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Abstract

I develop intuition for the MacCready setting without elaborate stochastic control or numerical analysis. I
express the speed to fly problem as a constrained optimization using a Lagrangian formulation; the Lagrange
multiplier associated with the constraint then has an interpretation as a shadow price. I then consider the effects
of two types of uncertainty on the optimal speed to fly: thermals of random strength in known locations, and
thermals of fixed strength in random locations. Finally, I analyze the consequences of boundaries for the optimal
speed to fly: the finite height of cloudbase, the ground, and the distance to the objective.

Nomenclature
E[·] Expectation operator
h Initial altitude (cloudbase)
m Climb rate in a thermal, assumed net of sink rate at

thermaling speed
s(v) sink rate as a function of velocity in cruise mode

(approximated by a concave quadratic)
T The elapsed time between setting off at altitude h

toward the next thermal and climbing back up to
cloudbase h

v airspeed while cruising between thermals
v−w Velocity over the ground while cruising at airspeed

v with headwind w
V value function in Bellman equation [1] expressing

dy-
namic programming version of optimal speed pro-
blem

w Headwind
x Distance to the next thermal with the required

strength m (assumed fixed and known)
X Remaining distance to the goal in a competition
λ Lagrange multiplier for the polar curve constraint
ρ Parameter for the probability density characteri-

zing the frequency of thermals when thermals are
random

Introduction
One of the focuses of economics is optimization by individ-

uals and by firms. A central feature of the analysis of the opti-
mization problems individuals and firms face is the requirement
that constraints be respected, and in the face of these constraints
it is optimal to trade off choices: more wine, less cheese, or
more labor, less capital. Where one finally settles for a picnic –

This article has been reviewed according to the TS Fast Track Scheme.

one bottle of wine, half a kilo of cheese – depends on the price
of wine in relation to the price of cheese. The optimum can be
expressed with a simple formula that expresses a geometric fact:
the tangency of the budget line to an indifference curve; in the
case of a firm, the ratio of wages to rents is the slope of a tan-
gency to the production frontier.

This notion that an optimum is expressed by a tangency car-
ries over into other walks of life if the concept of price is gener-
alized to the more encompassing notion of shadow prices. In this
note I show as a starting point that the optimal strategy for flying
a glider, whether it be a sailplane, hang glider or paraglider, can
be expressed as a tangency.

Almgren and Tourin [1] provide the basic definition of the
MacCready setting: it is the threshold value of net thermal
strength (in meters per second or other velocity units) such that
the time elapsed to a goal is minimized when flying between
thermals at the optimum speed. I recapitulate and expand their
intuition to demonstrate that the basic MacCready logic can be
expressed as a shadow price (see e.g. [2]) of reducing flight du-
ration, by expressing the optimization problem as a Lagrangian.
The Lagrange multiplier then has the interpretation as a shadow
price or marginal value, and has a surprisingly simple form that
I believe to be previously unknown1 .

Almgren and Tourin go on to analyze the potentially very
complicated impact of stochastic thermals using a stochastic
control approach. My second purpose here is to try to distill
the basic intuition for the stochastic case. I do this by dividing
the stochastic character of the thermals into two types. I show
that the basic MacCready intuition is, surprisingly, extremely
robust to the complications introduced by a stochastic environ-
ment. One’s intuition is that due to risk aversion, one should

1The interpretation of the Lagrange multiplier as a marginal trade-off extends to
physics, in which it is standard to pose problems of energy minimization with
constraints; see Lemons [3], pp. 52 ff.
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slow down in a stochastic environment. In fact when parameter-
ized realistically the MacCready optimal speed is unaffected.

Finally, in real flying situations there are boundaries that im-
pose constraints on the optimization problem. In a competition
task there is typically a distance to traverse in the minimum
time; in cross-country flying there are limited hours before the
sun drops and thermal activity ceases, and, finally, the cloud-
base, which is the maximum attainable altitude for gliders flying
legally, limits the distance a glider can fly before landing out2 .
I show that these boundaries can modify the basic MacCready
velocity, but in simple and intuitive ways.

