
CONVERSION FROM STOCHASTIC
TO CHAOTIC APPROACH IN
RESEARCH AND DESIGN

By S. Dora and J. Cedeon, D.Sc.
Budapest Univcrsiti, of Technology and Econonics,
Hungary

Presented to thc XXVII OSTTV SemhaL; Mafikeng, Solrth

SUMMARY

A gradual conversion from sbchastic to chaotic
approach in thc analysis of measurement recolds, dynanlic
molement arld stress analysis, ctc. is recomnended. A
practical prcblem with that is, that the use of nrathcmatical
lar,s and fomulae plrblishcd in chaotics requircs mostly
thc beforehand knorvledge of the appropriate c{iffereential
equations, u,c are selc{om in the possession of. To cYade
this difficulty an attcmpt is made to elabolaie chaotic corl-
cepts to the analysis of chaotic recods, too. Three detail
problems havc bccn picked out to start the line of applica-
tions \^,ith. Early classiiication of the rccorcls and contlol ot
the sanlpling frcq ency is the first candidatc to bcBirl lvith.
A generalization of the Beometric similariti, concept, too,
promises to Sive ctividends. Finally, we repott on ihe lirst
hials to detect the true structlrre of chaotic spcctra.

NOTATION

F fr€quency
H sampling interval
I sampling seial nllmber
R radius (pdar coodinates)
R amplituc:te ol the Fourier conrponcnt
X the maasl,r'c.l /recorde(t variable
X horizontalco-ordinate
Y v.rti..l.o'or.lifaie
Rx autocovarianccflrn.tiorl
T a alysis base tine, period
Sh ncighboftood number
Q ansle
Xx scale of t\.vo figures
M mean
X starldarcl deviation of ihc variable
X displacemeni
X degree of distortion
Xx displacement in uiits ol h
Xx angLrlaL displacement resp. differencc of angles
Xx degrce of similariti'

INTRODUCTION

In national sciences the traclitional colrccpt of dcte n;n-
istic lar{s is slo$ly making way for statistical methods.
The final outcome of this h€nd i{as thc theory of stochastic
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processes (see c.g. Karin nnd Tavlor [10], Bendat and
Piersol [2,3]). Its malhernaiical foundations are mathenlaii
cal staiistics and probability theory. Aerolrauiical rcsearch,
benrg alwavs in thc vaiguard of fluid dynanics ancl

dynamic stressing, had ample opportlrniti, to analyze
apparently random, non'deterministic problenrs. A statisii-
cal h€atment of tLrrlrlrlcncc rccords $as reqLrisite from the
outset. Ilased on the analogue instrumcnts and metho(ts
ihen available correlation llrnctions (i.e. staiistics of prod-
ncts) $,ere addecl to sinrplc statistics. The palette rvas com
plcicd with a special variety ot Folrier calclrlus: the spec-
tral density function.

StLicly speaking, even ihe corrclaiion lunction pohts
bcl'ond the limits oi the original probability concept.
Nanely ihc auto.ovariance trnction of a true randonr
series I theoretically zero cxccpt at the point of origh (see

Fig. 1).

The spectral dcnsity function, .terived from the autoco
variance, is even nlore suspicious fo l1ot bcing trul), cov-
ered by thc oliginal concept of the probability theorl'. This
sur mise will not nlean thai a practical calculation using the
PSD function shall give inacclrratc rcsults, it $ ill orl), (traw
atieniiol to thc fact that we do not knou exactly at preseni,
all its possibilities and Iinritations.

So thc theorv of turbulence has gron n u,ith and bcyond
ihe oiginal statistical concepts. Meanwhile, a ihird l\'ay of
thnrking, the chaos theory, bo, camc inio being. Basically it
is thc anali,sis of all the possible solutions of nol1lincar dif-
fercntial eqlratiol systcms. One ot its iop models is once
aganl iurbulence. Is it advisable io convrt to this new con-
ccpi? If so, i11 whicll provinces olaeronautical enginccril1g?
What are the benefiis ol the convc$ion and how it can be

The chaos thcor'], prorlises to ilive more sirong laws and
morc exact results than tlrc probabiliti, theory. lt seems

thcrefore !\,orth tlle trouble to tD the convcrsion. But the
praciical problcm is that except some recent \vorks (e.9.

