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SUMMARY

In recent years several general techniques have been
developed for the determination of the characteristics of
physical systems, based on their measured responses (time
histories of some observed variables). The present paper
analyzes one of these techniques, known as Maximum
Likelihood Method (MLM), and applies to airplane flight
data. Given the equations governing the aircraft flight, the
MLM allows the “estimation”, or extraction, of the param-
eters included in the mathematical model directly from
flight data. The linearized aircraft equations of motion are
discussed, as implemented in the performances and
dynamic behavior prediction code MeMaV, developed at
DPA. Then, as a validation case study, the application of the
proposed approach to an aircraft whose flight characteris-
tics are known is performed. Finally, the MeMaV code is
applied to the DG400 sailplane. Details are given on the
instrumentation used to acquire flight data. For the predic-
tion of performances and dynamic behavior of the
sailplane in flight, specific and detailed maneuvers have
been designed and executed in order to excite dynamics
modes. Control surfaces deflections, angular rates, acceler-
ations, speed, attitude angles have all been measured and
acquired during many test flights performed. All dynamic
characteristics and performances of DG400 have been
obtained and uncertainty and limits of the applied meth-
ods are highlighted and discussed.

Nomenclature

A, B = dynamic matrix, and matrix of inputs
C, D = response matrices

1 = moment and/or product of inertia

X, Y, Z = force components

L,D  =lift and drag forces

_ M, N = rolling, pitching, and yawing moment

t = time

X X Xger Zyr Zapr Liger qu Zy'» My My M:]f Mz
Mge

longitudinal derivatives
Yo Yluf Yy Yo Lo ["p’ Ly Loa Ly N Np! Ny Ngg Ny
lateral-directional derivatives
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& u = vector of parameters, and vector of inputs

/ = cost function

W = weighting matrix

@, ¥ = continuous-to-discrete time
transformation matrices

1, q, r = rate of roll, pitch, and yaw, respectively

i, v, w= body x-, y-, z-axis wind-relative velocities

w' = time derivative dw/ot

@, B = angle of attack, and of sideslip

8¢, 8 = elevator angle, and rudder angle

6, o, y= pitch, rolling, yaw angles

or

Superscripts
= (dot) time derivative d/d!

Subscripts
E = Estimated

THE MAXIMUM LIKELIHOOD METHOD

The so-called “parameter estimation methods” have
been used in recent years for characterizations of complex
physical systems, subject to known inputs, based on the
observation of their time evolution. These techniques are of
great importance in the prediction of stability and control
derivatives of an aircraft. Semi-empirical methods could
also be used to this goal [14].

Some of the prediction methods used in the past are
based on the observation of free oscillations after given
maneuvers and on the evaluation of the time needed for
the aircraft to reach the steady state. The analysis of the
transient state usually is based on a least square technique.
These approaches are applied to simple maneuvers and
give a limited amount of information on aircraft dynamic
characteristics and their accuracy.

Currently, more advanced approaches couple the estima-
tion of parameters with statistical inference techniques.
They have been shown to be capable of good parameter
estimations and the determination of their accuracy and
confidence interval is possible. The parameter estimation
approach presented here belongs to the family of so-called
“Maximum Likelihood Methods” (MLM).

The MLM was first introduced by Fischer in 1912, and
extended later in a number of papers, see refs. [1,2,3]. The
choice of the mathematical model representing the physical
system under study is important in the process of parame-
ter estimation. The most general flight dynamic problem is
the prediction of one aircraft characteristics according to a
non-linear model, taking into account all possible distur-
bances and errors. The basic idea of this approach is rela-
tively simple. An experiment, like a prescribed maneuver
of an aircraft, is assumed to be dependent on a number k of
unknown parameters, collected in vector &={g;,...,.5l.
Maximum likelihood estimations &, of parameters are
related to a set of m observed values, collected in a vector
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z, that coincide with the “most probable” among all of the
estimates. Definition of “most probable” is given by the
minimization of the so-called “likelihood function”, i.e. the
conditioned probability density function P[ Z & |, in a set Z
of observations, once £ is given. A general discussion on the
problem of the minimization of function P, based on
Kalmann filtering tcchniquﬁ for general non-linear prob-
lems, is given in ref. [2]. The minimization is time consum-
ing even in simple scalar problems, especially when all
kinds of possible errors are considered. Thus, in the present
work where the aircraft motion is the primary interest, a
simplified numerical version of the standard MLM is proposed.