General characteristics of gliders
There are three basic types of gliders: sailplanes, hang glid-

ers, and paragliders. Whilst not obvious from watching them
flying from the ground, each has the means to control its for-
ward speed through the air (keeping in mind that the air itself
might be in motion overall due to wind). Sailplanes and hang
gliders can increase their speed by tilting the nose of the craft
down. Additionally, some sailplanes have flaps that can be de-
ployed to slow the glider down. Paraglider pilots do not have the
option to tilt the nose down, but they can increase the speed of
the glider by pressing the “speed bar,” which decreases the angle
of attack, and so effects the same result as tilting the nose down,
and then can also pull on the “brakes,” which effectively act as
flaps, to slow the glider.

In each case where the glider speeds up, a penalty is paid
in terms of sink: higher speed, faster sink, due to the greater
drag that develops at higher speed. Moreover the effect of drag
increases with speed, so that the impact of increased speed on
the rate of sink is nonlinear: sink is amplified at higher speed3 .
There is therefore a trade-off that sophisticated pilots interested
in maximizing their distance, or minimizing the duration of their
flight in a race, take account of in their decisions.

The intuition of the problem is as follows. Consider two ex-
tremes. In the first extreme go as slowly as possible in order
to minimize the possibility of sinking out. The next thermal
is reached with high probability and reached high. One climbs
back to cloudbase and continues.

In the second extreme fly as fast as possible – one wants to
win the competition. But because of the nonlinear effect of drag
one essentially “plunges” to the next thermal. Arriving at the
next thermal near ground level, so one needs to spend a long
time climbing back to cloudbase. The climb rate in the thermal
is fixed: it can not be improved via any flying strategy beyond
skillfully staying in the core.

2These are the most elemental boundaries. There are other boundaries in prac-
tice, such as airspace restrictions, that can limit altitude.
3To elaborate a bit more, it might seem obvious that tilting the nose down in-
creases sink, because the nose now is pointed toward the ground! But it isn’t
quite that simple: because of the faster speed, lift also increases, and this in-
creased lift offsets some of the downward sink. But the increased drag wins out.
The relationship between airspeed and sink rate is expressed by the so-called
speed polar curve of a glider, which often is approximated by a parabola.

These two extremes illustrate the main idea. In the first ex-
treme the competition is lost because of loafing along between
the thermals. In the second the cruise speed is high, but too much
time isspent climbing in thermals. There is an optimal cruising
speed that trades off these two effects.

The basic MacCready logic
I begin by deriving Almgren and Tourin’s objective in a more

intuitive way. In this discussion I assume that the thermal
strength m is net of the sink entailed by cruising in the ther-
mal, as this sink rate is approximately constant due to the fixed
circling speed. Because thermal cross-country entails repeated
cruises and climbs, optimizing just one leg of this process cap-
tures the idea. Of course this approach does not yet reveal the
optimal m – m will be held constant for now and I will return to
this discussion later. (Moreover, the distance to the thermal and
its strength m are treated as known – one could think of this as a
“house thermal” that is a few kilometers ahead.)

The objective
The objective is to minimize the elapsed time T to traverse the

distance to the thermal and subsequently climb back to cloud-
base. There are two elements of this time, namely the time in
cruise mode x/v, and the duration of the climb, h/m: see Fig. 1.
The control is the speed of travel in cruise, where the polar curve
is relevant. There is also a constraint that the control v be phys-
ically feasible, that is, it is on the polar curve. Thus, the control
problem is

min
v

{
x

v−w
+

h
m

}
(1)

subject to the constraint

h =

(
x

v−w
× s(v)

)
(2)

that is, the time spent sinking at rate s(v) is in cruise mode,
which lasts x/(v−w) seconds.