Abartranel []l) chaology is a highlv thco,etical !\,ay of
thinking using mostl), deductive procedLrres. The engineer,
on the contrar]r has and will {'ork pimarily rsing induc
tive methods, e.g. by analysis of nleaslrrcnlcnt rccords. So

the problen of conversion boils do$,n to ihe correct and
efficient anal)'sis and modcling of chaotic data rccords. The
present paper attempts to develop sonre ncs, conccpts and
procedurcs in this linc.

Firct oi all, a proposal for rcvisiorl ol the classilication of
rccords rcsp. of fLulctions will be m.rde. The conversion k)
chaotic Dlethods and proccdnrcs promises to turn into a

had and lengthy process xe can givc hcrc only the firct

Earl)' classificatioll al1d ratinB of the sampling freqLrency
is facilitated Lr)' use of a novel graphical rcprcscntatioll and
Lry a ratirg nunrbcr. Real Llenefits are to be expeciecl fron a

generalization of thc tracliiioral gconct c similarity con'
ccpi. Thc concept of spectral anal)'sis seens to need rcvi-
sion, too, tru! at prescnt it is only the starting of the rcsearch
and some earl), particulars u,e ca. repof on.
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a) Random sedes b) Autocovariance function

Figure 1r The beSinning of a Caussian random series and its autovariance function.

CLASSIFICATIONS AND NEIGHBOURHOOD
In the follo$'ing $'e shall discuss the assessment and

analysis of different digital measlrrcments records xi
(i=O-im) samplhg behg taken in eq ally spaced n'rteNals
h. The examination is essentjally restricted to statiorary
phenomena in a sense that tenporarily u'€ do not analyze
the validity of thc siatcmenis for nonstationary cases.
According to the new approach we arc working ('ith three
classes ofrccords: the first being cleteministic and the thiLd
one bcing thc class of true randonr records. In between
then, in the seconct class, there are the chaotic records as
tlrrbulence, s rface elevation along the course or a rolling
wheel, sea waves, etc.

Mode and extent ol analysis depends to some extent on
the naturc, i.e. on the class, of thc rccord. Clasificatiol
made on the basis of the neighbouftoocl figur€ xi+l=f(xi)
as shown h the following charts. If the sampling interval h
s'as selectect small e o gh, then the ponlts sampled from a

determinisiic funct;on arc forming a 45'straight line as on
Fig.2a.

results in a picture similar to Fig. 2a. On the other hand the
discr€iization by sampling introduces a peculiar kind or
randonmess we shall speak of later

True random functions or records do not display any cor
rclation or continlritv, the), are sequ€nces of statistically
hdependent measurable events (see Fig. 1). The neigh-
bourhood figure ofa uniformly distribuied series looks like
Fig.4a while a Caussian distriblrtion gjves a picture as in
Fib.4b. Sevcral othcr variaits, too, car ge generated. Their
common characteristic is symmetry for the horizontal as
$'ell as for the v€rtical axis.

The human cye and brain are indispensable for correct
judgment but many iimes a suitable numer€rical rating,
too, may give good serviccs. Ii is possible to condense the
essential informtion of the neighbourhood figure in the
form of the neighbourhood number

Calculated from the picturc, this number inrlicates if the
sampling frcqu€icy is high enough for shou,ing the fine
dctails, too, of the recorded function. Both are fLrnctions of
the class of the record as well as of the sampling inteNal h.
As it can be easily sho$,n, for all cont;nuolrs records
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Figur€ 2: N€ighbonrhood figures of a cleteministic periodic rccord.

