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Summary
We present a physical and mathematical basis to motivate the use of the Froude number as a predictor of the presence and the
vertical extent of mountain lee wave. Froude number “profiles” were computed from upwind soundings on days when soaring
flights were conducted in the Tehachapi-Owens Valley area of Southern California; the quality of the wave ranged from
“poor” to world record setting. For comparison, the Scorer parameter profile was computed for these days. The presence of
wind shear is implicitly accounted for in our approach, since shear conditions are necessary to excite various oscillatory modes
in the atmosphere. Preliminary results indicate that the Froude number may well differentiate between strong and weak
wave, as well as indicate the vertical extent of lift. The Froude number compares favorably with the Scorer parameter, which
could not a priori distinguish between strong and weak wave days. More data are needed from wave flights flown under

controlled conditions to confirm or refute our hypothesis.

Introduction

The phenomenon of mountain lee waves is well known to
many soaring pilots. Flying in wave conditions is characterized
by smooth, strong lift to high altitude upwind of the wave crest,
with strong sink downwind of the crest. These areas of sink
may cause destructive surface winds, and the near surface
“rotor” beneath the mountain wave crests is an area of
potentially severe turbulence, which can be especially
hazardous to light aircraft.

Recently, a world distance record for gliders of nearly
2500 kilometers was set in Argentina, while flying in wave.
The world, absolute altitude record for gliders, also conducted
in wave is about 15,000 meters (over 49,000 feet). Speed
records have been set in wave as well; for example, Jim Payne
established a speed record over a 100-km course of nearly 235
km/hr.  Clearly, mountain lee wave is a very powerful
atmospheric phenomenon, extensive vertically as well as
horizontally.

Although surface topography certainly affects the character
and intensity of mountain lee wave, we will concentrate on the
atmospheric conditions, which promote wave, in regions with
favorable topography. As an introduction, we present a basic,
intuitive physical explanation of mountain lee wave. We
assume two-dimensional flow, perpendicular to a mountain
ridge.

Consider an air parcel in a stable airmass moving horizontally
(see Fig. 1). As the airmass encounters a mountain ridge, the
parcel of air is perturbed upward over the ridge. The pressure of
the raised parcel equalizes rapidly with the surrounding air, but
the stability of the airmass means that the parcel is now denser
than the surrounding air. The parcel slows its ascent, stops and
starts to descend. As the parcel is carried horizontally with the
zonal wind, its rate of descent increases. The parcel’s
momentum carries it below its initial, equilibrium (ie.
unperturbed) altitude, where it is now less dense than its
surroundings and the parcel is eventually carried upward.
Depending on conditions, including the strength of the initial
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perturbation and the stability profile of the airmass, these
“buoyancy oscillations” may undergo many cycles in the lee of
the ridge. In addition, if the airmass is humid, lenticular clouds
may become visible at the wave crests. These oscillations are
analogous to that of a weight hanging vertically on a spring,
which when vertically displaced and released oscillate about
their equilibrium position, until air friction and internal energy
losses in the spring (frictional heating) dampen the oscillations.

Mourtan Lea Wave

5 7 !

+

Figure 1. Cross section showing wave pattemns in the lee of a
mountain from Reichmann [1]. We assume a zonal wind U and
tropospheric depth Z,. The stability (or buoyancy) is obtained from
the temperature profile of the troposphere.

According to Reichmann [1], the best conditions for wave
are as follows. The airmass must be stable. The wind speed
aloft must be greater than about 8 m/s (~15 knots) at ridge
level, with nearly constant direction throughout the stable layer.
The wind speed should be constant or smoothly increasing with
altitude.  In addition, the wind direction should be within 30
degrees of normal to the perturbing ridge. These observations
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have been “quantified” in the dimensional Scorer parameter,
which, for wave conditions, should decrease with altitude
(Scorer [2], Durran [3], and Reichmann [1]).

The goal of this paper is to quantify the above observations
in a nondimensional parameter, whose value indicates both the
existence and altitude range ol mountain lee wave. This
parameter should incorporate measurements of airmass stability
and the mean wind speed in the layers of interest. To be useful,
this parameter should be easily computable from readily
available data (i.c., a daily sounding). As will be shown below,
based on scaling of the governing equations and dimensional
analysis, such a parameter exists; it 1s the Froude number, Fr.