For many relevant ﬂight conditions, the choice of a linear
model is appropriate, such as

&=

where

A x(t)y+ B u(r) (1)

=(xL,...
assigned initial state, 1 ={u,,..

A lis the state vector, xv(0)=x0 is an
Lt} is the vector of inputs,
i.e. the prescribed maneuver, A, the so-called “dynamic
matrix”, and B, the “matrix of inputs”, are matrices con-
taining the unknown parameters. When external distur-
bances, such as gusts, are neglected, equation (1) describes
perfectly the aircraft evolution. Generally, disturbances are
present and are called here “process errors”. They are col-
lected in a vector w(t), and taken into account adding a
term T'to(t) to the right-hand side of (1), where T is an error
distribution matrix. When flight data are considered, also
measure errors are involved, collected in a vector v.
Moreover, data are not continuous in time but sampled
with a given frequency 1/At. Thus, the vector z of meas-
ured quantities is a discrete function of time given by

z()=C x(i)+ D u(i)+v(i) (2)

where i, or t=t,+iAt, is the ith instant, C and D are transfor-
mation matrices. In the following expressions the response
vector z is assumed to coincide with x+v, i.e. C=I, and D=0.

The small perturbation equations of motion of an aircraft
can be generally written like the linear equation (1), where
the state vector x is a perturbation of the state variables in
the mathematical model chosen, and the vector of inputs u
is an assigned maneuver. In the linearized case, the longi-
tudinal and lateral-directional motions are decoupled. For
the longitudinal motion, the state vector is given by
x={Au,Aw,AYAg) (in=r=4, c=1). Matrices A(4x4) and B(4x1)
are given in appendix A. The unknown vector of parame-
ter is, for this case, § = (X, X\ Xs0 Zip Ziw Zww Zyyp Zp M,
M, My, M, M) (k=13). For thu later al dl!mt1oml motion,
x={AD,Ap,Ar,Ad} (m=r=4, ¢=2), and matrices A(4x4) and
B(4x2) are given in appendix A. Thc vector of parameters
is, for this case, E=1{Y,, Y,, Y,, Y5, L., L, L,, Ls,, Ls.. N, N,
N,. Nj.. N} (k=14).

i

P
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The state vector for the discrete time case can be approx-
imated by
) G

x(t,,)=®-x(t)+W¥ % (u(!f )+ ult,,

where the matrices ® and ‘¥ are given by the following

D =M = (A1)" A @)
— !
Ay
| — = IT)
] j['] ¢'"dr B (5)
formulas
P=aA"(®-1)B (6)

For linear systems with a dynamic matrix A not depend-
ing on time, matrix ¥ is simply given by

and @ by the summation (4) with n from 0 to a finite
value.

MLM consists of an iterative procedure of estimation of
parameters &. It needs an initial estimation &, for succes-
sive estimations z;, estimated responses, to be compared
with time histories. An error function, called here the “cost

| Q& ,
/= EZ (:(’-"}_ :f;'('ri )) w- (‘:("f) - :;'-.'('ra'))l

function” /, gives the difference between the estimated air-
craft evolution quantities and the measured ones. It is thus
defined according to the following expression

where W is a diagonal weighting matrix, and N the num-
ber of acquisitions.

Minimization of the function | is the goal of the iterative

procedure that updates the values of parameters.
d P d A
S At D = (8)
()f;;. d§;
W g4 af (D=1
= - (f!—])B+A]-—({” )|B+
I, fh_, Js,
3 ' (9)
- )
+ AN - 1) =
JE,
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Minimum search is done by a Gauss-Newton algorithm
and requires the calculation of derivatives of matrices ®
and ‘¥ with respect to parameters &'s. In case of time inde-
pendent dynamic matrix one has

for j=1,....k.

Derivatives of matrices A and B depend on the problem

2 (1) =Dz, (1) + W (u(t,) +ut,) )2 (10)

dzp(t,) D
— BB o — 7 () +
dg; ey
(11)

Adzp(1) N awW .