A key aspect of the objective in equation (1) is that it requires
that the subsequent climb back to cloudbase be undertaken after

Fig. 1: A cruise and climb leg.
Repeated flight pattern of sink during cruise from starting height, fol-
lowed by ascent in thermal to starting height.
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the cruise once the thermal is reached; this renders the optimiza-
tion problem stationary.

A second key observation is that the height h is endogenous,
that is, one does not automatically fly so fast arriving at the base
of the thermal and then doing a low save; in general one will
arrive at the thermal at altitude.

I will express this problem as a Lagrangian in due course,
because one can then interpret the multiplier as an appropriate
shadow price. But before doing so it is illuminating to solve
using brute force to establish the equivalence of the formula-
tion with the Almgren-Tourin formulation. Substituting from
the constraint and after cancellations results in

min
v

(
m+ s(v)

v−w

)
(3)

which is Almgren and Tourin’s objective. Notice that the dis-
tance x has factored out.

After some algebraic manipulation the first order condition is

(v∗−w)s′(v∗) = m+ s(v∗) (4)

With zero headwind this is the same as MacCready’s (1954)
original equation, W +wt = v · d f (v)/dv (see [4]), where wt is
the rate of climb in the next thermal, v is airspeed when cruising
(the choice variable), W is the sink rate when cruising, and f (v)
is our s(v).

I interpret this first order condition geometrically: the right
hand side is the vertical distance from the sink rate determined
by the optimal cruise velocity v∗ to the climb rate in the thermal,
m, on the vertical axis of the polar diagram, and the left hand
side is this same vertical distance as determined by the slope of
a line s′(v∗) times the horizontal distance to the cruise velocity
v∗ on the diagram, that is, there must be a tangency to the polar
plot starting from the climb rate m.

The tangency is illustrated in Fig. 2. With a positive headwind
one simply shifts the polar curve to the left by the headwind; the
tangency point moves to the right along the polar curve, so that
the optimal airspeed (speed to fly) v∗ increases.

The Lagrangian formulation
The way to think about the optimal speed to fly is to think

(somewhat counterintuitively) in units of “seconds (gained) per
unit of altitude”, that is, in terms of 1/v, not v. I now demon-
strate that this perspective derives from the interpretation of the
Lagrange multiplier associated with the constraint in the speed-
to-fly optimization problem. The Lagrangian is

min
v

{
x

v−w
+

h
m
−λ

(
h−
(

x
v−w

× s(v)
))}

(5)

where the usual formulation with the constraint term is sub-
tracted. Notice that the starting altitude h is the “income” term
in the constraint, so it is already known that the multiplier λ will
be the marginal increase in time per unit of altitude, that is, with

Fig. 2: The tangency to the polar with a negative polar plot repre-
sentation.

units 1/v. Also note that we could re-phrasing the problem with
1/v as the control, in which case it would become almost linear.

After algebraic manipulation the first order condition is

λ =− 1
s(v)− (v−w)s′(v)

Because the condition (4) holds at the tangency point, it can be
written

λ =
1
m

Because m is the climb rate of the thermal it is in units of ve-
locity, and therefore the Lagrange multiplier is in units of the
inverse of velocity, that is, seconds per meter. The interpretation
is then straightforward: the multiplier is the shadow cost of a
unit of duration in velocity, or, the marginal increase in altitude
that is needed to justify a marginal reduction in the duration of
the flight from speeding up by a marginal amount.

Notice that there is no effect of the headwind w on this shadow
cost of airspeed!

Solving for v
Rearranging the geometric property yields

(v−w)s′(v)− s(v) = m =
1
λ

Analyzing the left hand side geometrically reveals an inverted
parabola shape, and the intersection with the constant m happens
in two places; using only the left intersection, it is clear that
increasing the climb rate m increases the optimal cruise airspeed
v∗. Equivalently, increasing the net thermal strength m reduces
the shadow cost λ of increasing speed, so one speeds up.