To achieve our goal of determining the altitude range of lee
wave, we look at modes of atmospheric oscillation, i.e. an
infinite number of internal modes (baroclinic modes), as well as
an cxternal mode (the barotropic mode). In the barotropic
mode, the troposphere moves like a fluid layer of constant
density. For lee wave, this is analogous to the standing waves
present over, and downstream of, a large submerged obstacle in
a river (the water being of constant density). The baroclinic
modes in the troposphere result from changes in density in
“layers” internal to the troposphere. Such internal waves can
be observed in tabletop wave machines, with colored oil and
water serving as fluids of similar but different densities. In
general, we expect Froude numbers of order unity to indicate
the presence of certain modes and lower Froude numbers to
indicate the absence of modes. The structure and
accompanying vertical wind profile associated with various
modes will be discussed in detail below.

As a preliminary test of our hypothesis, we calculated the
Froude number using upwind soundings, for the barotropic and
first several baroclinic modes, on days when soaring flights
were conducted in wave in the Owens Valley, California.
These results suggest a correlation between the Froude number
of various modes and the presence of lee wave at the altitudes
corresponding to these modes. Our hope is that our theoretical
treatment of this problem will encourage the soaring
community to obtain detailed flight information under
controlled conditions, in order to substantiate or disprove our
hypothesis.

Above, we have given a simple physical description of
mountain lee wave. We will now define the Froude number
explicitly and motivate its use in this problem based on
dimensional analysis. We will then linearize and scale the
governing momentum equations, from which we obtain the
Froude number (details of these derivations have been
eliminated for brevity). We discuss some of the practical
problems in computing the Froude number from soundings.
Finally, we present our results and discuss the need for future
data collection and research.

The Froude Number

The Buckingham Pi Theorem provides the theoretical basis
for using dimensional analysis to describe physical systems. In
particular, it states that certain fundamental, physical quantitics,
characterizing a system may be combined to produce
dimensionless products, which provide information on the state
of the system. A brief statement of this theorem and its
application to this problem are presented in the Appendix, for
readers who are unfamiliar with scaling.
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The Froude number is defined as the ratio of the inertial
force to the gravitational force, i.e.

Fr=(pU’D*)/(pD"g),

where p is the fluid density, U is the fluid velocity and D is a
length scale (Williams and Elder [4]). The above equation
reduces to

Fr=U’/Dg.

Alternatively, the Froude number can be defined as the square
This latter

expression is the form of the Froude number that we will use.
The length scale D depends on the nature of the system.
For “deep water waves”, where the fluid depth is large
compared to the wavelength, D is simply the wavelength of the
waves. For “shallow water waves”, where fluid depth is small
compared to the wavelength of the waves, D is the fluid depth.

root of the above quantity Fr=U/,/Dg.

In cither case, the quantity /Dg is a measure of the phase

speed of the waves. Therefore, the Froude number gives the
ratio of the tlow speed to the phase speed of the waves. We
will be considering “shallow water waves”, since the
wavelength is much greater than the tropospheric depth (see
below). In the above definition of Fr, we have assumed gravity
waves at a free surface (e.g., an air-water interface). More
generally, for waves moving along the interface between any
two fluids, each of constant density, g should be replaced by
g'=g(Ap/ p), where p is the density of the lower fluid and
Ap is the density difference between the two fluids. The
quantity g' is called reduced or modified gravity. Note that for

the interface between air and water that Ap/ p=1.

We will use various formulations for Fr, but each gives
the ratio of the fluid flow speed to the phase speed of the
waves. One very important point is that since mountain lee
waves are standing waves, the wind speed equals the phase
speed of the wave (but in the opposite sense). Therefore, we
expect the Froude number to be of order one in the presence of
wave conditions.

The Governing Equations
Linearizing the governing equations
We will now reinforce the physical intuition described above,
with a rigorous mathematical treatment of the problem.

