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Abstract

Awareness and management of the risk of failing to encounter lift is fundamental to thermal soaring. When
the weather changes or a thermal is missed the pilot may be exposed to a greater risk of landing out. In these
situations the pilot may need to alter strategies in order to minimize risk exposure at the expense of speed, often
referred to as “gear-shifting.” In this study, we explore several models to explain why small changes in the
environment can cause large changes in risk exposure, requiring this shifting. We also examine several flight
strategies in simulation to define the relative risk and reward for adopting various levels of risk tolerance and
for failing to “shift gears” when the risk of landing out increases.

Introduction
1 2 Thermal soaring is defined by uncertainty. Even if a pi-

lot can see markers indicating the presence of thermals ahead,
it is not certain that a thermal will still be working when the pi-
lot arrives. Managing the risk of failing to find a thermal is an
essential component in decision making. In high level compe-
titions, failing to complete a task is often disastrous to a pilot’s
overall standing in a contest. As a result, pilots must balance
their goals of maximizing speed on each glide while minimizing
the risk of an outlanding.

While managing risk is key to success in thermal soaring,
flight planning and optimization has largely focused on maxi-
mizing speed and has not addressed risk explicitly. Since its ini-
tial development in the 1930s [1], speed-to-fly theory has been
the dominant approach to soaring flight optimization. Paul Mac-
Cready’s development of the speed ring made the best speed to
fly easier to compute in flight [2], and the MacCready setting
(MC) has since been used both for speed optimization and as a
proxy for risk [3,4]. While most authors examine risk implicitly
through the MacCready setting, Fukada finds the risk tolerance
which achieves the highest average speed and which scores the
most expected points [5]. Fukada only peripherally examines
landing out however, and does not consider the approach a pilot
would take to achieving a desired risk level [5]. While speed-
to-fly theory and adaptations to it are very powerful flight opti-
mization tools, they do not provide a pilot a means to manage
1This article has been reviewed according to the TS Fast Track Scheme.
2Presented at the XXXIV OSTIV Congress, Přı́bram, Czech Republic,
20 July - 3 August 2018.

risk over the course of a flight or competition.
One of the challenges to addressing risk management in soar-

ing is that human decision making is complicated and limited by
human capabilities. Thermal soaring is cognitively taxing: there
are an inordinate number of possible clouds or thermal sources
to sample and every thermal opens up a branching tree of possi-
ble choices. Like a chess game, it is nearly impossible to com-
pute all of the possibilities from a given position to determine
the right move. Attempting to evaluate all options and make
an optimal decision would simply overwhelm the pilot with in-
formation [6]. Instead, pilots engage in a number of strategies
to omit suboptimal choices which makes the decision-making
process manageable. These strategies employ heuristics, mental
shortcuts that minimize cognitive workload [7].

In this paper we examine cross-country soaring from the per-
spective of risk. For our purposes “risk” represents sporting risk
– the probability of landing out and no longer having the chance
to finish the contest with a good score. We are explicitly not
concerned here with risk from the perspective of flight safety: a
“failure” ends the flight at a location and situation from which
the pilot can make a safe pattern and landing. In this light, fail-
ure could also be interpreted as falling out of the lift band and
having to “dig out” in a weak thermal, slowing a pilot down
enough to preclude a competitive finish.

We seek to understand why risk management is challenging,
how sensitive success is to risk, and to define a risk threshold
which makes success in competitions likely. We, then, formu-
late a model for how humans address risk management, drawing
on piloting experience as well as cognitive theory. This leads us
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to believe that humans bifurcate risk management into two dom-
inant strategies: “racing” and “risk minimization.” Selection of
a strategy is determined by the reliability and frequency of lift
the pilot expects to encounter. Models of these strategies are
implemented in numerical simulations to explore the utility of
“gear-shifting,” and the sensitivity of speed and task completion
percentage to environmental conditions, risk tolerance, and pilot
strategy. This leads us to a model of risk management in thermal
soaring which employs simple heuristics in a systematic process
that pilots can use to aid their decision making in the cockpit.

Assessing Risk Exposure
Before risk can be managed, it must be defined and an appro-

priate level of risk determined. As we discuss it in this paper,
risk is the likelihood of landing out on a glide. In order to study
the effect of risk on performance, we are explicitly neglecting
variables which are present in reality but which could confound
this study. In our analysis, we consider only homogeneous en-
vironments with consistent thermal strengths. This permits us
to isolate the task of evaluating the risk a pilot is taking and the
level of risk that is acceptable to succeed in a contest.

Strategic Risk
Considering the risk of landing out, one can think of each

glide as an independent event; a gamble with a probability of
finding a climb (success) or landing out (failure). Looking at
a contest day, we can consider the sequence of glides required
to complete the task and compute the cumulative probability of
success. Similarly, a contest is a continuation of such sequences.
As such, the risk one accepts on each glide is compounded by
the number of glides taken over a contest.

This raises the question: “what level of risk should a pilot try
to maintain in order to succeed in a contest?” To answer this
question, we assume that most competitors complete each task.
This is commonly the case at competition sites with strong and
consistent weather; such as in the western USA, Australia, or
South Africa. In such contests, it is genuinely possible to tune
risk preferences and maintain them over the course of a contest.
In places with highly volatile weather, the immediate tactical
situations predominate in a pilot’s decision making; when a pilot
is simply concerned with staying airborne, strategic concerns
become less relevant.

To determine an appropriate risk baseline, we first compute
the likelihood of completing a contest day without landing out.
We assign an accepted risk of landing out on each glide, Ptol =
{0.01, 0.005, 0.001, 0.0001}. Figure 1 depicts Psuccess, the cu-
mulative probability of completing a single contest day for sev-
eral task lengths. The probability of success can be computed
using Equation 1 where n is the number of glides required. This
allows the risk of landing out to be computed as 1−Psuccess, so a
75% probability of completing a task implies a 25% probability
of landing out.

