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SUMMARY

A gradual conversion from stochastic to chaotic
approach in the analysis of measurement records, dynamic
movement and stress analysis, etc. is recommended. A
practical problem with that is, that the use of mathematical
laws and formulae published in chaotics requires mostly
the beforehand knowledge of the appropriate differeential
equations, we are seldom in the possession of. To evade
this difficulty an attempt is made to elaborate chaotic con-
cepts to the analysis of chaotic records, too. Three detail
problems have been picked out to start the line of applica-
tions with. Early classification of the records and control of
the sampling frequency is the first candidate to begin with.
A generalization of the geometric similarity concept, too,
promises to give dividends. Finally, we report on the first
trials to detect the true structure of chaotic spectra.

NOTATION

F frequency

H  sampling interval

I sampling serial number

R radius (polar coordinates)

R amplitude of the Fourier component
X the measured /recorded variable

X horizontal co-ordinate

Y vertical co-ordinate

Rx  autocovariance function

K analysis base time, period
Sh  neighborhood number
angle

Xx  scale of two figures

M mean

X standard deviation of the variable

X displacement

X degree of distortion

Xx  displacement in units of h

Xx  angular displacement resp. difference of angles
Xx  degree of similarity

INTRODUCTION

In national sciences the traditional concept of determin-
istric laws is slowly making way for statistical methods.
The final outcome of this trend was the theory of stochastic
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processes (see e.g. Karin and Taylor [10], Bendat and
Piersol [2,3]). Its mathematical foundations are mathemati-
cal statistics and probability theory. Aeronautical research,
being always in the vanguard of fluid dynamics and
dynamic stressing, had ample opportunity to analyze
apparently random, non-deterministic problems. A statisti-
cal treatment of turbulence records was requisite from the
outset. Based on the analogue instruments and methods
then available correlation functions (i.e. statistics of prod-
ucts) were added to simple statistics. The palette was com-
pleted with a special variety of Fourier calculus: the spec-
tral density function.

Stricly speaking, even the correlation function points
bevond the limits of the original probability concept.
Namely the autocovariance function of a true random
series | theoretically zero except at the point of origin (see
Fig. 1).

The spectral density function, derived from the autoco-
variance, is even more suspicious for not being truly cov-
ered by the original concept of the probability theory. This
surmise will not mean that a practical calculation using the
PSD function shall give inaccurate results, it will only draw
attention to the fact that we do not know exactly at present,
all its possibilities and limitations.

So the theory of turbulence has grown with and beyond
the original statistical concepts. Meanwhile, a third way of
thinking, the chaos theory, too, came into being. Basically it
is the analysis of all the possible solutions of nonlinear dif-
ferential equation systems. One of its top models is once
again turbulence. Is it advisable to convrt to this new con-
cept? If so, in which provinces of aeronautical engineering?
What are the benefits of the conversion and how it can be
made in practice?

The chaos theory promises to give more strong laws and
more exact results than the probability theory. It seems
therefore worth the trouble to try the conversion. But the
practical problem is that except some recent works (e.g.
Abarbanel [1]) chaology is a highly theoretical way of
thinking using mostly deductive procedures. The engineer,
on the contrary, has and will work primarily using induc-
tive methods, e.g. by analysis of measurement records. So
the problem of conversion boils down to the correct and
efficient analysis and modeling of chaotic data records. The
present paper attempts to develop some new concepts and
procedures in this line.

First of all, a proposal for revision of the classification of
records resp. of functions will be made. The conversion to
chaotic methods and procedures promises to turn into a
hard and lengthy process we can give here only the first
attempts of.

Early classification and rating of the sampling frequency
is facilitated by use of a novel graphical representation and
by a rating number. Real benefits are to be expected from a
generalization of the traditional geometric similarity con-
cept. The concept of spectral analysis seems to need revi-
sion, too, but at present it is only the starting of the research
and some early particulars we can report on.
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Figure 1: The beginning of a Gaussian random series and its autovariance function.

