HANG GLIDER STABILITY AND  two-position trim control. The wings are completed except

for the control system which is somewhat complex (flaps
CONTROL plus droppable ailerons). The wings are lightweight and
made of foam, fiberglass and wood but not state of the art
carbon construction. The tail needs to be very light in order
to minimize tail heaviness during the takeoff run and thus
would benefit from a more "exotic" construction. Any help
or advice is welcome.

By Ed Geller
PREFACE

The attached Appendix was developed to
Please feel free to contact me about this project at these

1. size the tail, addresses:

2. choose the tail airfoil,

3. design the Gurney flap trim control on the tail, and

4. position the control bar and the hang point of a rigid
wing hang glider designed by the author.

Ed Geller
3750 79th Ave. SE
Mercer Island, WA 98040

e-mail: hanggel@aol.com

The three-view of the glider is shown below. Pitch is con-
phone: (206) 232-3102

trolled by pilot weight shift. To minimize the pilot "throw”,
a Gurney flap (not shown in the three-view) is used as a
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A1 INTRODUCTION

A theoretical analysis of traditional hang glider stability
and control is very difficult since the shape is not fixed but
changes with aerodynamic loading at varying angles of
attack. With the advent of rigid wing hang gliders, a theo-
retical analysis becomes feasible and the development in
this Appendix is intended for that category. Even so, the
conclusions in Section A5, some rather surprising, apply to
flex wings to some extent.

One special flight condition for a hang glider is hands-off
or hang-1Tee flight where the pilot is not holding the con-
trol bar and is hanging free. This control-tree condition is
similar to the so-called stick-free condition for convention-
al aircraft, and as for that case, stability is desirable.

Control-tree stability analysis is fundamentally different
for a hang glider than for a conventional aircraft. For hang-
tree flight, the glider plus pilot cannot be considered as a
single rigid body. Instead, the system is two rigid bodies
connected at what is called a "pin joint" in engineering
mechanics or the "hang point” in hang glider parlance (see
Figure A1,1). One body is the g Idcr and the other is the
pilot plus the suspension system and any apparatus
attached to the pilot.

Intuitively, it seems that if the pilot is hanging tree, the
glider should behave as if the pilot were actually attached
to the glider at the hang point in which case pendulum sta-
bility associated with a low CG should accrue with a low
hang point. We show that this intuition is misleading
except for the special case where the hang point is level
with the glider CG (center of gravity). In Figure A1,1 the
hang point is shown in an exaggerated low position to
emphasize that this study allows investigation of a low (or
high) hang point.

The stability and control analysis is extended to the gen-
eral flight condition where the pilot controls the equilibri-
um speed by holding the control bar and moving fore and
aft. The control analysis is analogous to classical analysis
for aircraft with a control stick for whlch stick position and
stick force are obtained. For hang gliders the control analy-
sis gives pilot fore and aft position and control bar force.
The stability analysis, however, is not analogous to classi-
cal stick-fixed analysis since in response to a perturbation,
the hang glider pilot is not "locked in" but moves with
respect to the glider. A conservative pilot response model is
identified and stability is evaluated on that basis. An unex-
pected finding is that for this model, the stability is only
weakly dependent on pilot position and very dependent
on the hang point position just the opposite of what hap-
pens if the pilot is "locked in."

This study includes "powered" hang gliders that have a
propulsion unit attached to the pilot. The most common
arrangement is the so-called "trike" shown in Figure A1,2a.
Another arrangement is the powered harness shown in
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Figure Al,2b.

Though the analysis is applicable to any pilot system
with or without thrust, and applies to either prone or
supine pilot suspension, the pilot system will be depicted
as in Figure A1,1 with a pusher propeller unit attached to a
prone harness or pod. The depiction in Figure Al,1, and
elsewhere, can be interpreted as a flying wing (the conven-
tional configuration for a hang glider) or as a wing-hori-
zontal-tail combination (the conventional configuration for
aircraft in general). Both types are accommodated in this
Appendix.

The analysis through Section A3.6 is mainly concerned
with hang-tree flight. However, its applicability to the gen-
eral case of hands-on flight is revealed in Section A3.7. The
presentation in this Appendix is long and detailed. The
reader may want to skip directly to Section A4 to see exam-
ple calculations illustrating important ramifications of this
analysis.