Psuccess = (1−Ptol)
n (1)

Fig. 1: Probability of completing a task given the number of glides
required. The completion probability, Psuccess, is shown for
several levels of risk tolerance, Ptol , on each glide. For long
tasks, the probability of completion is very sensitive to the
risk tolerance, and even seemingly low risk tolerances can
result in a significant probability of landing out.

It is apparent that very small changes in risk tolerance, per-
haps imperceptible other than through long-term feedback, have
a very large impact on the likelihood of completing a task. A
pilot that flies 15 glides on a contest day and has a risk tolerance
of 1% only has an 86 percent chance of completing a task!

Cumulative Effect of Risk Over a Contest
To win a contest requires consistent performance over multi-

ple contest days, further compounding the risk of failure. As-
suming pilots maintain a consistent risk profile and fly 15 glides
per contest day, the probability of completing the contest with-
out landing out can be computed. This relationship is depicted in
Figure 2a; in a five day competition a pilot flying at Ptol = 0.01
would have less than a 50 percent chance of completing the con-
test without landing out.

For longer tasks, such as in World Championships and com-
petitive National competitions, the effect is even more striking.
If we increase the number of glides flown per day to 25, even
less risk is acceptable, as depicted in Figure 2b. For pilots flying
at Ptol = 0.01, the likelihood of completing without landing out
over a five-day competition falls to 30 percent.

This motivates the concept of a “strategic baseline” risk – a
level which provides a good chance of completing every day of
a competition without landing out. Figure 2 indicates that for
this simple analysis, the strategic baseline risk per glide is about
0.001.

It is important to distinguish at this point between the strate-
gic baseline and risk tolerance, Ptol . The strategic baseline rep-
resents a risk level which is likely to provide good results in a
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(a) Probability of completing a contest without landing out assuming each
contest day requires 15 glides to complete.

(b) Probability of completing a contest without landing out assuming each
contest day requires 25 glides to complete.

Fig. 2: Probability of completing a contest without landing out for two different task lengths. As the contest and task length grows the level
of acceptable risk shrinks.

contest, while the risk tolerance represents the level of risk a
pilot actually accepts when planning a glide. While they are
nominally the same, there are instances where a higher or lower
tolerance is preferable. For instance, Figure 2 can also be ex-
amined from the perspective of the number of days remaining in
a contest. On the last two days of the competition, a pilot may
actually be prudent shifting to Ptol = 0.005 or even Ptol = 0.01
as the likelihood of finishing without landing out at this point is
80 to 90 percent.

When discussing risk tolerance, it is important to recall the
gambler’s fallacy; gambles have no memory! A pilot who “sur-
vives” a series of unlikely gambles on a given day should not be
extraordinarily risk averse on the following days to help “replen-
ish his luck.” However, if the risks taken give the pilot a clear
edge in points, it may be sensible to adopt a low risk tolerance
to help protect the pilot’s gains.

Tactical Risk
How can we estimate how much risk to accept while in the

cockpit? Let us consider a pilot who is at the top of the lift
band, assessing the thermal options ahead. The pilot picks a line
and counts the number of potential thermal sources that can be
sampled before running out of altitude and landing out. While a
thermal source can be either a cloud or a particularly promising
ground feature, we will refer to all options as “clouds” as they
are simpler to visualize. Days with cumulus clouds are also use-
ful since a cloud field often will give a fairly good picture of the
number of thermals one can possibly contact. Despite the fact
that as the pilot gets lower the thermals are less likely to be con-
nected to the clouds, the number and quality of clouds can still
provide feedback as to the reliability of thermals in an area.

Each thermal option can be thought of as either a “hit” or a

“miss,” just like “heads” or “tails” when flipping a coin. This
assumes that each thermal sampled is independent of the rest.
There are circumstances that violate this assumption, such as
on days with cloud streets, cirrus bands, or convergence lines.
However, on days with “popcorn” cumulus and little wind, we
believe it is reasonable to assume that thermals are largely inde-
pendent of each other.

Continuing our coin toss model, a pilot unlucky enough to flip
tails for each cloud sampled will land out. We can calculate the
probability of a completely failed sequence and then compare it
against a strategic baseline of Ptol = 0.001. So long as the pilot
consistently keeps the likelihood of flipping all tails lower than
P = 0.001, they are likely to complete a competition without
landing out.

Without any experience other than occasionally encountering
thermals underneath clouds, a pilot may expect that finding a
thermal is really like a coin toss – 50/50. We can determine how
many options are required to achieve a chosen risk tolerance,
depicted in Figure 3. In order to maintain Ptol ≤ 0.001, the pilot
would need to keep at least ten clouds in range at all times. Note
how little the risk changes for a pilot flying “aggressively” with
only four clouds to sample as opposed to ten. In the short-term,
a pilot who chooses this strategy may even be successful.

However, very small changes in risk exposure have a mas-
sive cumulative impact in the long run. The difference in risk
accepted from having only seven clouds to ten clouds in a se-
quence with a fair coin is only one tenth of one percent. On a
given contest day, this cannot markedly feel all that different.
However, over an eight-day competition with 25 glides per day,
this amounts to a 69 percent difference in the probability of com-
pleting without landing out!

Experienced pilots know that the likelihood of hitting a ther-
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Fig. 3: Number of thermal options required to achieve a desired
risk tolerance assuming that each potential thermal source
sampled has a 50% chance of working.

Fig. 4: Number of clouds required to maintain a specified risk tol-
erance as a function of the probability that each potential
thermal works (Poption works.

mal under a cloud can be more predictable than a simple coin
toss. If the pilot was routinely hitting thermals under clouds,
they can reasonably believe that most of the clouds ahead are
“working.” Finding lift is not a certainty however, there is the
possibility that a promising cloud dissipates or that the pilot mis-
judges the thermal location and misses a climb. Furthermore,
there are days when the clouds are “dishonest” and the prudent
pilot realizes that they must sample many more clouds before
contacting a thermal. To incorporate the expected “honesty” of
the clouds, we can use a weighted coin model:

noptions =
log(Ptol)

log
(
1−Poption works

) (2)

.