1
”]E-_Ir' a §;

+d- (ff(!,'}+"‘r(‘ra'+l])/2

to be solved, i.e. longitudinal or lateral-directional motion.

dz,.(1) B d-Zpy

g .
d&. 1=y
S5 g S

Zgo =25(0), (12)

By assigning the initial attempt vector g, one can calcu-
late the estimated response z; and its derivatives from the
following formulas

for j=1,...,k. Also the last given quantities have to be ini-
tially predicted by assigning the initial values

At each time instant f; the gradient matrix v: zp=[0 (zp)i

V.J = -Z(Z(f,-)—z;_.;(f,-))—W-Vg z:(1,) (13)

N
v.SJ = EV: z,(t) WV, z,(8) (14)
i=1

[0E], i=1,...,r and j=1,... .k, enable the correction of param-

=& -0V, J "V J" (15)

eter values until the minimum of | is reached. For each cor-
rection step, the vector § is updated and a new estimated
response is evaluated. In Gauss-Newton method of correc-
tion, the cost-function gradients has to be constructed, i.e.
the vector

and matrix

The updated vector of parameters at step s+1 of the min-
imization procedure is given by

where w is a relaxation factor. The iteration stops when
the cost function value J(§.+1) is lower than a prescribed
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threshold value.

THE MEMAV CODE

The method presented in the previous section has been
implemented in a code developed at DPA. It is written in
FORTRAN language, and named MeMaV. The code has
been developed and validated with well-known case-study
aircraft. The aim of validation has also been the identifica-
tion of maneuvers that, combined with the proposed
numerical method, give a better approximation of parame-
ters.

SIMULATION FOR THE NAVION AIRCRAFT

As a first application of the code it has been considered
the parameters estimation of longitudinal flight derivatives
of the NAVION aircraft. Geometric and mass characteris-
tics of this airplane are reported in ref. [4]. For a fixed flight
condition, the cited reference gives also the values of the
stability derivatives, enabling the simulation of the aircraft
response to a prescribed maneuver. Simulations have been
carried out by a Matlab program. In fig. 1 it is reported one
of the simulated maneuvers. In the same figure it is also
shown the longitudinal motion as estimated by the MeMaV
code, and the initial curve selected for the parameter esti-
mation procedure. The assigned initial values in this exam-
ple have been generated supposing that they would have
been affected by errors up to the 250% with respect to the
ones given by the simulation. As one can see from the
graph, the estimated response is perfectly coincident with
the simulated one. It can be seen from table 1, where the
aircraft estimated stability derivatives are compared with
the exact ones taken from ref. [4], that the maximum per-
centage error is around 9.5% among all possible parame-

o S
8y A Elevator deflection I
8o/ i
-] - S S
=2 _v :
&4

Th——- 10 15 0

2[ ' simulate : _
= gl |r?itt|aﬂ
Bl e o estimated ~ -
So \ e
=1 ) = |
S| Pitchangle ~ T ]

_f]—__ s 3. 1|D 1|3 20

Time [s]

Figure 1: output of a MeMaV code estimation for the
NAVION aircraft; example of longitudinal motion maneuver.

ters for the maneuver considered.

Fig. 2 and table 2 refer to the same maneuver of fig. 1 but
with an additional noise, characterized by Gaussian distri-
bution and zero mean, which simulates the presence of a
measure error. Even in this example of parameters estima-
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tion, it can be observed the perfect coincidence of the esti-
mated response with the mean of the simulated one. Also

Table n. 2: results for the maneuver of fig. 2 with noise.