A comment regarding approximations is in order. It is
often appropriate to make approximations in order to dis-
cern first order effects. The equations in this Appendix
were developed for use in software. Please excuse the
author for not throwing out some of the insignificant
terms, for not utilizing standard approximations in some
cases and for being inconsistent in this regard.

A3.7 STABILITY AND CONTROL FOR OFF-TRIM
FLIGHT, NOT HANG-FREE

Generally, flight is not hands-off. The pilot controls the
equilibrium speed by holding on to the control bar and
moving fore and aft. To maintain a particular position she
must exert a control force on the bar. The flight condition
for which the control force is zero is a special condition
called trim. At trim, the pilot can release the bar and noth-
ing changes. Hence the trim condition is the same as the
hands-off condition, the condition we have also called
hang-tree and the condition to which we have restricted
our stability analysis up to this point. In this Section the sta-
bility analysis for hands-off flight is extended to off-trim
flight. As explained below, this extension assumes that the
pilot response to a perturbation is to maintain a constant
control force.

How do we treat stability for off-trim conditions for
which the pilot is holding onto the control bar and exerting
a control force B on the bar? We have to know how the pilot
reacts to a perturbation. One possibility is that the pilot
exerts whatever force is required to maintain the same
position relative to the control bar, that is, the pilot is
"locked in." She does not move relative to the glider during
the perturbation. We maintain that the pilot cannot main-
tain this "lock-in" except possibly when the pilot's arms are
completely extended so that the elbows are "locked."
Another possibility is that the pilot does not change the
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Figure Al,1 Hands-off hang glider flight (a two-body problem).

a. The “trike” configuration. b. The powered harness

Figure Al,1 Hands-off hang glider flight (a two-body problem).
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control force during a perturbation; whatever the control
force initially, the pilot maintains the same force on the con-
trol bar!. The pilot reaction lies somewhere between these
two alternatives and likely closer to the latter. Since the lat-
ter choice gives the lesser stability, as demonstrated in
Section A4.4, it is a conservative choice and is the pilot
response for the stability analysis adopted here.

As stated above we assume that the perturbation in the
control force is zero; whatever the control force initially, the
pilot maintains the same force on the control bar. Now the
Newtonian equations of the preceding analysis were
derived using the tree-body diagrams in Figures A2,4 and
A2,5 where perturbations in the forces are used. The per-
turbation in the control force B is zero for the hands-off and
the same applies to hands-on flight for the constant-con-
trol-force response we adopt here. Thus the tree body dia-
grams and the resulting Newtonian equations dc\'eloped
for the hang-tree case also apply to the general hands-on
flight case. 'lhe only differences between the hands-on or
off stability calculations involve calculation of the direction
of the hang line and hence the orientation of the xz axes.
Specifically:

1. For the hang—free condition, B and Xx are calculated
according to Section A3.4

2. For the general hands-on condition, B and Xx are

calculated as shown below.

Although not needed for obtaining the stability for the
hands-on condition, the control force, B, is one of the con-
trol parameters of interest and equations for its calculation
are also developed in the following.

I A helpful model is to think of the pilot being attached to
the control bar with a spring. For the first possibility, the
spring is infinitely stiff; the length of the spring does not
change. For the second possibility, the other end of the
spectrum, the spring is infinitely soft; the spring force is the
same for all spring extensions.

Before proceeding with this development, we consider
the alternative one-body analysis that was shown in
Section A3.2 to be valid for hang-tree stability when the
hang point is at the same level as the glider CG. Is this
alternative also available for the hands-on stability
addressed in this Section? The answer is yes! The same
arguments used in Section A3.2 prevail here. Thus the fol-
lowing statement applies here:

For the special case where the hang point is level with the
glider CG, that is for

zh=0

an equivalent simplified analysis obtains. Make the pilot
a point mass attached to the l‘rmgf1 point and assume the
aerodynamic and thrust forces on the pilot act thru that
point. This model gives a one-body system that has the
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same angular acceleration response to a perturbation in
angle of attack as that for the two-body system with a
hmgm pilot who responds to the pelturbatlon by keeping
the control force constant.