CLASSIFICATIONS AND NEIGHBOURHOOD

In the following we shall discuss the assessment and
analysis of different digital measurements records x;
(i=0+m) sampling being taken in equally spaced intervals
h. The examination is essentially restricted to stationary
phenomena in a sense that temporarily we do not analyze
the validity of the statements for nonstationary cases.
According to the new approach we are working with three
classes of records: the first being deterministic and the third
one being the class of true random records. In between
them, in the second class, there are the chaotic records as
turbulence, surface elevation along the course of a rolling
wheel, sea waves, etc.

Mode and extent of analysis depends to some extent on
the nature, i.e. on the class, of the record. Clasification
made on the basis of the neighbourhood figure x;.1=f(x;)
as shown in the following charts. If the sampling interval h
was selected small enough, then the points sampled from a
deterministic function are forming a 45° straight line as on
Fig. 2a.

results in a picture similar to Fig. 2a. On the other hand the
discretization by sampling introduces a peculiar kind of
randomness we shall speak of later.

True random functions or records do not display any cor-
relation or continuity; they are sequences of statistically
independent measurable events (see Fig. 1). The neigh-
bourhood figure of a uniformly distributed series looks like
Fig. 4a while a Gaussian distribution gives a picture as in
Fib. 4b. Several other variants, too, can ge generated. Their
common characteristic is symmetry for the horizontal as
well as for the vertical axis.

The human eye and brain are indispensable for correct
judgment but many times a suitable numererical rating,
too, may give good services. It is possible to condense the
essential informtion of the neighbourhood figure in the
form of the neighbourhood number
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Figure 2: Neighbourhood figures of a deterministic periodic record.

Chaotic functions, if the sampling interval was short
enough, as giving a moe or less narrow and dense group of
points along the 45° line as in Fig. 3a. Reducing the sam-
pling interval h results in nearing the picture to this line.
For every continuous function the limit procedure h—0
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Calculated from the picture, this number indicates if the
sampling frequency is high enough for showing the fine
details, too, of the recorded function. Both are functions of
the class of the record as well as of the sampling interval h.
As it can be easily shown, for all continuous records
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Figure 3: Neighbourhood figures of a chaotic record.
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Drawing of the neighbourhood figure and calculation of
the neighbourhood number can be repeated doubling, tre-
bling, etc. the sampling interval. The formula for it reads:

: 1/2
) 1 1 I]l-:Al _
Ai)= —| ———— T (xjsai -x;) ()
g|lm-Al+1 ;g

Fig. 2b, 2c and 2d are showing the change in the charac-
ter of the neighbourhood figure of a 5 member harmonic
series Ai=10, 100 and 1000, respectively. The figure remains
a sharp line maybe forming some loops. Doing the same
for the chaotic case (Fig. 3b, 3c and 3d) results in a scatter-
ing of the individual points (Fig. 4b, 4c and 4d) giving
already for the Ai=10 a nearly randomlike appearance. For
true random series augumentation of Ai does not give any
well-marked change.

e

x_{i+1}

b) Random series with
Gaussian distribution

a) Random series with
uniform distribution

Fig. 4: Neighbourhood figures of two true random
records.
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Successive augmentation of Ai (strictly speaking of Aih)
gives the neighbourhood function, the value of the neigh-
bourhood number as function of the time or space dis-
placement (Fig. 5).

Deterministic periodic functions (Fig. 5a) gives d,=0 in
intervals corresponding to their basic periods and periodic
neighbourhood functions. Chaotic functions display neigh-
bourhood functions like Fig. 5b. These start from 8,=0 and

the oscillations do not return to zero. The theoretical value
of the neighbourhood number for true random functions is
Sh=\."2 independent of the value of Aih (Fig. 5c¢). Some

numerical values are given in Table 2.