Table n. 1: results of parameter estimation for the maneu- Dimensional Derivatives
ver of fig. 1. :
' Parameter | Exact | Estimated I %o error
Dimensional Derivatives X, [1/s] -0.045] -0.0451] 0.1495
Parameter Exact Estimated | % error X, [1/5] 0.0361 0.0363] 0.6349
X, [1/s] -0.0451 -0.0451| -0.1508 Z,. [1/s] -0.3700|  -0.3715| 0.4001
X, [1/s] 0.0361 0.0363| 0.5978 Z,. [1/s] 22.0262 2.0337| 03718
Zy [1/5] -0.3700|  -0.3715] 0.4025 Z,, [m/s] 1.4919 1.6355] 9.6242
Z. [1/5] -2.0262| -2.0340| 0.3838 Z s [m/s?] 8.6108 8.6314| 0.2390
Z [m/s] 1.4919 1.6342| 9.5395 M, [U/ms] | -0.1645] -0.1645] 0.0144
Ly [m/s7] 8.6108 8.6319( 0.2444 M, [1/s] 220872 22.0875| 0.0145
M, [l/ms] | -0.1645 -0.1645) 0.0098 M..[l/m] | -0.0170| -0.0170| -0.0973
MW’[””":] -0.0170 -0.0170) -0.1197 Non-dimensional Derivatives
Mye [U/s7] | -11.9497| -11.9502] 0.0040 CoefTicient Exact [ Estimated| % error
Non-dimensional Derivatives £ 0.4101 04117
Coefficient Exact [ Estimated| % error iy 0.0500 0.0499
Cs. 0.4101 0.4117 Cr., 4.4406 4.4574
Co> 0.0500]  0.0499 Cp, 03300 03312
Cra i VAN Ciis; 0.6831]  -0.6832
Cf_')“, 03300 03312 C,.”(& —43606 _43564
Cone -0.6831| -0.6832 Crs 3.8005 4.1663
Cond -4.3606 | -4.3554 Cois 9.9614|  -9.9629
Cryg 3.8005 4.1631 Cr.s 0.3551 0.3559
Coia -9.9614 -9.9627 € -0.923] -.9231
Croe 0.3551 0.3559
ST -0.9231 -0.9232
1[7 = W sﬁfula.ij
05 f:\ estimated ~ | Figure 3: dependence of cost function () minimum values
'_§:05 SR ATy e e iAo e ot on the number of unknown parameters, for a fixed maxi-
) :1 U Body z-axis wind-relative velocity | mum allowed error.
) ' 10 15 20
g1 simylated ' 0.001 —— —— =
g; - /p"’"“‘“r,h: estin%‘y}éaj SR e i
: % Ha "Q"‘"J.Flw £
g; Pitch angle "~ “w“l‘f'_“"_'f"“ gt " 0.0001 L _///-
0 5 g 8 g
’ TimL,OrR'l TIS 0 g. f///
Figure 2: output of a MeMaV code estimation for the ?e'uﬁ //
NAVION aircraft; example of longitudinal motion maneu- §' /
ver with initial noise. 16-06 /
:____,a-/_.__ﬁ
B e e UL S Su S R
N. of parameters
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in this case, the
around 9.5%.

A number of other maneuvers has been investigated for
this case study aircraft, with essentially the same results in
terms of the estimated responses and parameters. Fig. 3
reports the converged minimum values of the cost function
| against the number of parameters considered unknown,
for a fixed maximum error of the initial values given to the
estimation iterative procedure.

SIMULATION FOR THE ASW24 SAILPLANE

Results presented in previous section refer to a specific
flight condition, i.e. to fixed values of speed and angle of
attack that satisfy the equilibrium dynamic equations of
motion at the beginning of the motion. In the present sec-
tion, an example of parameters estimation for varying
angle of attack is reported. For each flight condition, the
linearized equations of motion have been considered in
order to apply the linear model implemented in the present
code. The linear equations are applied to the successive
equilibrium flight conditions assumed as initial conditions
of the prescribed maneuver. In this framework, the maxi-
mum amplitudes of the maneuvers and of the relative time
responses have to be small enough to satisfy the small per-

maximum error on parameter values is

14

S T T T T S
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Figure 4: lift and polar curves for ASW24 sailplane, pre-
dicted (numerical) by AEREO code and estimated by
MeMaV code.
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turbation hypothesis. Once the estimated parameters are
known at each angle of attack, stability derivative curves
are given point by point.

The case study chosen is the ASW24 sailplane, whose
geometric and mass characteristics are given in ref. [5].
Stability derivatives for the simulated responses are calcu-
lated by using the AEREO code implemented by the
authors, see ref. [6,7,8]. Maneuvers considered are the same
chosen for the simulation of the last section.

In fig. 4, are reported the lift and polar curves, as calcu-
lated using the prediction code AEREO (in the figure
referred as “numerical”) and “estimated” by the MeMaV
code. These examples show that the estimation code results
are good as compared to the predicted ones, even at high
angles of attack in proximity of stall conditions, although
the model is linear.

PARAMETER
SAILPLANE
Arising from the authors’ past experience in flight test of
light aircraft, see for example ref. [9], the last application of
the parameter estimation technique presented here is that

ESTIMATION OF THE DG400

: the DG400 sailplane.

Figure 5

related to the DG400 sailplane flight tests, see fig. 5. The
geometric and mass data relative to this single-pilot self-
launching sailplane are given in ref. [10].