Fig. 5: Number of clouds required to maintain a desired risk toler-
ance as a function of the probability that each potential ther-
mal works, assuming that one thermal with a 95% chance
of working is known (e.g. a power plant, or a gaggle-marked
thermal).

The number of clouds required to maintain a safe strategic
risk profile is depicted in Figure 4. Since the honesty of clouds
controls the number of options required, there is a strong em-
phasis on the degree to which clouds are working. Once the
probability of contacting a thermal under a cloud is less than
50%, it becomes nearly impossible to maintain the strategic risk
baseline. Once the probability that thermals work exceeds 70%,
the number of options the pilot must maintain becomes consid-
erably more manageable. The risk is non-linear; when the days
are “consistent” and “reliable,” the pilot can afford to have few
options available and still have a very low probability of landing
out. On the other hand, as the reliability of the lift diminishes,
the pilot must maintain many more options in order to maintain
an acceptable strategic risk exposure.

On a tactical level, maintaining even one “very likely” ther-
mal option can significantly reduce a pilot’s risk exposure. If the
pilot looks ahead and realizes that in his sequence of clouds to
sample, there is one source that has a 95 percent chance of work-
ing; the likelihood of landing out on the whole sequence is much
lower. Pilots who are especially good at reading ground sources
or clouds can factor this in their tactical choices. Equation 2 can
be modified to take into account one very likely cloud:

noptions =
log(Ptol)− log

(
1−Plikely option works

)
log
(
1−Poption works

) (3)

The number of clouds required to achieve a desired risk toler-
ance is considerably reduced, depicted in Figure 5.
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Modeling Pilot Decision Making
Now that we have a broad sense of how the quantity and re-

liability of thermals affect risk both in the long run of a whole
competition and in the short run of a glide, the challenge is to
model this decision making in terms that can be applied in the
cockpit. Recognizing that it is humans, not computers which
make decisions in soaring competitions, we must consider how
people manage risk and make decisions under uncertainty when
we develop risk management strategies.

The Brain as a Computer
While the brain is not a computer, it shares some basic char-

acteristics with them: it processes inputs from the environment
through the body’s senses, integrates this data into perceptions,
and generates a motor-driven output (i.e. moving the stick). The
brain as an information processing unit has extraordinary ca-
pabilities but also significant limitations. Cognitively, one of
the greatest limitations is working memory, limited to approxi-
mately 30 bits [8]. On the other hand, the brain has nearly end-
less capacity for long-term memory [9].

As a result, the brain is very effective at using long-term mem-
ory as a work-around for the limitations of working memory.
Over time, the results of favorable computations become en-
coded and are retrieved given the right pattern of inputs. When a
pilot identifies a cloud as particularly favorable, it is the result of
having flown under many similar clouds with good outcomes.
Thus, the brain offloads most cognitive tasks to programs or
schemas of action; when there is a set of stimuli, to generate
a certain output. It is through this process that many tasks be-
come largely automatic or intuitive; the brain no longer needs to
engage effortful cognitive processing in order to generate a good
output.

Heuristics, or rules of thumb, are processes the brain uses to
simplify the decision-making process [10]. For instance, a sim-
ple risk-related heuristic is to take every thermal on a cross coun-
try task. By taking every thermal, decision making is drastically
simplified and the pilot is unlikely to land out. With experience,
pilots refine and expand their heuristics, encompassing more and
more variations in the environment.

Often, the goal is to make a good decision, not necessarily
the best decision. Doing so is referred to as “satisficing” [11].
This permits acceptable outcomes while reserving cognitive ca-
pacity for other tasks. A sophisticated form of satisficing which
pilots likely use is “elimination-by-aspects,” which employs suc-
cessive heuristics to exclude clearly suboptimal solutions [12].
For instance, in choosing the next cloud, a pilot may use crite-
ria such as: “don’t deviate more than 30 degrees”, “fly under
the clouds”, “fly MC 1 (m s−1) and stay on the upwind side of
the course.” By engaging these heuristics in sequence, the pilot
can very quickly narrow down a large field of potential thermals
to several “lines,” saving the trouble of processing every single
cloud and its respective decision tree.

Decision-Making Frames

While the elimination-by-aspects strategy helps pilots rapidly
make decisions, the sets of heuristics employed can vary by situ-
ation. The heuristics a pilot uses when struggling at low altitude
trying to “minimize risk” on a blue day are distinct from the
heuristics used when at altitude, cloud streets are plentiful, and
the pilot is “racing”. Pilots choosing to engage their “risk min-
imization” program will process their environment differently
than pilots engaged in “racing.” These programs and the heuris-
tics associated with them are called “decision-making frames.”

The way in which frames are managed depends on how a pi-
lot appraises his tactical situation and what losses are most im-
mediate in his mind. In gliding, pilots are conflicted between
two kinds of losses: losses in speed relative to competing pi-
lots, and the catastrophic loss of landing out. Since people are
averse to losses [13], the manner in which losses are processed
will greatly affect decision making. When facing an uncertain
gamble that is framed as a choice among losses, people tend to
overweight the impact of a loss [14, 15]. This is known as loss
aversion, a phenomenon described by prospect theory [16].

Depending upon whether losing efficiency or landing out
weighs more heavily in a pilot’s mind will determine whether
that pilot will make decisions from a racing or risk minimiza-
tion frame. This is because the pilot evaluates gains and losses
relative to the most salient loss in their mind [9]. Framing refers
to the manner in which costs/benefits or risks are presented and
interpreted. For instance, the likelihood a patient accepts a treat-
ment is affected by whether they are told by their doctor that a
treatment has a 95 percent survival rate, or that 1 in 20 people
die, despite both options being mathematically equivalent. In
gliding, when a pilot adopts a risk minimization frame, any ac-
tion that increases the pilot’s risk of landing out is experienced
as a greater loss. When a pilot is in a racing frame, any ac-
tion that diminishes speed is experienced as a loss. This is what
drives a pilot to leave a thermal when a competitor merely bumps
through it and continues: it is painful to give up points!