For this special case (i.e. = 0), the stability is the same
regardless of pilot position since the glider behaves as if the
pilot were attached to the hang point. A subtle error in this
argument exists; zh changes with pilot position except
when the hang point coincides with the glider CG. It
changes since the xz axes rotate with the hang line (see
Sections A2.3 and A2.4). Therefore zhi cannot vanish for all
pilot positions. See Section A 3.9 for more elaboration. Even
so, the above indented statement suggests that stability
does not change to a great extent when the pilot moves fore
and aft, if the hang point is vertically proximate to the glid-
er CG. Example calculations are needed to establish param-
eter limits for the accuracy of this assertion (see Section
Ad.1).

We now proceed with the calculation of B and Xx for the
hands on hands-on case. For a particular equilibrium flight
condition, the thrust coefficient, Ct, and the lift coefficient,
Cl, are given, and the X axis angle of attack, Xx, that pro-
vides this lift coefficient is known. Also for this general
hands-on case, the tail incidence, If, and the tail flap contri-
bution to the tail lift, SCItf, are prescribed except for a fly-
ing wing. For a flying wing, the twist distribution is given
and Cmac can be obtained using procedures from the liter-
ature (e.g. Ref.l or 8).

Calculate <, from Eq.A3.6,7 and 8:
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A4 CONTINUED INVESTIGATION USING EXAMPLE
CALCULATIONS

The investigation of stability and control is continued
using example calculations based on the preceding theoret-
ical analyses. In the following, the stability analysis for off-
trim flight, when the pilot is not hanging !Tee, is based on
the constant-control-force pilot response model described
in Section A3.7. The presentation in Section A4,4 suggests
that this model is conservative.

A4.1 VALIDATING THE ALTERNATIVE SINGLE-
BODY METHOD

As asserted in the Introduction, intuition suggests that if
the pilot is hanging free, the glider should behave as if the
pilot were actually attached to the glider at the hang point.
If true, an alternative and simpler method for calculating
stability is available:

1. Attach the pilot to the hang point
2. Calculate the stability of this single rigid body.

This alternative calculation is simpler mathematically
since the system is a single rigid body rather than a linked
two-body system. This advantage disappears once soft
ware for the two-body system is developed.

The preceding shows that this alternative is valid pro-
vided the hang point is "level" with the glider CG. It also
showed that it extends to off-trim flight (see Section A3.2
and A3.7). To demonstrate this equivalence and to find out
how proximate the hang point must be to the glider CG to
provide a sufficiently accurate alternative method, com-
parison of stability calculation for the two-body method
and for the alternative one-body method were made.

We calculated the stability for several vertical hang point
locations for a rigid flying wing for the landing configura-
tion (a small inboard flap, fully deflected, and an upright
pilot) using the two-body procedure in Section A3.9 and
the results are plotted in Figure A4,1 for two lift coeffi-
cients, one near stall, CL = 1.6, and one near maximum
speed with flaps, CL = 0.4, (see curves labeled "Hanging
pilot"). The stability was also calculated using the analysis
for a "locked-in" pilot developed in Section A3.11 with the
pilot located at the hang point and the results are also plot-
ted in the figure (see curve labeled "Pilot attached to hang
point"). The two stability calculations converge at a hang
point level given by zh=0 thus validating the analysis of
Section A3.2 and its extension, Section A3.10. Similar
results were obtained with no flap deflection.

A similar study was made for a rigid wing glider with a
tail for the low speed cruise configuration (CL =1.4, no
flaps, and reclined pilot) and for the diving landing
approach configuration (CL = 1.2, full flap and drooped
ailerons) and the results are shown in Figure A4,2. Again,
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Figure A4,1 Stability versus hang point vertical location for
a flying wing.

the equivalence of the two stability calculation methods at
zh=0 is demonstrated!.

We now assess the error in using the alternative method
for hang points below the glider CG. For the example cal-
culations shown in Figures A4,1 and A4,2, a hang point O.1
chord (approximately five inches) below the glider CG
gives an error in dem/dcl of the order of 0.01 (an error in sta-
bility margin of 1% chord), not insignificant but an accept-
able error for "rough" design work. For a traditional hang
glider using a hang strap around the keel, the hang point is
probably within five vertical inches of the glider CG. Thus
the alternative method is marginally acceptable for tradi-
tional hang glider design.

[f the designer wishes to investigate the use of a low hang
point to increase the stability (see Section A4.2), the alter-
native method should not be used. Practical considerations
limit the extent of such lowering. A special structure is
required for lowering the hang point below a certain point.
Also the attendant lowering of the pilot or alternatively the
shortening of the hang straps presents problems.