Interpretation of the multiplier λ

Taking the derivative of (5) with respect to h yields

∂ (−T )
∂h

= λ

that is, λ is the marginal decrease in duration given a marginal
increase in height, that is, it is the marginal value of height,
which makes intuitive sense.
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Allowing thermal strength m to vary
Now ask, what if there are two m’s, one weak and one strong?

The weak ones occur more often so the temptation is to take the
weak thermals as well as the strong ones.

To think more analytically about this draw two tangent lines,
resulting slow speed for the weak thermals (and smaller x for
those thermals) and higher speed for the strong thermals.

But now it is obvious that one would slow down by taking
any of the weak thermals. As long as the objective is minimum
time, one should cut out the weak thermals if it is physically
possible to fly the strong thermals. The fact that they occur less
frequently, so that the distance x is larger, is irrelevant to the
strategy: x does not appear in the first order condition!

Stochastic thermals
Of course in real flying situations there is a degree of risk: if

a thermal is not found when needed, a land out occurs. If not in
a race but want to maximize cross-country distance (a common
objective in paragliding) then one falls short.

There are two separate types of randomness to contemplate.
The first random element is the strength of a given thermal. To
envision this, one can posit that all thermals are “house” ther-
mals, that is, thermals that are known to predictably develop at
known locations: a knoll, a particular field, a rock formation,
and so on. In that case, the pilot would be expected to adjust his
MacCready threshold downward, given that he might encounter
two weak thermals in a row: if he skips the first thermal because
it is too weak by basic MacCready reasoning and then encoun-
ters a second weak thermal, he will land out. To prevent this he
must slow down a bit on the glide/cruise phase; this reasoning
here sounds a bit like risk aversion.

This reasoning is incorrect. In fact, the basic MacCready rea-
soning continues to apply, but with an average replacing the net
thermal strength, m.

The second type of randomness is randomness in the geo-
graphical distribution of thermals. With this perspective, one
could imagine that all thermals have the same strength, but that
they are encountered randomly (that is, with Poisson arrivals in
terms of geographical spacing). Again, the intuition is that one
would slow down below the basic MacCready setting because
one does not know if they will make it to the thermal after the
current one. And again, there will be a “risk premium” driving
the slowdown. In this case the risk premium could be expressed
in terms of the arrival rate of the thermals, which behaves mathe-
matically like an interest rate and is in this sense complementary
with the idea of a risk premium.

First case: Evenly spaced thermals of random strength
This case turns out to be remarkably simple: it is identical to

the basic deterministic MacCready model. The objective is

min
v

E
[{

x
v
+

s(v)x
mv

}]
= min

v

 1
E[ 1

m ]
+ s(v)

v

xE
[

1
m

]
(6)

But this is simply the original deterministic MacCready prob-
lem with 1/E[1/m] replacing m. The solution of the problem
is then identical to the deterministic problem, but with the ex-
pected value of the inverse of net thermal strength replacing the
fixed value. Because the expectation is of the inverse, there is
however a bias toward decreasing speed. (That is, if there are
two thermal strengths m1 and m2, each with 50-50 probability,
then it is easy to see geometrically that 1/E[m] < E[1/m] due
to Jensen’s inequality, so the effective average thermal strength,
1/E[1/m], is less than the actual average E[m]. This shifts the
MacCready tangency point to the left. But this slowdown effect
has nothing to do with risk aversion!)

Second case: Randomly located thermals of fixed strength
If thermals are assumed to have equal strength but occur at

random intervals then the probability density of the next thermal
distance x′ is ρe−ρx′ , that is, there is an arrival rate associated
with distance, not time, and need to integrate over this density.