FLIGHT TESTS

Flight tests on DG400 took place on October 2001 in the
province of Salerno (Italy). The height of the airport is 458
m above sea level. The weather was warm, with tempera-
tures from 25 to 27 Celsius degrees.
THE INSTRUMENTATION USED

The sailplane was equipped with the following data
acquisition devices: (i) an inertial platform, see fig. 6, for
the measure of roll and pitch angles, ¢ and 6, and for the
angular rates p, g, r with respect to the body axes, and of
linear accelerations along the longitudinal axis x and trans-
versal axis y; (ii) a vertical accelerometer for the measure-
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Figure 6: the inertial platform mounted on DG400
sailplane.

-

Figure 7: the potentiometer for the measure of rudder
angular deflections.

ment of the load factor N; (iii) a temperature probe; (iv)
potentiometers, see fig. 7, for the measure of elevator,
ailerons and rudder angular deflections, 8, &, d,; (v) pres-

sure probes, connected to the sailplane own instrumenta-
tion, for the acquisition of velocity and altitude.

FLIGHT TEST RESULTS

Manoeuvres performed by the sailplane pilot did not
always satisfy the small perturbation hypothesis. Although
the prescribed manoeuvres were designed to excite only
one type of motion at a time, the longitudinal and lateral-
directional motions were always coupled: for example, for
a typical longitudinal manoeuvre the pilot had to adjust the
sailplane flight with rudder, or, for a typical lateral
manoeuvre, elevator adjustments could not be avoided.

For the lack of wind tunnel or numerical data on the
DG400 sailplane, initial vectors for the parameter estima-
tion procedure were derived in this case from numerical
VOLUME XXVII - anuary 2003

simulations.

A complete description of all manoeuvres performed
during the test flight and parameter estimations can be
found in ref. [11]. Below are shown some examples.

LONGITUDINAL MOTION

One of the performed longitudinal motion manoeuvres
is shown in fig. 8 as elevator deflection (top graph; dots),
together with that prescribed to the pilot (top graph; con-
tinuous line). As it can be inferred from the same figure,
although sailplane estimated responses (continuous line,

4 .

a2 _.._r -— ) ; ass?gne
20 : / '& /.' &,
-2 "/ . .
=4 Ce—rt/ .
‘Q'g Elevator deflection '\____'
- L I U
20
15[ m&asugeg
=10 compute ]
55 1
=0 i
40| Pitchangle "~ ]
By 4 s
15 X T T 7 - T
o — TsanuEd
e 4
% 0 ﬁv i‘.: ; T
Q.5 i
=10 | Pitch ramz‘&—fJl ‘\\/-:—_ |
Be—3——a 6 8 10 12 14 16

Time [s]

Figure 8: an example of manoeuvre for the longitudinal
motion. Here computed stands for “estimated”.

Table n. 3: average estimated parameters for DG400
sailplane over different longitudinal motion maneuvers.

Coefficient | Estimated
Cir.. 5.70
Crk 0.59
€ -0.44
-2.82
4.45
-10.70
0.17
-0.77
570

CHJ' Fa L
L [kgm’]

“computed”) in terms of pitch angle (middle) and pitch
rate (bottom) are not perfectly coincident with the actual
ones (dots), the time development of these curves is cor-
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Mean value

Phugoid period [s] 21,61
Phugoid frequency [Hz] 0,047
Phugoid damping ratio 0.024
Short period [s] 3,60
Short period frequency 0,28
‘Hz]

Short period damping 0,75
ratio

Table n. 4: estimated phugoid and short period motion
characteristics.

rect. Differences between measured data and estimated
responses, particularly important at minima and maxima,
can be explained considering that the linear model does not
take into account the aeroelastic effects. Average values of
estimated longitudinal motion parameters over a set of
manoeuvres are reported in table 3 below.

In addition to the parameter estimation, the frequencies

2 e =

150 4 T e, Measured
= 7"—’6 assmne S
o 1,
05| f Jj—\]
G Bl =
—0.5
=
o 1|
9’1_3 - Rudder deflection ;

) | 6 8 1'u 17 14 16
6
[ T . T T T

sl T/ T EwR
= o | - - . .o
I'N 2 e = —
o 4l: -
E‘ﬁ : -r-"" « Aileron deflection
218 [ . 3 /

'&—é—d—ﬁfé—'m—‘fz— 14 6

5[ < |
g0 \ Z
A
Tl Computed *
—3 4 ¢ & 10 1z 15 16
20
15 o ‘_mé_u g
~10 pte
T3
Q-5
210
15
-20

time [s]

Figure 9: an example of manoeuvre for the lateral-direc-
tional motion.
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Table n. 5: average estimated parameters for DG400 sailplane
for different lateral-directional motion maneuvers.