A detailed examination of the initial trend in neighbour-
hood functions calculated from sampled chaotic functions
reveals a peculiarity. Although the function sampled is con-
tinuous, extrapolation of the trend to h=0 doesn’t intersect
the vertical co-ordinate axis at 8},(0)=0 (see e.g. Fig. 6).
Sampling and digitizing introduces an amount of true ran-
dom errors. The value of the extrapolated 8,=0 may there-
fore be weighed to be a statistical index for measuing
errors. Analog recores, too, aren’t free of them, but conti-
nuity is masking it.
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Fig. 6: Trend of the neighbourhood numbers.
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The neighbourhood function can be shown (see App. 1)
to possess a close relationship to the autocovariance func-
tion Ry (Ai.h). It reads:

) 1/2 RN
. —| . R (Aih) . R.(ﬂi.hw -
Sai = 42| XA | i Rt e ;
CALh N (‘;: v | R : (ﬂ} | (“1')

Systematic measurements are indispensable for progress
in design and in practical soaring. Digitally sampled flight
or wind-tunnel measurement records always contain ran-
dom error components being statistically constant irrespec-
tive of the sampling interval h. A check using the neigh-
bourhood method is recommendd in all such cases.

This concept can be developed for two-dimensional
observtion netwoks, e.g. meteorological stations, showing
if the number of stations is enough and their placing is cor-
rect for monitoring a given parameter of the weather. Any
integer displacement Ai is principally a sample taken from
a continuous real displacement {=Ai.h. This way a plane or
spatial set of sample points can be processed like a scalar
problem.

ures an extension of the definition and a suitable index
number for ranking is recommended. The concept is
defined and a recommended procedure is presented first
for polygons and then for curvilinar plane forms.

Polygons

A necessary requirement for the similarity of two poly-
gons, as a and b on Fig. 7a, is the similarity of their respec-
tive characters. In other terms: the number and sequence of
the discrete elements (angles and sides) should be the same
and the ratio of the proportion of their greatest to their
smallest dimension should not be greatly different.

If these primary conditions are performed then the simi-
larity can be rated as shown on the case of hexagons a and
b on Fig. 7 (Gedeon[9]). The procedure starts with the cal-
culation of the respective central points 0. Measured from
the central points the position vectors of the corner points
are given in terms of polar coordinates:

|Pu -.I{"']n

and 1y = |rp;le

Fai = ‘rdl

Table 1: Classification of records resp. of functions

Class: Autocovariance Neighbourhood Neighbourhood
function (if any): figure: number:
Deterministic Constant amplitude Sharp lim rﬁ'],(ﬂi)=0
A0
Chaotic lim Ry(¢)=0 [More or lessdiffuse|]  lim &, (Ai)=0
§—ec Al—0)
True random Z>0: Ry(£)=0 Points all over the = S
| picture

Table 2: Value of neighbourhood number of functions

A=
Class: I 3 10 100 1000
Deterministic 0.0015 0.0044 0.0145 0,1448 1.1247
Chaotic 01107 | 01412 | 02230 | 09128 | 12719 |
| Random (Uniform) | 14245 | 14126 | 1 4136 | 14173 | 14219
Random (Gaussian) 1.4058 | 1.4214 . 4( 33 1.4182 [.4048

GEOMETRICAL SIMILARITY

Progress in research and development is sometimes due
to the recognition of similaarity. It is desirable to transfer
this as far as possible from human insight to numerical
methods. The traditional Euclidean similarity definition
accepts only full similarity giving perfect coincidence after
transformations. Being this not achievable for chaotic fig-
TECHNICAL SOARING

The size of the polygons should be the mean of the
norms:

m | m
p‘il - T r“ ﬂll(l ]_l_h = —_— \'—“rhl (5)
R mi_
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Fig. 7: Calculation of the simiolarity index for poloygons.