Benchmark approximations

Some intuition about the random spacing case can be obtained
by ignoring the boundary formed by the ground, that is, we can
assume that negative altitude is allowed so there is no concern
about landing out; this is what thermalling on Jupiter would be
like! In that case the objective is

min
v

E
[

m+ s(v)
v

x
m

]
= min

v

∫
∞

0
ρe−ρx′

[
m+ s(v)

v
x′

m

]
dx′

= min
v

m+ s(v)
v

1
m

∫
∞

0

[
ρe−ρx′x′

]
dx′

= min
v

m+ s(v)
v

1
m

1
ρ

(7)

that is, one integrates over the infinite line traveled.
It is immediately evident that the first order condition simply

replicates the first order condition from the deterministic prob-
lem; the distance x to the next thermal is replaced by the ex-
pected value of this distance, 1/ρ , but as with the deterministic
case this expected distance has no effect on the optimal velocity;
the MacCready optimum is not affected by the uncertainty! The
only thing that can potentially influence the optimal velocity is
the boundary.

What is going on here intuitively? It might seem that since
negative altitude is possible one would just go as fast as pos-
sible. But remember that this formulation still requires you to
climb in any thermal reached, and this takes more time if one’s
altitude is negative. So it is better to optimize the trade-off be-
tween cruising speed and the time it takes to climb in a thermal4 .

4If flying on Jupiter, there would be no ground, and therefore need never land
out, but this therefore means that one never needs to ascend in a thermal at all –
so the requirement that to ascend in some thermals matters!
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The effects of boundaries
I have shown that the MacCready logic is surprisingly robust

to the presence of stochastic thermals, whether it is their strength
or their geographic incidence that is random. However, to obtain
these results I have ignored the effects of boundaries.

There are two main types of boundaries to consider. The first
and most important is the cloudbase, which influences the possi-
bility of landing out. Because gliders cannot legally (or safely)
fly above the cloudbase, and because the cloudbase is roughly
constant during a typical flying day5 , it is the maximum altitude
in the practical version of MacCready analysis, and affects the
possibility of landing out.

The second boundary is the physical distance to the goal of
the task; the closer to the goal, the bigger the effect. Again, the
desire to avoid landing out will affect the optimum. As both
Almgren-Tourin [1] and Cochrane [5] establish, these effects
are potentially extremely complicated, in part due to the com-
plicated scoring schemes used in competitions, as well as the
dynamic programming effects of the boundaries. However, here
as well there is some basic intuition that is easy to establish.

The impact of cloudbase when thermals are random across
space

I will analyze the first boundary effect, the effect of the cloud-
base altitude constraint, on the situation when thermals are ran-
domly distributed geographically, but have equal strength. To
complete the formulation of the objective in the basic determin-
istic case, I needed to assume that the thermal height parameter
h was exogenous, but now I will allow it to vary. When thermals
are stochastically spaced, the altitude of arrival at a thermal de-
pends on the arrival time: the longer flown before a thermal is
found, the more one has to climb back to cloudbase, that is, the
bigger is h. I can express this using the previous constraint (2).
If x is big, that is if a very long distance is flown without finding
a thermal, a land out will occur. If I assume that the initial posi-
tion is at the top of the current thermal, that is, at cloudbase, then
if one sinks below the cloudbase altitude, one by definition has
landed out. Call the cloudbase height h. Then flight continues if

x≤ hv
s(v)

otherwise one has landed out.

The conditional distribution and expected distance when there
is landing out potential

Given that the possibility of landing limits the distance poten-
tially flown starting from cloudbase, this imposes a restriction on
the conditional distribution of the location of the next thermal.

5“Roughly” because the cloudbase tends to slowly increase during the course of
the day. Also, whilst the cloudbase is fixed in the short run, traversing terrain of
varying altitude changes the effective cloudbase.

The truncated density is

ρe−ρx

1−
∫

∞

hv
s(v)

ρe−ρξ dξ
(8)

Thus, the conditional density is normalized to the maximum
possible distance traveled, and, importantly, this distance is en-
dogenous to the velocity v. It is now seen that this will have an
impact on the optimization problem, as the distance x no longer
will factor out of the objective.