We start with the equations governing the motion of a
parcel in two dimensions (in x and z), presuming that the scale
is such that we can ignore Coriolis effects. Although friction is
important near the ground, we are primarily interested in the
atmosphere above the surface layer and so will take the flow, in
our region of interest, to be mviscild. We will also use the
Boussinesq approximation, i which density 15 assumed
constant except when density variations result in buoyant forces
(Gill [57), i.e. when gravity provides the restoring force to a
parcel. We can justify this approximation, assuming motions in
the wvertical are small compared to the seale height, so that
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density differences are small compared to those over the scale
height (= 8.5 km).

The equations governing the flow in this situation can be
wrillen as

d % 7
—u+1.££-zi+wou:——1--a£ (1a)
ot Ox oz P Ox
& w 1o 18
o e B (1b)
ot Ox oz p oz
iy ’}W
B O (1c)
ox Oz
ol oo 3]
('—-H:-——i-w—azo, (1d)
ot ax oz
where » and w are the wind components in x and z. The
potential temperature, 0, is defined as
il ]
e G,
p) M\p

where ¢, is the specific heat for dry air at constant pressure, R

is the gas constant for dry air, p, is a reference pressure
(usually 1000mb).

We can lincarize these cquations about a basic state in
hydrostatic equilibrium, again assuming vertical accelerations
are small compared to gravity. The variables in Egs. (1) can be
decomposed into their mean (with zero subscripts) and
perturbation (primed) components:

p=po+p U=uy+u'

p=ps(z2)+p
0=0,(z)+6'

u, = constant (in x,7) (3)
w=w

We need to relate density (and density perturbations) to
measurable quantities, namely the potential temperature and its

perturbations. Therefore, from Eq. (2) in the basic state, we
have

“4)

where y =c,/c,. Detailed derivations of Eq. (4) and the

Ing, = y'n Py —In py + const.

linearized form of the governing Egs. (1) have been climinated
for brevity. The final form of the lincarized equations is as
follows:

dt ot ox 0z Py O%

aw' 6’ 1 op'

& g-—T (5b)
da b, Py Oz
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By operating on Eqs. (5a-5¢), we can obtain a single equation
in terms of w' alone,

d? [ o*w
( (6)

~2 ot

o W ¢ W
ezt ]+N2 =0
{3 x

- ]
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where N =./g/8,-06,/0z is the Brunt-Viisili frequency.

Scaling the governing equations
The variables in Eq. (6) can be written as follows

w =w=Ww" z=Hz" x=[Fx

L * . L
t=—t with w=u,=Uu,
U

where the capital letters indicate characteristic orders of
magnitude (W — vertical wind scale, L — horizontal length scale,
T — vertical length scale, I/ — horizontal wind scale, and L/U —
advective time scale) and the starred terms are of order one.
Substituting these expressions into Eq. (6), we have

a* [aww) o*mw)
d@one f oY oz
+N*? m:ﬂ, (6a)
olLx*)

or simplifying Eq. (6a),

v & {,‘K@z“’ +£62w‘}_
F A gt H? gt
o r e TR (6b)
L" gy

We now multiply both sides by I’ /(WN?), making the right
hand side of Eq. (6b) of order one,

> 2 = *
o d° [ H* &' d*w O*w
g 2| 2 *z+,\.z ST
dt L gx oz ax

Since, the horizontal scale L is much larger than the vertical
scale M, ie. L==/, we have HE/}L2 <<1, and Eq. (6¢)
reduces to

F

(6¢)
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where again starred terms are of order one and Fr = U/NH is the
Froude number for internal waves (Gill [5]). This result tells us
that for real ¥, indicating stable conditions, standing waves will
oceur, if the flow speed, U, equals the phase speed, ¢, of the
waves, though in the opposite sense. Here N/ is proportional
to the phase speed (a detailed explanation of the phase speed, ¢,
for the various modes, is given later). Therefore, the Froude
number, which is the ratio of these speeds, will be of order one
for standing waves. Moreover, since standing waves remain
stationary over the perturbation which produces them, energy is
constantly being put into the wave. Consequently, the
amplitude of the standing wave 1s greater than that of waves
carried downstream, O[>¢, (or upstream, U<¢) of the
perturbation.