When a pilot’s losses are reframed, such as when a pilot gets
lower and becomes more concerned with the prospect of land-
ing out than maximizing efficiency, the heuristics that are used in
decision making change. Under the same conditions, the same
pilot can generate distinctly different outputs depending on the
decision-making frame adopted. This frame shift is the core of
gear-shifting; when the availability and reliability of lift dictate
that a pilot must shift into a risk minimizing frame, the pilot
who shifts earlier is more likely to make it home. If conditions
change from unreliable to reliable, the pilot who shifts into rac-
ing will fly faster.

For the present work, we define models of these two decision-
making frames and their respective heuristics for further analy-
sis. This will enable us to explore the effect that the frames have
on the speed a pilot achieves and how effective frame switching
can be in managing risk in competition soaring.
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Fig. 6: Path planning method for a pilot in the racing frame. The pilot starts with a direct glide to the next waypoint (dashed line leading to
the red point) and at each iteration choses the thermal (blue points) nearest the longest segment of the path. This process is repeated
until there are no thermals remaining in range or until the desired risk tolerance is met. The pilot is assumed to be able to detect
any possible thermal within gliding range. The thermal added to the path at each iteration is depicted by iteration number and
intermediate paths are shown in gray.

Racing

The first behavior we call the racing frame. In this mode the
pilot seeks to maximize speed while attempting to maintain a
chosen risk tolerance. Diverting the flight path and stopping
to thermal both decrease average speed, so the pilot will avoid
these actions when possible. In a racing frame, the pilot will
reevaluate the flight plan if an anticipated thermal fails to work,
but will continue on a path that minimizes deviations and main-
tains a high speed. The pilot will attempt to satisfy a risk tol-
erance, but will not make large deviations or slow down to do
so.

When racing, the flight path is generated using an iterative
method which is initialized with a direct flight to the next turn-
point. Thermals are added to the flight plan until the number of
thermals is sufficient to satisfy the acceptable risk of landing out.
At each iteration, the longest leg between potential thermals is
rerouted to visit another potential thermal (following a heuristic
that failing to find a thermal after the longest glide will leave the
pilot at the lowest altitude and is thus the most likely to cause
a landout). The closest thermal which is in range along that leg
is added to the plan. This is repeated until the plan satisfies the
risk constraint or until there are no more thermals within range.
The planning model is intended to identify “lines” of favorable
conditions, as illustrated in Figure 6.

When planning, the pilot is assumed to be able to predict the
approximate location of any thermal within range (with a stan-
dard error of 400 m). When nearing a thermal, the pilot can
determine the precise location and whether or not the thermal
is working when within 700 m of the thermal center. When the
pilot encounters a thermal, the planning model is run again and
if the risk tolerance can be met from the current altitude then
the thermal is skipped. If the risk tolerance is exceeded by skip-
ping the thermal then the pilot stops to exploit the thermal. In all

cases, thermals are not exploited if the current altitude is more
than 80% of the convective boundary layer depth.

If a thermal is encountered which does not work, the pilot will
replan the flight path from the current location. While the pilot
attempts to keep the probability of landing out below the desired
risk tolerance via planning, no action is taken if the risk rises
above this level (i.e. if there are not enough thermals in range to
allow the tolerance to be satisfied).

Risk Minimization
A second behavior is implemented where the pilot is primarily

concerned with remaining aloft, but also desires to complete the
task. We call this the risk minimization frame. In this frame, the
pilot will seek out any lift which brings him closer to the next
turnpoint, and will exploit any thermal encountered below 80%
of the maximum altitude.

Again, the pilot can detect any thermal in range, and can de-
termine if the thermal is working when within 700 meters. The
pilot chooses as a destination the nearest thermal which brings
the pilot closer to the waypoint. The pilot exploits that thermal
if it is working or repeats the thermal selection process if the
thermal does not work. The path planning strategy in risk mini-
mization mode is depicted in Figure 7.

A Summary of The Decision-Making Process
Figure 8 is a flowchart that illustrates the decision-making

process we present here. Selection of the risk tolerance was
described in Section “Strategic Risk”. Assessment of the tac-
tical situation was described in Section “Tactical Risk”. Sec-
tion “Decision-Making Frames” describes an approach to man-
aging tactical risk which is rooted in the psychology of human
decision making. At each step in the decision-making process
heuristics are employed which reduce the cognitive load on the
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Fig. 7: Path planning for a pilot in the risk minimization frame. The pilot will fly to the nearest thermal option (in blue) which brings the
pilot nearer to the next turnpoint (red). The pilot will accept large deviations to minimize the distance which must be flown before
encountering a potential thermal.

de ne risk tolerance

assess tactical situation

risk

minimization

racing

thermals are reliable

many potential thermals available

at least one certain thermal available

thermals are unreliable

few options avaiable

thermals are very far apart

avoid deviations

skip weaker thermals

skip hard to center thermals

MC for thermal strength

maximize options visited

take every climb

MC=0

execute plan

�nished climb

"missed" thermal

major change in sky ahead
new information

Fig. 8: Flowchart describing the decision-making process for risk-aware thermal soaring. Gear-shifting occurs when the pilot receives new
information which reveals a change in the risk situation and reevaluates the decision-making frame. This could happen for example
when missing an expected climb or when reaching a “blue hole” with few clouds.
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pilot and allow this schematic to be traversed rapidly in flight.
The heuristics employed in this study are summarized in the
flowchart.

Monte Carlo Simulations
The coin toss model motivates the need for risk manage-

ment and the psychology perspective introduces the concept of
decision-making frames. This provides insight into the why and
how of risk management but these approaches do not lend them-
selves well to analysis of flight to turnpoints, in limited altitude
bands, or in the vicinity of areas of inhibited lift. To enable
deeper exploration of risk strategy in thermal soaring, we used a
Monte Carlo approach.