There is a caveat here however: if one thinks of minimizing
duration subject to not landing out, it is not appropriate to nor-
malize the density. That is, if one speeds up radically this will
shorten the land-out distance and increase the potential to land
out. Thus, the normalization should be removed. The expected
distance to the next thermal is then

E[x] =
∫ hv

s(v)

0
ρe−ρx′xdx =

1
ρ

(
1−
(

1+ρ
hv

s(v)

)
e−ρ

hv
s(v)

)
(9)

I next examine the impact of this expected value on the opti-
mization problem.

Stationarity induced by the landing out boundary
One can now apply this conditional expected value to the

cross country problem. The first observation is that if the flying
day is potentially infinite, and the course has no geographical
limits, then the optimization problem is stationary. Landing out
is then the only concern. In that case the model is fully recur-
sive, that is, one starts over once at cloudbase. In that case, the
non-recursive problem can be solved, which is to minimize the
time to the next thermal conditional on the requirement to climb
in the next thermal.

Suppose the option of continuing to fly without the sun going
down, as long as no land out occurs: Flight is on the infinite
plane (or even line). But one wants to go as far as possible. This
then is equivalent to maximizing average speed v, subject to the
constraint that one has to fully ascend any thermal encountered.

This problem is straightforward to write down as a non-
dynamic-programming problem: just integrate over the density
of the thermal arrival, subject to not landing out. I already
thought about this, except I didn’t maximize speed, I minimized
time. But they are equivalent problems. Thus, the stationary
problem can still be expressed as the standard MacCready prob-
lem with uncertainty:

min
v

1
v
+

(
s(v)

v

)
m

 1
ρ

(
1− (ρ

hv
s(v)

+1)e−ρ
hv

s(v)

)
(10)

If the arrival rate for the thermals is too small, or if the cloudbase
is too low, or if the climb rate m is too small, then the expected
value of x, and the objective function, become bell shaped, and
thus non-convex, and so it is optimal to fly as fast as possible,
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not at the MacCready speed, simply because there is nothing to
lose6 .

However, with a high cloudbase, or strong thermals, or very
frequent thermals so that ρ is large, the effect is to flatten the
expected value of x, that is the truncation of the density be-
comes irrelevant, and the expected value is 1

ρ
, so when taking

the derivative of the product of the original objective and the
conditional expected value, then the derivative of the product
is essentially that of the original MacCready objective, and the
original MacCready velocity is more or less optimal. That is,

0 =
d
dv

1
v
+

(
s(v)

v

)
m

 1
ρ

(
1− (ρ

hv
s(v)

+1)e−ρ
hv

s(v)

)

=
d
dv

1
v
+

(
s(v)

v

)
m

+0

(Just to emphasize: the “+0” term on the right is a numerical
result that applies in reasonable calibrations.)

I calibrated this model with a polar curve for a typical
paraglider that has speeds on the order of 30 kilometers per hour,
typical thermal strength of about 2 meters per second, and a po-
lar curve with minimum sink on the order of one half to one
meter per second, and typical flying conditions with cloudbase
at 1,000 meters. The remaining issue is the arrival rate of ther-
mals; if there is a thermal every 500 meters on average, that is
an arrival rate ρ of 2, and with this calibration the truncated ex-
pected value function is extremely flat in the speed range that
matters. So the MacCready reasoning is basically unchanged.
I use this calibration, that is, expressed in meters and seconds,
in the following simulations: m = 2, ρ = .002, and h described
below. The standard approach seems to be to measure veloc-
ity v in kilometers per hour, whilst measuring the sink rate s(v)
and the thermal strength m in meters per second; this leaves the
measure of the cloudbase height h ambiguous: if it is in meters
then a reasonable calibration is 1000 meters. The result is shown
in Fig. 3. The basic MacCready construction is unaffected, be-
cause the expected value of x (orange line) – the distance to the
next thermal – has a flat region around the minimum of the basic
MacCready objective (blue line)7 .