I The unequal stability at z/i=0 for the two configurations
is the result of two factors. The aerodynamic center of the
wing changes with flap deflection and aileron droop and
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Figure A4,2 Stability versus hang point vertical location for a glider with a tail.

the down wash gradient at the tail depends upon flap
deflection and aileron droop, and on wing lift coefficient.

A4.2 THE EFFECT OF LOWERING THE HANG
POINT ON STABILITY

In this section the idea of lowering the hang point in
order to increase the stability is investigated. As mentioned
in the Introduction, intuition suggests that if the pilot is
hanging /Tee, the glider should behave as if the pilot were
actually attached to the glider at the hang point. If this
equivalence is true then lowering the hang point should
increase stability (the pendulum stability effect). We have
proved that this equivalence is only valid if the hang point
is "level” with the glider CG (see Section A3.2). Never the
less it seems likely that lowering the hang point should
increase stability. The example calculations from the last
Section show that this is not always the case. Calculations
for both a flying wing and a glider with a tail, show that the
small disturbance stability decreases with lowering of the
hang point for mildly diving flight with flaps deployed
(see Figure A4,1 for the two-body analysis at CL = 0.4 and
Figure A4,2 for the two-body analysis at CL = 1.2 and 6f
=25°). The results for the flying wing are plotted in anoth-
er form in Figure A4,3. The stability is plotted versus lift
coefficient for two vertical hang point locations at high
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Figure A4,3 The effect of hang point vertical location on
small disturbance stability.

speed (low lift coefficient and forward pilot position), the
stability decreases with a lower hang point. At low speed
(high lift coefficient and aft pilot position), the stability
increases.

The preceding addresses the effect of hang point vertical
location on small disturbance stability. We now investigate
its effect on large disturbance stability using the analysis of
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Section A3.8. The results of calculations for a glider with a
tail are shown for two hang points in Figure A4,4.
Equilibrium is at an angle of attack of 10.6 degrees and at a
lift coefficient of 3.0 (attainable with full flaps and drooped
ailerons). Note that the slope of the curve at equilibrium for
a hang point one inch below the X body axis is positive (an
unstable situation). Although lowering the hang point to 12
inches below the X body axis provides the negative slope at
equilibrium (dcm/dcl=-0.027) required for small disturbance
stability, it does not quite provide sufficient large distur-
bance stability since any gust induced angle of attack per-
turbation more severe than -22 degrees (not impossible for
the very low speed flight of this illustration) gives a desta-
bilizing nose down moment. The highly nonlinear curve is
not typical. Large lift coefficients and a low hang point
and/or a low glider CG can produce such a condition. The
author found it difficult to obtain an illustration such as
Figure A4,4. Usually, if small disturbance stability is suffi-
cient, large disturbance stability is adequate.

A4.3 THE EFFECT OF PILOT AND HANG POINT
FORE AND AFT POSITION

As stated at the end of Section A3.9, when the hang point
is at the CG of the glider, and when the aerodynamic
moment varies linearly with angle of attack, the typical

TECHNICAL SOARING

14

case, then the small disturbance stability is the same for all
lift coefficients. As the pilot moves fore and aft to change
the flight speed, the stability does not change. The calcula-
tions for a flying wing are plotted in Figure A4,5 and illus-
trate this independence (see curve labeled X, = X, = 38.6
inches). For hang points at the same "level" as the glider CG
but not aligned fore and aft, the stability changes with pilot
position (i.e. with lift coefficient) as shown in Figure A4,5.
However, as predicted in Section A3.9, this dependence is
weak. The deviation from strict independence increases as
the hang point moves further away from the glider CG.
Even for a ten inch nonalignment (see curve labeled X =48
inches) the stability is nearly constant. On the other hand
the hang point location has a large effect on the stability.
Moving the hang point 10 inches to the rear of the glider
CG decreases the stability significantly (again see Figure
A4,5). This behavior is predicted by the equivalent single-
body system defined in Section A3.2 for which the pilot is
attached to the hang point.

A4.4 STABILITY CALCULATION USING CON-
STANT-CONTROL-FORCE RESPONSE - IS IT CON-
SERVATIVE?