Pilot behaviors representing the racing and risk minimization
frames are implemented in a numerical simulation. A config-
urable frame-switching logic is implemented which permits al-
lowing or prohibiting switching between frames. These pilot
behaviors are then simulated over several hundred competition
tasks to evaluate the effect of risk tolerance and frame switch-
ing. This is conceptually similar to work done by previous au-
thors [3, 4] except that we explicitly explore the pilot’s risk tol-
erance rather than using MacCready setting as a proxy.

Simulation Environment
Thermals are defined using a Gaussian model:

w = wscale exp
(
−r
R

)
(4)

where r is the distance between the aircraft and the thermal cen-
ter, R is the characteristic scale of a thermal, and wscale is the
maximum updraft velocity. At altitudes above the convective
boundary layer top (zi) the thermal updraft velocity is set to zero.

Candidate thermal locations are drawn from a uniform ran-
dom distribution within a rectangular region containing the task.
A weighting function is then applied to prevent thermals from
occurring extremely close to each other. The weight is defined:

θinhibit =
1

1+ exp(−w(xcandidate)+0.1)
(5)

where xcandidate is the candidate location for a new thermal and
w(xcandidate) represents the thermal updraft velocity at the can-
didate location due to any thermals already accepted into the
updraft field. The factor 0.1 is used to allow thermals to slightly
overlap, forming multi-core thermals. A uniform random ther-
mal acceptance probability is generated, if it exceeds the weight
then the thermal is accepted and added to the field. The param-
eters of each thermal are summarized in Table 1. At generation,
each thermal is assigned a working or not working state with a
configurable probability.

The aircraft model is a simple kinematic model whose states
are the east, north, up position of the aircraft and the heading
angle. Inputs to the system model are turn rate and airspeed.
Lateral dynamics are neglected (the commanded turn rate is
achieved instantly) and the longitudinal aircraft dynamics are

Table 1: Parameters of the thermals used in the Monte Carlo sim-
ulations. The thermal strength is kept constant to isolate
the effect of risk management and to simplify computa-
tion of the appropriate MacCready value. Approximate
conversions to common U.S. units are given in the second
column.

R N
(
600 m,10000 m2

)
N
(
2000 ft,100000 ft2

)
wscale 3.0 m s−1 6 knots

zi 1000 m 3300 ft

simulated with a first order lowpass filter on the airspeed com-
mand with a time constant of 5.0 s. The aircraft dynamic equa-
tions are summarized in Equation 6.

∂

∂ t


xeast
xnorth

h
ψ

=


veast
vnorth

ḣ
ψ̇

=


vias
√

σ sinψ

vias
√

σ cosψ

ws(vias)
√

σ +wwind
ψ̇

 (6)

where ψ̇ is the commanded turn rate and σ represents the ratio
of sea level density to the density at the aircraft location, com-
puted using the 1976 standard atmosphere model. A quadratic
speed polar is used to represent the sailplane’s aerodynamic per-
formance, given in Equation 7. The polar approximates a Discus
2 at a wing loading of 35 kg m−2 (airspeed and sink rate are both
specified in m s−1)

ws(vias) =−0.00285 v2
ias +0.146 vias−2.51 (7)

Pilot Model
A pilot model is implemented which incorporates both ba-

sic airmanship and risk-based decision making. The airman-
ship portion is responsible for controlling the sailplane. A
higher-level model implements the behaviors described in Sec-
tion “Decision-Making Frames”.

Airmanship: Airspeed Selection and Trajectory Tracking
It is necessary to simulate the pilot’s behavior in controlling

the speed and direction of the aircraft. Airspeed commands are
generated using speed-to-fly theory, with the MacCready setting
determined by the pilot’s frame. In the racing frame, the Mac-
Cready value is set to the climb rate achieved given the thermals
defined in Table 1. In the risk minimization frame the Mac-
Cready value is zero to maximize range. To represent the re-
sponse time of the pilot and aircraft, the airspeed command is
filtered with a first order lowpass filter with a time constant of
5.0 seconds. The filtered airspeed command is directly used in
the aircraft state equations.

Trajectories for the pilot are defined as a series of points to
visit, with each point being either a turnpoint or a potential
thermal. The trajectory generator depends on the pilot frame
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as described in Section “Decision-Making Frames”. To follow
the path, Park’s nonlinear trajectory following controller [17] is
used to generate turn rate commands. When thermalling the pi-
lot tracks a circular orbit around the thermal location.

Risk Management Strategy
In order to determine the effect that frame shifting can have,

two approaches to risk management are implemented. The first
attempts to optimize the flight at a given risk tolerance at all
times. While the pilot plans a path which seeks to maintain a
given strategic baseline risk, it is not guaranteed that this thresh-
old can be met at all times. This pilot will remain in the racing
frame regardless of risk, pressing ahead at all times. In the sim-
ulation results this is referred to as the “racing” strategy.

The second pilot behavior switches frames depending on the
current risk. The pilot continuously monitors the risk of landing
out. If the risk rises above the pilot’s risk tolerance, the pilot
will switch frames into risk minimization mode in an attempt to
mitigate the risk of landing out. This mixed approach is called
the “gear-shifting” strategy.

Results
Pure racing and gear-shifting strategies are simulated for 350

iterations of a triangular assigned task 220 km in length. Ther-
mal locations and their “working” state are randomly generated
for each simulation run. The start and finish cylinders each have
a radius of 3 km, while turnpoints have 500 meter radii. The
thermal reliability is varied (Pthermal works = {0.4, 0.7}) and sev-
eral risk tolerances (Ptol = {0.1, 0.05, 0.01, 0.001}) are studied.