Boundary effects in the competition task: close to goal
The Bellman equation [1] has a flow element and a continua-

tion value. The continuation value should reflect not only the in-
6This effect shows up in models where the goal is to maximize survival, which
is similar to the problem faced here; see [6].
7Notice that we have the ratio h/m in the original objective; thus, if measuring m
in meters per second, then h should be in meters, but the result is in seconds. The
other term, s(v)/v, mixed meters per second (s(v)) and kilometers per hour (v).
In the Almgren-Tourin paper, which is oriented toward sailplanes, everything is
measured in terms of meters per second; their polar plot figure has a MacCready
speed of 50 meters per second. Dividing by .278 yields 180 kilometers per hour
(the Pegasus has a maximum speed of 133 knots or 246 kilometers per hour
– very fast, way faster than any paraglider!) A typical paraglider speed of 30
kilometers per hour converts to .278×30 = 8.34 meters per second.

Fig. 3: Geometry of the first order condition.
The minimization problem with stochastic distance to the next thermal,
with m = 2, h = 1000, ρ = .002 (units are in meters and seconds). The
orange line is the expected value of the distance to the next thermal;
the blue line is the original MacCready objective; the green line is the
objective weighted by the expected distance to the next thermal. The
green line and orange lines are multiplied by ρ to maintain scaling with
the blue line. It is evident that the expected-value-weighted objective
coincides with the original MacCready objective in the relevant region.

fluence of the optimization problem for the subsequent thermal,
but for the possibility of reaching the goal and also of landing
out. But the basic construction doesn’t mesh with these bound-
ary issues.

The intuition of the goal boundary is that if close to the goal,
speed up because the risk of landing out becomes nil. But there
is another more subtle effect here. When I optimized the non-
stochastic model, I built in the requirement to re-ascend in the
thermal hit. This shapes the optimization significantly: even
if at cloudbase only 50 meters from goal use the MacCready
velocity, and this is obviously incorrect: it would be optimal to
go at maximum speed. So the terminal value needs to reflect
this. Moreover, this effect will have a recursive influence: it
might be wise to speed up above the MacCready speed after the
thermal before the last thermal because the risk is reduced.

I can rewrite the objective so that height is a function of the
remaining distance to goal, X :

V (X |m)=min
v

∫ X

0
ρe−ρx

1
v
+

(
s(v)

v

)
m

x′+V (X− x
∣∣∣m)

dx

(11)
Note that the probability measure that has zero support for dis-
tances beyond goal due to the normalization. It is therefore au-
tomatic that distances beyond the goal are not counted.

So, I can say that if your distance to goal is less than the land-

VOL. 43, NO. 2 April — June 2019 19 TECHNICAL SOARING



out distance, then the optimum would be to speed up, choosing
a v∗ so that equality holds:

X =
hv∗

s(v∗)
(12)

Now I have a way to characterize the terminal value: it is the
time it takes to fly using this rule:

V
(

X
∣∣∣X ≤ hv

s(v)

)
=

X
v∗

where v∗ solves equation (12), and where v is the maximum at-
tainable speed (well above the MacCready speed).

I take this further. Suppose there are N thermals before
goal, labeled in dynamic programming countdown fashion as
MN ,MN−1, . . . ,M1. Think about the penultimate thermal, M2,
with the final thermal, M1, close to goal. I can anticipate reach-
ing the final thermal from the penultimate thermal, and we can
define the altitude in the final thermal so that I only just squeeze
into goal before landing. Should I speed up after thermal M2?
Yes! I use the same reasoning as above: First of all, to squeeze
out the the final run to goal at the maximum speed I only need
to attain altitude h∗ = Xs(v∗)/v∗. But now I can treat point X –
the location of the final thermal M1 – as the goal. When I climb
and reach M1, I only need to climb to h∗, and so the optimization
problem can be modified to reflect this. Thus, there is a dynamic
programming effect from the goal boundary, which iterates back
through the earlier thermals.