Regarding response to a perturbation, in Section A3.7 we
adopted constant-control-force pilot feed back. For the
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Figure A4,5 The effect of fore and aft position of the pilot and of the hang point.

hang-free case this is obviously correct. For off-trim flight
the pilot response is problematic. However, the following
example calculations show that the adopted response
model is conservative according to this rationale:

The response control force is bracketed by the minimum
associated with the constant force response and the maxi-
mum associated with pilot "lock-in." If we show that the
"lock-in" case provides more stability than the constant
force case, then adopting the constant force model is con-
servative.

The stability of a rigid flying wing with a deflected
inboard flap was calculated first, according to Section A3.9,
which uses the constant-force model for pilot response and
second, according to Section A3.11, which assumes pilot
"lock-in." The hang point is at the level of the glider CG.
The results are plotted in Figure A4,6.For all pilot positions
the stability for constant-force response is less than for
"lock-in." Similar results were obtained with no flap deflec-
tion.

A4.5 EXAMPLE VARIATION OF CONTROL FORCE
AND PILOT POSITION WITH LIFT COEFFICIENT
The Control force and pilot position versus lift coefficient
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for a flying wing is shown in Figure A4,7. This plot was
obtained using the calculation procedure in Section A3.7.
Such a calculation is useful during design to check for
acceptable pilot movement, acceptable control forces and
acceptable control force gradient. Trim or hang-free flight
(i.e. flight at vanishing control force) occurs at a lift coeffi-
cient of 0.9 for this example.

A5 CONCLUSIONS

Equations developed in this appendix are useful for the
design of rigid wing hang gliders. Design factors are pilot
throw (limited ergonomically), the magnitude and the gra-
dient of the control force, stability for small and large dis-
turbances in angle of attack, stability during the takeoff run
and during tow. Configurations with a tail are accommo-
dated.

The stability of the glider-pilot combination cannot be
predicted using traditional aircraft stability analysis since
the combination is not a rigid body. In fact assuming that
the pilot is "locked in", significantly overestimates the sta-
bility. The system should be treated as two rigid bodies, the
glider and the pilot, with interacting forces at the two
places where they are in contact with each other. These are
the hang point and the "point" where the pilot holds the
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control bar. The hang point interaction is treated using the
pin joint concept of engineering mechanics. The control bar
interaction is more problematic except for the special case
of hang-free flight where the pilot lets go of the control bar
and the control bar interaction disappears. For the general
flight case where the pilot is holding the control bar, the
pilot's response to a perturbation is probably close to that
of maintaining a constant control force and skewed slight-
ly toward the extreme of the pilot holding a fixed position
(the hang glider pilot can not "lock in" but moves with
respect to the glider). Example calculations show that the
constant-control-force response model gives less stability
than for pilot "lock in" and therefore it can be argued that
stability calculations based on this response model are con-
servative.

Theoretical analysis and example calculations support
these interesting assertions for constant-control-force
response:

1. If the hang point coincides with the glider CG, the sta-
bility is independent of the pilot fore and aft position; as
the pilot moves aft to fly at a lower speed, the stability does
not decrease as would be the case if the pilot were "locked

"

mn.

2. If the hang point is vertically aligned with the pilot
CG!, the stability decreases the hang point moves aft but
does not change significantly as the pilot moves fore and
aft to control the flight speed. This effect of pilot CG and
hang point location on the stability is just the opposite of
what happens if the pilot is "locked in." For that case, the
hang point position is irrelevant and the pilot position has
a primary influence.

3. If the hang point is vertically aligned with the glider
CG!, the glider responds to a disturbance as if the pilot
were attached to the hang point. Thus for such vertical
alignment of the hang point, traditional stability analysis
which assumes the pilot-glider combination is a rigid body,
can be used by fixing the pilot at the hang point. A sensi-
tivity study showed that for a hang point less than one half
vertical feet from the glider CG2 , this approach is suffi-
ciently accurate. Such an alternative calculation is simpler
since the governing equations are simpler but this advan-
tage disappears once software has been developed for the
general case.

4. The so-called pendulum stability that is often invoked
for hang gliders is a fallacy. It only occurs if the pilot is
"locked in", a difficult teat for the pilot and by definition
not occurring for hang-free flight.

5.The stability usually increases as the hang point is low-
ered. One exception is for diving flight (e.g. high-speed
flight with flaps deployed). For that reason, lowering the
hang point in an attempt to increase stability may not be

effective for all flight regimes.
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I'This condition is nearly satisfied for hang gliders using

a hang strap around a keel.

2 This condition is easily satisfied for hang gliders using

a hang strap around a keel.
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