Figure 9 compares one sample flight path and altitude profile
for gear-shifting and non-gear-shifting pilots at a risk tolerance
of 0.001 and for a thermal reliability of 0.7. Over small seg-
ments the flight paths of the two pilots are similar. However,
when one pilot switches into risk minimization mode significant
differences arise. When entering a tricky area, especially af-
ter missing a thermal, the gear-shifting pilot will occasionally
make large deviations to remain connected with lift. At times,
gear-shifting occurs immediately upon finishing a climb if a path
cannot be found that satisfies the risk tolerance. Gear-shifting
can also be triggered when an expected thermal fails, for exam-
ple in Figure 9d at t ≈ 3000 s (approaching the first turnpoint in
Figure 9b). In this case, the pilot seeks a climb, trying several
potential thermals before locating one.

Figure 10 compares the effect of two different risk levels on
the flight path and altitude band used when conditions are incon-
sistent (thermals have a probability of working of 0.4) with no
gear shifting. The more risk tolerant pilot typically uses more
of the altitude band and flies a relatively direct course. The risk
averse pilot makes large deviations to try to maintain the chosen
risk tolerance, especially when a planned thermal does not work.

Discussion
The Monte Carlo simulations provide a means to evaluate the

effect of risk management techniques and risk tolerance while

navigating a task with altitude constraints. In particular, the sim-
ulations can reveal the effect of flight strategy on the probability
of landing out and on the speed achieved on course.

Effect of Risk Tolerance on Task Speed and Probability of
Task Completion

When conditions are consistent, risk tolerance and task speed
are not strongly related over a broad band of risk tolerance.
Figure 11b depicts a histogram of the task speed (nominal task
distance divided by time on task) achieved by the simulation
ensemble. It shows that similar speeds are attained for risk tol-
erances between 0.01 and 0.1 when thermals have a probability
of working of 0.7. This is likely because in consistent conditions
only a few more potential climbs can significantly decrease risk,
minimizing the deviation required. Only at Ptol = 0.001 does
risk tolerance significantly affect the shape of the average speed
distribution. The 0.001 level is what we identified as an appro-
priate “strategic risk baseline.” This explains why sailplane rac-
ing is such a challenge: at the strategic baseline risk, both speed
and probability of landing out are sensitive to the risk tolerance,
so the pilot must walk a careful line between flying efficiently
and landing out.

Figure 11a shows that even when the task speed is unaffected,
risk tolerance has a substantial impact on the probability of fin-
ishing the task. The risk of landing out is lower than suggested
in Section “Strategic Risk”. This is because when a thermal is
missed, the pilot creates a new plan which attempts to maintain
the desired risk level.

When conditions are unreliable, risk tolerance controls speed
much more strongly. Figure 12b shows that the speed distri-
bution varies progressively as a function of risk tolerance when
thermals have only a 40% chance of working. Reducing risk in
unreliable conditions requires many thermals, keeping this many
thermals in range can require large deviations. This is illustrated
in the sample flight paths in Figure 10. The most striking result
is that when thermals are unreliable, the risk of landing out is
very large. Even for a per-glide risk of 0.001, the pilot lands out
about 30% of the time. This indicates that it is often impossible
to keep enough thermals in range to achieve this risk level.

Impact of gear-shifting Strategy
Unsurprisingly, gear-shifting reduces the risk of landing out

considerably. Figure 13a shows that by changing frames, the
chance of landing out is reduced for every risk tolerance. Un-
der consistent conditions (potential thermals worked with 70 %
probability) not a single pilot landed out in 350 task simulations
for risk tolerances of 0.01 and 0.001. The risk reduction in gear-
shifting comes at the expense of speed however. Figure 13b
shows that task speed is reduced by more than 5 km h−1 for
each risk tolerance. In fact, depending on the acceptable risk of
landing out on a contest day, it may be advantageous to abandon
gear-shifting. For example if the acceptable risk of landing out
is 5% (perhaps reasonable on the last day of a close contest), the
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(a) Sample flight path for a pilot who remains exclusively in the racing
frame.

(b) Sample flight path for a pilot who shifts between racing and risk min-
imization frames.

(c) Sample barogram for a pilot who remains exclusively in the racing
frame.

(d) Sample barogram for a pilot who shifts between racing and risk min-
imization frames.

Fig. 9: Effect of gear-shifting on flight path and altitude utilization for a pilot with a risk tolerance of 0.001 with reliable thermals (proba-
bility of working is 0.7). Thermalling is depicted in blue, racing in green, risk minimization in cyan, and final glide in red. Potential
thermal sources are depicted as blue dots and turnpoints as red dots. The task starts at n=10 km, e=10 km and proceeds anti-
clockwise.
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(a) Sample flight path for a pilot flying with Ptol = 0.1 (b) Sample flight path for a pilot flying with Ptol = 0.01

(c) Sample barogram for a pilot flying with Ptol = 0.1 (d) Sample barogram for a pilot flying with Ptol = 0.01

Fig. 10: Effect of risk tolerance on flight path and altitude utilization with unreliable thermals (probability of working is 0.4) for pilots
always in the racing frame. Colors and task are as in Figure 9.
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(a) Probability of failing to complete a task when the probability that a
given thermal works is 0.7, the horizontal axis is plotted on a log scale.

(b) Distribution of achieved task speed for the simulation ensemble when
the probability that a given thermal works is 0.7

Fig. 11: Probability of task completion and task speed when thermals have a 70% chance of working and the pilot remains in the racing
frame at all times.

(a) Probability of failing to complete a task when the probability that a
given thermal works is 0.4. the horizontal axis is plotted on a log scale.

(b) Distribution of achieved task speed for the simulation ensemble when
the probability that a given thermal works is 0.4

Fig. 12: Probability of task completion and task speed when thermals have only a 40% chance of working and the pilot remains in the
racing frame at all times.
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(a) Probability of failing to complete a task when the probability that a
given thermal works is 0.7 and the pilot can shift gears. The horizontal
axis is plotted on a log scale.