Parameters

Cyg -0.45143
Cyp, -0.01857
Cyy 0.00015
Cn 0.24289
C . -0.02016
C -0.28117
&, 0.00023
C s -0.17038
C s 0.01345
Crg 0.02885
Loy -0.00988
Cosr -0.11566
Coiper 0.00077
G -0.01933
I [kg m7] 1839.46800
I [kg m7] 2545.24100

Table n. 6: estimated Dutch roll and Spiral motion charac-
teristics

Mean value
Dutch roll period [s] 5.48
Dutch roll damping ratio 0.293
Spiral time to half [s] 7.24

and the damping factors of the characteristic “phugoid”
and “short period” motions, which are related to the eigen-
values of the dynamic matrix A, have been calculated
according to standard theories [12,13]. Average values are
reported in table 4 below. The small value of the damping
ratio, i.e. nearly unstable, of the phugoid motion has been
effectively observed during test flights for impulsive and
particularly intense maneuvers: in this case a fast and con-
scious control by the pilot was necessary.

LATERAL-DIRECTIONAL MOTION
One of the performed lateral-directional motion manoeu-
VOLUME XXVII - January 2003



vres is shown in fig. 9 (top two graphs; dots), together with
that prescribed to the pilot (top two graphs; continuous
line). For this manoeuvre, the pilot was not able to control
the sailplane without using the rudder. Also in this case the
sailplane estimated responses, now in terms of pitch angle
and yaw rate, are not perfectly coincident with the actual
ones, but the time development of these curves is correct.
Average values of estimated longitudinal motion parame-

TAS [Kmit]
s W S 8 e e 10 w e
Bttt i
B dea
ok
’ K, A L d
Al 8w
- i
e —
N

Figure 10: Performance polar of DG400 sailplane, TAS vs.
sink rate (Ws).

ters over a set of manoeuvres are reported in table 5 below.
PERFORMANCES

In fig. 10 below, the polar curve (continuous line) taken
from the DG400 flight manual: TAS [km/h] versus sink rate
(Ws) [m/s] is shown. At each point of this curve the manu-
al assumes that flap deflection is set at the optimum per-
formance value. In the same figure the symbols represent
the values measured in flight and their corresponding tlap
deflection.
CONCLUSION

In this work, flight tests performed on DG400 sailplane
have been presented. A numerical procedure, based on
Maximum Likelihood Method, has been set up to predict
all aerodynamic and stability derivatives for this sailplane
starting from flight test data. MeMaV code has been devel-
oped to this aim and it has been validated with the help of
AEREO code applied for airplanes for which mass and
inertia data were available. Longitudinal and lateral-direc-
tional dynamic behavior of the DG400 sailplane has been
predicted and the reconstructed maneuvers match very
well with those measured in flight. Comparison of meas-
ured quantities with those numerically predicted with
AEREO and JDynasim codes will be presented in a future

paper.
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APPENDIX A: Dynamic Matrices

Longitudinal motion

3 X acos iy 0
Z. 7, - gsinth -2,
A 1-Z 1-Z. 1-Z, 1-Z,
0 (0 0 1
M.Z M.z M, gsin® M (g +Z,)
M, + Myl, M, +_‘fu £ s 1, roaeLt gy e
| 1-Z, 1-Z, Z,-1 1-Z,
[ ‘X{\ ¢ ]
Zr"! ¢
e 1-Z,
]
“‘[ l"l Zh e
,I"'rfn‘_, + =
1 — Zu"
L
Lateral-directional motion
[ Y. ¥ —(uy-Y,)  geosthy]
N_+bL, N, +0L N, +bL,
L, +a— i pta L~ P 0
A= | -ab 1-ah | -ab
N, +bL, \ +hL 5 N, +bL, 0
1-ah 1-ab 1-ab
0 | 0 0
0 o 1
‘Nh a +hL da ‘IVﬁ r +hL da
Ly, ya———— Ly +a————
B-= 1—ab 1—ab
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