The scale of the two polygons is:

Ha
L (6)

Aba =

The average of the difference of corner angles gives the
degree of turning:
1 m

Ap = — 3 (@b = @ai) @)
m_|

For the similarity calculations polygon b is taken to be
displaced, turned and magnified or diminished from poly-
gon a. For the rating this conceptual process is reversed
giving hexagon c. Strictkly speaking the similarity calcula-
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tion is comparison of figures a and c.
The scale of distortion can be declared in terms of
Cartesian co-ordinates as shown in Fig. 7b:

= i F

| o
P2
\I\.s = 2

/'_i»lﬂ p.* bi Xaj . | .z D:l:\_bj Yai i | (8)
[m ;5! Ly ) \ i |

The scale of similarity can be written alike as:

.
. 2
[ “ba¥bi ~Xai | | #ba¥bi ~ Yai |

I: m - | 1y bk 1y b (9)

For the hexagons a and b on Fig. These formulae gave a
distortion of Ap,=0.1725 and a similarity number of

Apa=0.9850 respectively.

Curvilinear plane figures

A possible procedure, the integral method for similarity
ranking, is made as follows (Gedeon [8,9]). First of all a
suitably and equallly situated central poin 0 (e.g. the CM)
on both forms a and b should be marked as shown on Fig.
8. Then starting from a base direction the shape function
r(¢) for both forms is recorded (right square on Fig).

Integration of both functions gives the mean radius val-
ues pa,pb and their ratio A

{ 2= 1 #% (10)
Ha = % Il';] ((0 }dt}@ Hp = Z JI.;] (G'))d:‘p
0 0
g JI'(;_]
fha = (11)
iLih

Marking characteristic points on the records is giving:

AQ = Pmb-Pma (12)

The transofrmed cur ve for direct comparison reads:
() = Apaln(@TAP) (13)

On these lines the scale of distortion can be calculated to
be:

r 1/2
; pi
1 27 Apatnle+Ap)-1,(00) )"
A = | L[ Ao bl +A0)-1,(0) g
2 Ha
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Figure 8: Calculation of the similarity index by the integral method.

Using it a possible rating formula is:

} | (15)

|

|

|

[ | . )

L a |

1/2

_‘f a9 +A0) 1y ‘*"‘”

For the two forms on Fig. 8 the distortion is A},,=0.0325
and the similarity Ap,=0.9951 respectively.

Comparison of spatial formations can be treated similar-
ly extending the calculation procedures to three dimen-
sions. Practical application of the similarity calculations
may be for control of manufcturing tolerances (e.g. wind-
tunnel models, sailplane wing profiles) for comparison of
spectra, etc. Last but not least, it can give us a fine tool for
control of canopy distortions affecting flight safety. A dou-
ble-exposure picture of an orthogonal screen directly and
through the canopy will show and rate any irregularities
affecting the vision of the pilot. Structural integrity of fiber-
reinforced sailplane strucures can be checked using e.g.
pulsed laser double exposure holography (fagot et al. Ref.
[4])

SPECTRAL ANALYSIS AND PHASE SPACE RECON-
STRUCTION

Spectral analysis is indispensable for examination and
modeling of stochastic/chaotic phenomena or shapes.
After a Iengtlw debate the Fourier calculus was accepted
for the analysis of periodic records in sicence and engi-
neering. Later a similar procedure for stochastic crecords,
too, was requested. These functions aren’t periodic. This
difficulty was solved by replacing the Fourier series by the
spectral density function, Fourier transform of the autoco-
variance function.

The solution seemd to work as expected, giving accept-
able input-output elations. Declaring a harmonic series

Gy (f) - e.g. a Fourier series or a similar function — to be the

spectrum of a function x=x(t) has strictkly speaking a
duplicate meaning. First it will mean that the (infinite) sum

TECHNICAL SOARING

of the series approximates the value of the function exactly
and uniformly.