(b) Distribution of achieved task speed for the simulation ensemble when
the probability that a given thermal works is 0.7 and the pilot can shift
gears.

Fig. 13: Probability that the pilot fails to complete the task and the speed distribution for a pilot who can shift gears.

(a) Probability of failing to complete a task when the probability that a
given thermal works is 0.4 and the pilot can shift gears. The horizontal
axis is plotted on a log scale.

(b) Distribution of achieved task speed for the simulation ensemble when
the probability that a given thermal works is 0.4 and the pilot can shift
gears.

Fig. 14: Probability that the pilot fails to complete the task and the speed distribution for a pilot who can shift gears.

pilot can expect to achieve a faster task speed by adopting a risk
tolerance of 0.01 but staying in the racing frame than by flying
very aggressively (risk tolerance of 0.1) and using gear-shifting.

The effect of gear-shifting in unreliable conditions is illus-
trated in Figure 14. The most obvious effect is that it re-
duces the probability of landing out by approximately a fac-
tor of 10, from greater than 30% to less than 3%. Comparing
Figure 13a and Figure 14a we can see another interesting effect:
the gear-shifting pilot has a lower risk of landing out in unreli-
able weather than in consistent conditions at high risk tolerances
(Ptol = 0.01). The reason for this is likely three-fold. First, in

unreliable weather the pilot will almost always take any thermal
encountered, as skipping a thermal would violate their risk tol-
erance. Second, it takes very little to drive the pilot into a risk
minimization frame, so when a thermal doesn’t work the pilot is
on average higher in energy and has more freedom of action to
mitigate the risk. Third, in reliable weather the pilot will fly with
fewer options at a given risk tolerance so the loss of one thermal
can sharply increase the risk of landing out.

Interestingly, while the risk of landing out is not dramatically
different across risk tolerances, the task speed varies consider-
ably with risk tolerance in unreliable conditions when the pilot
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can shift gears, depicted in Figure 14b. This is likely because
the deviations required to keep a low risk level are considerable.
The effect would indicate that in unreliable conditions the pilot
should take bigger risks on glides but aggressively switch into a
risk minimization frame if a planned thermal does not work out.

Interaction of Risk and Reward
Throughout the paper so far, we have focused exclusively on

risk as a driver of decision making in thermal soaring. From this
perspective, behaviors bifurcate into two distinct frames. The
existence of these frames is supported by risk-management psy-
chology and the experience of many cross-country pilots who
frequently discuss “switching gears”. Simplifying these behav-
iors to their cores permits us to determine the effect these be-
haviors can have on the risk of landing out and on speed, but in
some cases these behaviors are not so distinct.

When the objective is to maximize speed while completing
a contest (rather than exclusively keeping risk below a desired
level), the pilot will no longer fly the “pure” version of these
frames and will adjust their outputs accordingly. In the real
world, even when pilots are in a racing frame, they are still some-
what concerned with the risk of landing out. Furthermore, even
when a pilot is in a risk minimization frame, they will still con-
sider how their choices will affect their speed. As such, we are
proposing a model of decision-making in which a pilot chooses
a frame (racing or risk minimization) and follows its respective
heuristics. Once the output is generated, the pilot will adjust the
result depending upon the risk/reward of the tactical situation.

As we demonstrate in Section “Assessing Risk Exposure”, the
probability of landing out is controlled by risk tolerance. Sec-
tion “Effect of Risk Tolerance on Task Speed and Probability
of Task Completion” demonstrates that speed is also sensitive to
risk. We illustrate these relationships schematically in Figure 15.
In reality, the pilot only has imprecise knowledge of the relation-
ship between speed, land out probability, and risk. In order to
optimize speed while respecting the strategic risk baseline, the
pilot must adopt an iterative approach. For a pilot in a risk mini-
mizing frame this means “tuning” to increase speed without tak-
ing too much risk. A pilot in a racing frame will tune to decrease
risk in ways that have little effect on efficiency.

This is likely to lead to behaviors where the pilot chooses a
frame (perhaps subconsciously) which prioritizes whether los-
ing speed or minimizing risk is the dominant concern and subse-
quently adjusts the output based on the secondary concern. The
pilot chooses a frame based on the perceived relative sensitiv-
ity of speed and probability of landing out to the risk tolerance.
This explains why pilots rapidly “shift gears” when experienc-
ing a change in weather or an unexpectedly high risk situation
– the pilot is confronted with the fact that they do not know the
shape of the curves depicted in Figure 15 or their true position
on them. Shifting gears provides the opportunity to gather in-
formation and tune risk tolerance while avoiding a high risk of
landing out. Similarly, in slowly deteriorating or improving con-
ditions a pilot may not change gears until having to “dig out” or

risk tolerance

P(landing out)

mean speed

(a) In an environment which lightly penalizes risk, the pilot can initially
be much more aggressive. We expect that this permits an initial be-
havior closer to the optimal speed while not exposing the pilot to too
great a risk of landing out.

risk tolerance

P(landing out)

mean speed

(b) In an environment which progressively and heavily penalizes risk tak-
ing, it is likely better to begin in a risk minimization frame and slowly
tune the risk tolerance to increase speed.

Fig. 15: Two examples of the behavior that could occur when a re-
ward behavior is introduced into the decision-making pro-
cess. The pure risk minimization frame can be imagined as
the left and racing as right side of the figure.

when a late starter joins them in a thermal.
In this model, the two frames are still highly relevant, but they

become a statement of what a pilot initially experiences as a
loss. Whether the pilot is primarily concerned with losing effi-
ciency or landing out anchors how they appraises the situation
and is the primary driver of decision making. Subsequently, the
pilot will tune the output to satisfy the secondary objective of
maximizing speed or minimizing risk accordingly. When rac-
ing, slowing down is experienced as a loss but the pilot tunes his
outputs based on the possible paths to increase the number of
thermals available. For instance, if the pilot has two paths avail-
able that are nearly equally optimal in speed, but one path has
more potential thermals, it is natural that even a pilot in a racing
frame would sacrifice a little bit of speed for a path that mean-
ingfully minimizes his risk exposure. On the other hand, when
minimizing risk, anything that increases the likelihood of land-
ing out is experienced as a loss. However, if a pilot has two paths
available that are nearly equal in risk, but one path is faster, it is
natural that the pilot would seriously consider taking a little bit
more risk to meaningfully increase speed. The place that tuning
holds in the decision-making process is depicted schematically
in Figure 16.