Chaotic functions, il the samplinS interval was short
enough, as giving a moe or less narrolv and dense group of
points along the 45' line as h Fig. 3a. Reducnrg the sam
pling inteNal h results h nearing the picturc to this line.
For cvery continuous flrnct;on thc limit procedure h-Jo

TECHNICAL SOARINC 125



{+1)

lim d-" : 0
h+0 " (2)

Drau'nrg of the neighbourhood figure and calculation of
the neighbourhood number can be rePeated cloubling, trc-

blin8, eic. the sampling inteNal. The form la for it reads:

r t r nr-\r
rir - l.l - '. 'i''(', 

' -,,)' 
rri

.' m-Al -li-0

Fig. 2b, 2c and 2d are shor'r'ing tl,e change in the charac-

ter of thc neighbolrrhoocl fiSure of a 5 member harmonic
series Ai=10, 100 and 1000, rcspectively. The figure remains

a shary line maybc forming somc looPs Doing the same

for the chaotic case (Fig. 3b, 3c and 3d) results in a scatter
ing of the iidivid al points (Fi8. 4b,'lc and 4d) giving
already for the Ai=10 a nearly randomlike aPPearance. For

trlre random series augumentation of Ai does rlot gjve any

$,elhnarked change.

ab
Figure 3; Neighbourhood fiSures of a chaoti. record

Successive augmeitaiion of Ai (strictly speaking of Ai h)

gives ihe neighbourhood fllnction, the value of the nei8h-
bourhood number as function of the time or sPace dis
placemeni (Fig. s).

Determinisiic periodic functions (Fi8 5a) gives 3h=0 in

iniervals corespoidinS to their basic pedods and periodic
neighbourhood f unctions. Chaotic f unctions disPlay nciSh-

bolrrhood functions like Fig. 5b. These start from 36=0 and

the oscitlations do not return to zcro. The theoretical value
of the neighbourhood number for true random fLrnctions is

6h=i2 indepcndent of the value of Ai.h (Fig. sc). Some

numeical valLres are Siven in Table 2.

A detailed examinaiion of the initial trcnd in neighbour'
hood lunctions calculated from sampled chaotic functions
reveals a peculiarity- Although the function samPled is con-

tinuous, exirapolation of the h€nd to h:0 doesn't intersect

the vertical co-ordinate axis at 66(0)=0 (see cg Fi8. 6)

Sampling and digiiizhg introduccs a amount of irue ran

dom errols. The value of the extrapolate.{ 6h=0 may thcre-

fore be weighed to be a statistical hdex for measuing

errors- Analog recores, too, aren't free of ihem, but conti-
nuity is masking it.

a) Random series $'ith
uniform distribution

b) Random series with
Caussian distribution

Fig. 4: Neighbourhood figures of two true random
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The neighbolrrhood frinciion can be sho!v,1 (see App. 1)

to possess a close relationship to the autocovariance func
tion Rx(Ai.lr). It reads:

,^,,, -.r,[, n'l,:*t] '-,'r[, !J+!]' ' (,)

Systematic mcasLrrements are indispensable for progress
in design and in practical soa ng. Digitalli' sampled flight
or {,ind-tunnel measurement records always contain ran-
dom error components Lreing statistically constant i espec-
tive of the sampling interval h. A check usnrg the neigh
boufiood method is rccommendd h all such cases.

Thjs concept can be devebped For tu,o-dimcnsional
obseNtion neh{oks, e.g. meteorological stations, showing
if the number ofstaiions is cnough and their placing is cor-
rect for monitoing a given paraneter of the $,eather Any
integer displacement Ai is principally a sample taken lrom
a continuous real displaccment (=Ai.h. This way a pl:ne or
spatial set ot sample points can be processed like a scalar

Table l: Cl itlcati

bl

urcs an cxtcnsion of the dcfinition and a suitable index
number ior ranking is r€commended. The concepi is
defined and a recomnen.led procedure is prcsenied first
for;'olygon-.'r'd Llren for.rrrvr.rn.rr pl;ne f"nn-

