                                                             |                                       |
|                                                                 | 1           | X                                           |                           | ~                                     |              |                                                      | *                                                                                                                |                                       |
| 00 -1.0                                                         | -           | ///                                         | /~                        |                                       |              | ×                                                    |                                                                                                                  |                                       |
| d 0 -2.0                                                        |             | / /                                         |                           |                                       |              |                                                      |                                                                                                                  | _                                     |
| -3.0                                                            | ~           | /_/                                         | /                         |                                       |              |                                                      |                                                                                                                  |                                       |
| 0.4- et /                                                       | /           | 1                                           | *                         |                                       |              |                                                      |                                                                                                                  |                                       |
| Vertical Speed<br>feet / second<br>-2.0<br>-2.0<br>-2.0<br>-2.0 | <b>K</b>    |                                             |                           |                                       |              |                                                      |                                                                                                                  |                                       |
| > -6.0                                                          |             | ×                                           |                           |                                       |              |                                                      |                                                                                                                  |                                       |
|                                                                 |             | /                                           |                           |                                       |              |                                                      | 160                                                                                                              |                                       |
| -7.0                                                            | /           | /                                           |                           |                                       |              |                                                      | <del>- <b>ж</b>-</del> 180                                                                                       | • • • • • • • • • • • • • • • • • • • |
| -8.0                                                            | <b>X</b>    | 988 SLITTING                                |                           | Malaine - 10 alleidire - 11 alleidire |              | ni ini menini i i menini                             |                                                                                                                  |                                       |
| Ca                                                              | se # 1      | 2                                           | 3                         | 4                                     | 5            | 6                                                    | 7                                                                                                                | 8                                     |
|                                                                 |             | Gee Ford                                    | ces in the [              | Different (                           | Cases        | 4.5-Xamilan (54 - 55 - 56 - 56 - 56 - 56 - 56 - 56 - |                                                                                                                  | <u> </u>                              |
| Case #                                                          | 1           | 2                                           | 3                         | 4                                     | 5            | 6                                                    | 7                                                                                                                | 8                                     |
| Gee, Block 1                                                    | 1.00        | 1.50                                        | 2.00                      | 2.50                                  | 3.00         | 3,50                                                 | 4.00                                                                                                             | 4 50                                  |

| Gee, Block 1 | 1.00     | 1.50        | 2.00      | 2.50          | 2.00          | 2.50              | 4.00          | 1.50          | -    |
|--------------|----------|-------------|-----------|---------------|---------------|-------------------|---------------|---------------|------|
| Gee, Block 2 | 1.00     | 0.50        | 0.00      | 2.50<br>-0.50 | 3.00<br>-1.00 | 3.50<br>-1.50     | 4.00<br>-2.00 | 4.50<br>-2.50 |      |
| Speed        | Change i | in Vertical | Velocity, | f/s and       | + - Path      | Angle Char        | nae, dea.     |               |      |
| 100          | 0        | 96          | 192       |               |               |                   |               |               | f/s  |
|              | 0        | 26          | >30 deg.  |               |               |                   |               |               | deg  |
| 120          | 0        | 80          | 160       | 240           |               | ( <del>1</del> )) |               |               | f/s  |
|              | 0        | 18          | >30 deg.  | >30 deg.      |               |                   |               |               | deg  |
| 140          | 0        | 69          | 137       | 206           | 274           | 343               |               |               | f/s  |
|              | 0        | 14          | 26        | >30 deg.      | >30 deg.      | >30 deg.          |               |               | deg  |
| 160          | 0        | 60          | 120       | 180           | 240           | 300               | 360           | 420           | f/s  |
|              | 0        | 11          | 21        | >30 deg.      | >30 deg.      | >30 deg.          | >30 deg.      | >30 deg.      | deg. |
| 180          | 0        | 53          | 107       | 160           | 213           | 267               | 320           | 373           | f/s  |
|              | 0        | 8           | 17        | 24            | >30 deg.      | >30 deg.          | >30 deg.      | >30 deg.      | deg. |

Taras K August 2002

5

-5

Figure 8. Problems can arise with path angles when air blocks become too large.

TECHNICAL SOARING