Sometimes, pilots can be in completely different frames and
adjustments to their initial outputs can essentially converge on
the same decision. Consider a scenario: two pilots are side-by-
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Fig. 16: Flowchart that considers reward in decision making by adding an additional step to the process described in Figure 8.

side and there is only one cloud ahead of them which has a 70
percent chance of working. One pilot is in the risk minimiza-
tion frame; they wisely recognize the high risk of landing out
in this situation. However, since there is no chance of finding
another thermal, they realize that flying optimal MC speed does
not meaningfully lower the likelihood of finding that thermal
and speeds up accordingly. The other pilot is in a highly aggres-
sive “racing” mode and is driving hard toward that one thermal,
figuring that the reward of this particular climb justifies the risk.
Both pilots are flying in the exact same manner, despite being in
different frames.

However, sometimes the risk minimization and racing frames
can lead to very different outputs, even when pilots are tuning
their outputs to consider the effects of both risk and reward.
To continue the proposed scenario, once the pilots climb up to
cloudbase, they must now consider how they will pursue their
next glide. They see a blue hole ahead and have two options:
accept a major deviation around it, or make a highly aggres-
sive dash across the middle, with very few thermal options on
the other side. The pilot in the “racing” frame charges across
the blue hole whereas the pilot in the “risk minimization” frame
chooses a very different course which increases the number of
clouds available in order to limit their risk exposure.

In such a case, the “racing” pilot may tune their output by fly-
ing somewhat slower across the blue hole to arrive at the other
side at a greater altitude and thus able to reach more potential
thermals. The “risk minimization” pilot may tune their output
by accepting a path with slightly fewer clouds and flying closer
to the MC speed than in the “pure” version of their frame. How-
ever, the initial outputs from the racing and risk minimization
frames could be so divergent that it may be impossible for the
pilots to converge on the same decision. When confronted with
a tactical situation where shifting from racing to risk minimiza-
tion yields a very different output, choosing the right frame be-
comes especially consequential as choosing incorrectly can be
extremely costly.

Conclusions
We explored the decision-making process to manage sporting

risk in thermal soaring. We began by determining the level of
risk which is appropriate for success in contest flying. Because
landing out in most competitions is extremely costly, pilots must
avoid landing out even once in order to be competitive. We show
that pilots generally cannot accept a risk tolerance greater 0.001
and expect to succeed in the long run. The probability of land-
ing out in a contest is extremely sensitive to risk: a risk tolerance
of 0.01 greatly increases the likelihood of landing out when as-
sessed over several days. However, a pilot may be justified in
increasing risk tolerance toward the end of the competition. The
sensitivity of landing out to risk motivates the definition of what
we call the “strategic baseline” – a level of risk which provides
an acceptable probability of landing out.

Next we consider how this translates into the cockpit. Starting
from the strategic risk permissible in a contest, we define tactical
risk: the risk one can accept on a given glide. We use a coin
toss model to assess how thermal reliability and the number of
options to sample affect a pilot’s risk exposure. We find that
when thermal reliability is low, it is almost impossible to have
enough options to maintain a manageable risk threshold. On the
other hand, when reliability is high, the pilot can maintain very
few thermal options and have very low risk exposure.

The sensitivity of tactical risk to the number and reliability
of thermal options motivates the existence of two modes: racing
and risk minimization. These decision-making frames are rooted
in cognitive science: they represent an expression of what a pilot
experiences as a loss in a given situation. We assert that “gear-
shifting” often discussed in soaring represents a transition from
one frame to the other.

By using Monte Carlo simulations we are able to demonstrate
that gear-shifting can be used to significantly reduce the risk a
pilot is exposed to if the pilot shifts frames when their risk toler-
ance is violated. We note that shifting gears carries an efficiency
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penalty as it requires greater deviations and slower speeds to
maximize the number of options which can be sampled.

The steps outlined in this paper and illustrated in Figure 16
constitute a cognitive model for managing risk in thermal soar-
ing. Assessing the level of risk, choosing a decision-making
frame, tuning the dominant frame, and looking for new informa-
tion while carrying out a flight plan forms a loop similar to the
famous “OODA” loop for decision making [18]. While individ-
ual pilots may use different heuristics as they progress through
this loop, the structure provides a systematic approach to eval-
uating and managing risk in thermal soaring. From the results
of this investigation, the authors recommend several heuristics
that can be applied by pilots in the cockpit to improve thermal
soaring performance:

• The risk of landing out in a competition is extremely sensi-
tive to the risk taken on each glide. The acceptable risk of
landing out on each glide must be very small to complete a
competition successfully.

• If more than half of the clouds are working, a pilot can
become more selective about thermal choices. If fewer than
half of the clouds work, conservatism is required to avoid
landing out.

• Improvements in thermal “hit” probability can dramatically
improve speed and reduce risk.

• Having strong confidence in at least one lift source ahead
greatly diminishes risk exposure on the current glide.

• When assessing a tactical situation, ask yourself “should I
be more concerned with speed or landing out.”

• In reliable conditions, a racing frame can be maintained
with relatively few options. A low risk tolerance costs little
in speed while reducing the risk of landing out.

• In unreliable conditions, a low risk tolerance reduces speed
more than it reduces the risk of landing out. Shifting to
risk minimization early can significantly reduce the risk of
landing out, permitting a higher risk tolerance.

• Consider an immediate shift to risk minimization when a
good “line” through the cloud field ahead is not clear.
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