Polygons

A necessary requircment for ihe similarit), of iwo pol),-

Bons, as a and b on Fig. 7a, is the similarity of ihe;r rcspcc-
tive characiers.ln other termsr the number and sequence ol
the discrete elements (a gles and sides) should be the same
and thc rat;o of the proportion of their greaiest to their
smallest dimension should not be grcatlv different.

lf these primary conditions are performed then the simi-
larity can bc rated as shown on the casc of hexagors a and
b on Fis. 7 (Gedeonl9l). The procedlrre starts rvith the cal
clrlation of the respective central po;nis 0. Measured from
the central points the position vectorc of the corner points
arc gn/en in terms of polar coordhates:

r"'= 1r, gitl' and rn' = r5; cipu'

f ir

GEOMETRICAL SIMILARITY

Progress in rcsearch and development is sometimes due
to the recognition of similaarity. lt ;s desirable to transfer
this as far as possible froln human nrsight to nlrmerical
methods. The traditional Euclidean similadty definition
accepts only flrll similarity giving pcrfect coirlcidence after
transformations. Being this not achievable for chaotic fig
TECHNIC,4L SOARINC 127

of the polygolls should t'e theThe size

un = I,i,.0'l:."ii
nl i=l

(5)

Class: Aulocovariancc
fiurction (il any):

Ncighhourhooci
tlJruac i

Neighbourhood
numbeL:

Delerminisiic Constant anlplitude Sharp lim ,th (^i)=o

Chaotic llm R, (c)= o Morc or Icss dillusc lrnr,i1,(:i)=o

Tlue randorn i>0: R.(i)=0 Poinls all over lhe
picture

iir,= n,l

ablc l: ValLre ol nei rhourhoo

Class:

i\i=

I I I0 100 1000

DelerIninisric 0.t)ul5 0.00.+4 0.0l.li 0. t44ll .l tl7
(lhaotic 0.1107 0.l.l1l 0 ttt0 0 9lt8 I .t7l q

Random (l lnifbrnl) 1..12.t5 r.1I]6 t..+t-16 t..1l7l l..ll19

Randon'l (Gaussian) l.405li I .ll l.l 1.10 r5 l.1r8l l..t0.1lr

fra 
: and
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tion is comparison of fi8urcs a al]d c
The scale of disiortion can be declarcd

Cartesian co-ordinates as shown in Fig- 7b:

. lLi' .,.
'rl

l

(8)

The scale of sinilaity can be witten alikc as:

r r i t. ' : 
'

lr'l
(e)

;\

Ith

(7)

(6)

The average of the difference ol corner angles gives the

degree of turning:

lP=!!(Po, -P,')
m i=1

For the hcragons a and b on Fig These formlrlae gave a

distortion of A6o=01725 and a similarity number of

Aba=0.9850 resPectiveli'

Curvilin€at plane {igures

A possible procedurc, the integral nethod for sinilarity
ranking, is nade as follons (Gedeon [8,9]) First of all a

suitatty anc:t eqLrallll, sittated ccniral poin 0 (c g the CM)
on both fonns a and b sho ld be marke.{ as shown on Fi8

8. Then starting fron a Lrasc direction the shape funciiorl
r((J) for troth lolms is r€.orded (right squarc on Fig).

InteSration ol both functions gives the mean radius val
ues ga,[b and iheir raiio ], ba:

b) Vector diagram for errol calcularion

Fig. 7: Calculation of the simiolarity index for Poloy8ons

The scale of the t$,o polygons isl

lllt
Ir, = 

- J'..l(l k1(I Lrh=

0

l

1r

(10)

(11)

(12)

Marking characteristic points on the records is givirrg:

1n

J'; 
(eFs'

0

lta

I ll''l
..r r 

(14))Jp)-,^(p+,\hurrlq
^,.=l:I{l,f0\

The transoflmed cul ve for dircct conlparison readsi

r.(e) - /.h.ri(e-r^q) (13)

On these lines ihe scale of distortion can be calculated to

For the similaity calculatiorls polyBon b is takcn to be

displaced, tumed and magnified or diniiished fron Poly-
son r l-or lhe r.rting rhi' corcLP udl pro.e" i' rerer'cd
grving h..agun c. srn.ll \.PP.rl rnBthc'ilnldrit\ (alcul.l
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The similar figures a and b

Using it a possilrle raiing fomula is:

., I I r"l '') (Jl c{f {.s)

I'tl
For ihe two forms on Fig. 8 the distortioi is Aba=0.0325

and the similaity Aba=O.9951 rcspectively.