But on the other hand, if x(t) is representing a physical
process, it may mean also that this movement or form was
compiled from harmonic components G, (f). In the former

sense a function may have several acceptable spectra while
the later conclusion is obviously unique. Formal variations
are several FFT procedures (see e.g. Bendat et Piersol [2]
subchapter 9.3) as well as the complex spectral vector
grouping of multiple inputs (Gedeon [5]). The case of “nat-
ural” or “structural” spectrum components is much more
problematic.

Formal proof of the fourier series calculation assumes the
function x(t) to be periodic, in other words, the period T to
be known. This is a necessary clause because the numerical
integration ives correct values only for full period T. In the-
ory the spectral density function G(f) should be continu-

ous. In this case the spectrum value calculated using any
base length T appropriate for the required frequency f is
got to be exact. Because of the presumed continuity
decreasing of the frequency steps f;,1/f; should result in
decreasing the scattering between successive spectrum
amplitudes.

This smoothing tendency failed to materialize in our
practice. The sequence of road unevenness, atmospheric
turbulence, etc. spectrum points is showing an excessive
scatter. This aroused doubts about the continuity of sto-
chastic/chaotic spectra. Namely it is easy to prove that
incorrect base length can result in incorrect or even in total-
ly false spectrum values simulating continuous spectra.

On Fig. 9a the function to be analysed has been com-
posed of 5 components rq-r5 as shown in solid lines on Fig.
9b giving a period T. If a false base frequency *=0.84f giv-
ing a base length T* for the Fourier calculus is chosen, the
resulting incorrect components will be rq*-r5* shown in

dotted lines. Moreover, if requested, any number of fully
false “components” in this case rg™-Rg* too, can be pro-
duced. With this possibility in mind, the senior author tried
to compute a possibled discrete amplitude spectrum for
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Fig. 9: False Fourier components owing to inaccurate base frequency.

four atmospheric turbulence records (Gedeon [7,8]). The
experimental calculation method gave peculiar discrete-
frequency amplitude spectra. Accuracy of the standard
deviation as calculated from the spectra was slightly inferi-
or to the classic method. In view of the full novelty of the
problem and of some practical requirements the results
could be rated to be acceptabled, but there is sstill much to
be done for getting a final and universal answer to the
problem. We have to look for discrete-frequency amplitude
spectra trying to find other methods, too.

Further research is going on in this line. Chaotics is work-
ing efficiently with attractors in phase spaces. They are use-
ful for input-output calculations and perhaps they may
help in the basic analysis of the spectrum structure. With
that object the feasibility of a direct phase portrait calcula-
tion from chaotic records, too, is under investigation. The
phase portrait could show if the spectrum can be supposed
to be stationary or not. Basic improvements in the model-
ing of turbulence, road/terrain profile, etc. could come
from this. Good ideas would be welcomed in this line.

Declaring a harmonic series Gx(f) - e.g. a Fourier series or

a similar continuous function - to be “the spectrum” of a
function x=x(t) has strictly speaking a duplicate meaning.
First it will mean that the (infinite) sum of the harmonic
series approximates the function exactly and smoothly. But,
on the other hand, if x(t) is representing a physical process,
it has also the second meaning that the movement or form
has been induced by harmonic inputs Gy(f). In the former

sense the spectrum isn't exclusive, there may exist serveral
acceptable solutions.

The introduction of particular discrete frequency ampli-
tude spectra - or maybe something similar - promises to
give more exact models requiring less calculations, but oth-
erwise traditional spectral density function input--output
calculations are giving acceptable results. While the spec-
trum structure problem waits its settling it may be safely
used for a working hypothesis.

TECHNICAL SOARING 1

CONCLUSIONS

Chaotics promises to open up new p;rospects to research
and development. Conversion to the new approach is kept
back by the insufficiency of chaotic record analysis proce-
dures. In order to fill this gap development of some assess-
ment and evaluation procedures has been initiated.
Introduction of the neighbourhood calculation assures
early classification of the record and checking of the sam-
pling interval. Revision of the Euclidean similarity require-
ments and introduction of a ranking number promises to
give help in the recognition of relations.
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