This reasoning will also affect the stochastic model. In the
stochastic model it is equally true that if one is close enough to
goal one will speed up and behave deterministically.

Intuition for boundary effects in the cross-country problem
So far I have modeled landing out as a Poisson arrival prob-

lem, but indexed to distance rather than time. Intuitively, one is
flying on some flats8 . And what is seen is that once including
in the objective of not landing out between thermals, the con-
vexity of the objective seems to be ruined: the problem becomes
ill-posed.

The intuition for the ambiguity of the objective is easy to state:
one can go far only if one does not land out. If one does not land
out one wants to go as fast as possible, as this maximizes the
distance (again, because the day will end and one will have to
land). But to avoid landing out one might need to slow down.
So the logic of the MacCready speed is vitiated. So the question
becomes, how can a coherent objective be stated?

Let me simplify the problem as follows. Instead of thermals
appearing randomly, suppose that they appear at fixed, discretely
and evenly spaced locations, but not reliably. Thus, there might
be a “house thermal” but the thermal turns on and off at random.

The simplest case is where two such intermittent-thermal lo-
cations are ahead; call these M1 and (counting down beyond M1)

8Editorial note: Flatland with low thermal activity

M0. If both are caught you can continue and go far. If M1 is
caught then M0 is also caught even if one flies fast (i.e. at the
MacCready speed), although if it is not active then one lands out
(but at least you made it that far, something like making it over
the pass). But if one flies fast before M1, and M1 is not active
when one arrives, then one has to land out. On the other hand,
if one flies slow, then if M1 is not active when one arrives, one
still has enough altitude to make it to M0 and at least will have
another chance.

This logic shows that if distance is the objective, one wants
to slow down. So the objective needs to be reformulated with
distance at the objective. But this leads to another issue: the so-
lution to this problem is trivial: just slow down to the minimum
sink speed. To get beyond this trivial approach I need to add an
additional ingredient.

The additional ingredient is that the sun goes down after a
fixed number of hours, limiting the distance. So if the objective
is to maximize distance given the time constraint, and also given
the not-landing-out constraint, I express this as an objective.

Boundary effects in the XC problem: you speed up at the end

With the intuition that one wants to solve a constrained maxi-
mization problem rather than a minimization problem, I can see
intuitively that as the end of the day grows near, I speed up, as
there is now nothing to lose once the day has terminated. Thus,
just as in the minimum time to goal problem, I speed up at the
end!

Conclusions
I developed intuition for the MacCready setting without elab-

orate stochastic control or numerical analysis. (i) I motivated
more clearly the objective function in the basic MacCready
setting. (ii) I expressed the optimization problem as a con-
strained optimization using a Lagrangian formulation; the La-
grange multiplier associated with the constraint then has an in-
terpretation as a shadow price. I demonstrated that this shadow
price, which is the shadow price of reducing the duration of
the flight marginally (thus reaching the goal sooner and poten-
tially winning a competition) requires a marginal increase in al-
titude. When flying optimally this price – expressed as seconds
per meter – is exactly the inverse of the net thermal strength; I
believe this result to be previously unknown. (iii) I then consid-
ered the effects of two types of uncertainty. For the first type of
uncertainty – thermals of random strength in known locations –
I demonstrated that the MacCready logic is entirely preserved,
and that it might be desirable to slow down, but this result is in
no way driven by risk aversion. In the second case, thermals of
fixed strength in random locations, I show that for very plausi-
ble parameters for real gliders that the MacCready velocity is
entirely unaffected. (iv) Finally, I examined the effect of bound-
aries on the speed to fly, establishing that under some circum-
stances it is optimal to speed up beyond the MacCready velocity.
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