Comparison of spatial formations can be treated similar-
ly extending the calclrlation procedurcs to three dimen-
sions. Practical application of the similarity calculations
may be for conhol of manufcturing tolerances (e.g. rvntd-
tunnel models, sailplane wing profiles) for comparison of
spectra, etc. Last but not least, it can give us a fine tool for
control of canopt, distortions affecting flight safeiy. A dou-
ble-cxposure picture of an ortho8onal screen directly and
througlr thc canopy will show and rate any irregularities
affecting the vision of ihe piloi. Structural inte8rity of fiber-
reinforced sailplane strucures can be checkcd using e.g-

pulsed laser double cxposure holography (fa8ot et al. Ref.

t4l)

SPECTRAL ANALYSIS AND PHASE SPACE RECON.
STRUCTION

Spectral anall'sis is indispensable for examination and
nlodeling of stochasiic/chaotic phenomena or shapes.
After a lergthy debate the Fourier calculus was accepted
for the analysis oi periodic records h sicence and engi
reernlg- Later a similar procedure for stochastic crecorcls,
too, rvas requesied. These functions aren't periodic. This
difficultj/ $'as solved by replacing the Fourier series by thc
spectral density function, Fouricr transfo n of the auto.o-

The solution sccmd to s,ork as expected, giving accept
rhle rnpul outDuL el"tior- De.lrr ng .' lr.,l.oric .cri-.
C"(f) - e.g. a Fourier series or a similar function to be the

spectrum of a function x=x(t) has strictkly speaking a

dLrplicate meaning. First ii lvill mean that the (infinite)sum

TECHN/'AI SOARI\IC

of the series apprcximates the valLre of the function exactly
and unifornlly.

But on the other hand, if x(t) is representing a physical
process, it may mean also that this movcment or form $'as
compiled from harmonic components C,(f). Ir1 thc former

sense a function may have several accepiable spectra while
ihe later conclusion is obviously uniquc. Fomlal vadations
are several FFT procedures (see e.g. Bendat et Piersol [2]
subchapter 9.3) as s,ell as the complex spectral vector
grouphg of muliiple inputs (Cedeon [5]). The case of "nar
ural" or "structural" spectrum components is much more

Formal proofofthe foLrrjer series calculation assumes the
tunction x(t) to be periodic, in other words, the peiod T to
be kno\^,n. This is a necessarv clausc because the numerical
integration ives correct values only for full period T. In the-
ory the speciral density function Cx(f) should be contirlr-
ous. In this case the spectrum value calculated using any
basc length T appropriate for the requircd frequency f is
got to be exact. Because of the presumed continuity
decreasing of the frequency steps fi*1/f; should result in

decreasing ihe scattering between successivc spectrlrm
amplitudes.

This smoothing tendency failed to materialize in our
practice. The sequence of road uneveDness, atmosPheric
lurbulerce. elc 'pLcr-un' poirr- . -hot\rnt .rn er.e'-i\c
scaiter This aroused doubts about ihc corltirluity ol sto
chastic/chaotic spcctra. Namely it is easy to prove that
hcorlectbase length can result il1 incorect or even in total
ly false spectrum values simulating continuous spectra.

On Fig. 9a the function to be anal],sed has been conl-
posed of 5 components 11 rS as shown in solid lines on Fig.

9b givhg a pedod T. If a false base freqlrcncy r*=0.8,1f 8iv-
ing a base lengih T* for the Fouder calcullrs is chosen, the
rcsulting incorrect components nill be r1*-r5. s1616 ;1

doticd lines. Moreover if re.luested, any nunrber of fully
false "componenis" in this case ronRg* too, can be pro-

duced. With this possibilitl, i11 mind, the senior auihor tried
to compute a possibled discrete ampliiude spectrum for

Shape functjons a, b arlcl

d{f-.

Figlrrc 8: Calc lation of the sinilarity index by the integral method.
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a) The fLlllctiotl b) Correct and false spectra

Fig. 9i False Fourier components ol^Inl8 to inaccuratc base frequency

fo r atmosphcric turbulence records (Cedcon [28]). The

expefinental calculation method gave Peculiar discrete

frequency amplitude spectra. Acclrracv of the standaLd

de!'iaiion as calculated from ihe spectra s,as slightly inferi-
or to the classic method. In vieu. of the full novelty of the

problem and of some practical lequirements ihe results

could be mted to be acceptabled, but there is sstill much to
be done for gettirg a final and univercal ansrver to the
problem. Wc have to look for discrete frequency amplitlrdc
spectra trying to fnld other mcthods, too.

Further rcsearch is 8oin8 on in this 1ine. Chaotics is work
int efficjently \^'ith attractots in Phase sPaces Thev are use-

ful for inpLrt-output calculations and perhaps they may

help h ihe basic anal)'sis of the spectrun structure. With
that object thc feasibility of a cln€ct Phase portrait calcula-

tioi fronl chaotic rccords, ioo, js un.ter investigaiion The
phase portrait colrld sholv if the sPectnm can be suPposed
to be stationary or not. Basic imProvemeits in the model-
ing of turbulencc, road/terrain profile, etc could come

from this- Good ideas would be $'elcomed h this line.
Declaring a harmonic series Cx(f) - e.8 a Fourier series or

a sinilar continuous function _ io be "the spectrum" of a

function x=x(t) has strictly speaking a duplicate meaninS
First it wjll mean that the (infnite) sunl of the harmonic
series approximaies the f lction cxactly and snloothly BLrt,

on the other hand, if x(t) is representing a ph),sical Prcccss,
it l1as also the second meaning that the movenlcnt or lorm
has been induced Lry ha no ic nrputs Gx(o. In the romer

sense the spectrum isn't exclusive, therc may exist se cral
acceptable solutions.

The introduction of palticLrlar discrete h€qlrency ampli
tude spcctra - or naybe something similar - Promiscs to
give more exaci models rcctuirnlg less calcLrlations, but oih
en 'ise tra.titionai spcciral density fr.nlction inPut--outPut
calculations are giving accepiable rcsults. While the sPec-

trum structure problem waits its settling it may be safely

used fol a working hypothesis.

TFCHN/'Ai- SOARJNC

CONCLUSIONS

chaotics Promises to opei Lrp neiv p;rcsPecis to rcscarch
and development. Conversion to the nel\' apptoach is kePt

back by the inslrfficienc), of chaoti. rccord analvsis ptoce

durcs. h order to lill this gap development of some assess-

ment and evaluation proccdures has been initiated.
lltroduction of thc neiShbourhood calculation assures

early class;fication of thc record and chccking of the sam-

pling interval. Revision of the ELrclidean sinliladti' req irc
ments and introductiorl of a ranking number Prorlises to

tive help in the rccognition of relations.
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,l , m-^i
bh(^'.): -l- ) (x +^io m-Ar+li=0

I rn- \i
R,(ai.h)- lrm sxixi--\r'' n-.m-Ar+l ;]1 '

As it is known:

i' -".11 'l -)r.'I fr - r- rrx x:
In addition:

I nr_\ .limIr=
mJ-m-Ai+li; I

r rn-ai -lrm -. t \: = o:
m-, rn - Ar + I ,_=6 

r{ rl

and
r rn-Ailim ' Ix,xi_: - R"(Ai.h)

m-rm-Al+lr=0
After substitution and arrangement the outcome reads:

" ,"[, R"(^i.h) 
rt 

,.1 , n,1ai.r,11' 'oaih_vr, __- 
I "-L 

_ 
*"tot I

-112
\]

"', ]

dr_
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