Sealing equations containing the Scorer parameter
Durran [3] gives a rigorous dynamical description of mountain
lee wave. His basic assumptions are the same as ours, namely,
two-dimensional flow of an inviscid, Boussinesq fluid with a
large Rossby number, such that Coriolis effects can be ignored
(Durran [3]). In addition, Durran assumes steady stafe,

i.e.0/6t =0, and defines the lower boundary condition to be

an infinite set of periodic ridges. Whereas Durran is concerned
with waves forced by certain forms of topography (e.g.,
sinusoidal or bell-shaped ridges; Durran [3]), we are
concentrating on the atmospheric conditions that generate
standing waves.

Starting with Durran’s linearized Eqs. (20.1) — (20.4),

"J r -
T By, B0 (20.1)
ox oz  Ox
gy (20.2)
ax 0z
o
HOQ+N2W’:0, (20.3)
X
r i} r
L (20.4)
dx oz

where b=g 8'/6, is the buoyancy, u, is the basic state wind,
P=c, 0,7, 0, is a reference potential temperature, and
T= (p/ Po )RM is the perturbation Exner function (Durran
[31). All other terms are as defined previously.

We can combine Egs. (20.1) — (20.4) into a single equation
for the vertical perturbation velocity (pg. 473, Durran [3]), w/,
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*w' 8*w' 5
+ +1*w' =0, 7)
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,  N* 1 d%u,
= — (8)

2 2
u,” Uy dz

and / is the Scorer parameter (Durran [3]; Reichmann [1]).
As above, we can scale Eq. (7e), substituting the Scorer
parameter from Eq. (8),

~2 * 2 ¥
Py )
o) B(Hz')?
4 N? - 1 d*Uu”
(Uu™) Uu" d(Hz")

. J Ww' =0.  (9a)

By regrouping and multiplying both sides by H*/W , we
obtain

H? 8*w" 8w’
F g gt T
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TR L -

Again since H*/I? <<1, Bq. (9b) reduces to
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The starred terms are of order one, and Fr = U/NH is the Froude
number for internal waves (Gill [5]). In this case, the steady-
state assumption essentially forces a solution where the zonal
flow speed, U, equals the wave’s phase speed, c~NH (see
below for details), for real-valued N. In other words, this
assumption constrains the solution, under stable conditions, to
standing waves and a Froude number, Fr=1.

Computation of the Froude Number

Vertical wind structure for the barotropic and baroclinic modes
Before describing how we compute the Froude number for the
various modes, we will first describe the barotropic and
baroclinic modes, in particular, their vertical profiles. Refer to
Fig. 2 in the following descriptions. Note especially, that wind
shear is necessary to excite various modes of oscillation. The
barotropic mode of oscillation implies that the troposphere

TECHNICAL SOARING



moves vertically like a fluid layer of constant density. If the
barotropic mode is excited, then the vertical velocity under, or
somewhat upwind of, the crest' increases steadily from zero at
the surface to a maximum at the top of the f{lud (the
tropopause). The vertical velocity may actually continue to
increase into the stratosphere.

Some of our thoughts have been motivated by accounts of
flights conducted during the Jet Stream Project. The following
excerpt from Exploring the Monster (Whelan [7]), a history of
the Sierra Wave and Jet Stream Projects, describes wave
conditions on March 29, 1955:

*... the Bishop wave on the 29" was smooth from
bottom to top. It also had a tremendously long
wavelength, some twenty miles. The first updraft was
fully ten miles downwind from the Sierra, almost atop
the Whites. Although the wave’s lift was initially
encountered only 4,400 feet above the airport, its
maximum lifting strengths were not encountered until
above the tropopause in the stratosphere.”

This seems to have been a “barotropic wave” day. Note also, the
long wavelength supports our contention that L >> H (see
Section 3). Whelan [7] also provides this account on April 1,
1955:

“Most surprisingly, in addition to the unstable [sic]
troposphere being able to “muscle” the stable
stratosphere into wave motion (as had first been
shown possible by Edgar and Klieforth’s flight four
years earlier), the stratospheric wave motions were
quite different than those below, almost as might
occur between adjacent layers of two entirely
different tluids.”

Presumably the “unstable froposphere”, in the above
description, means unstable relative to the stratosphere, though
still stably-stratified.

Figure 2 shows schematically that each baroclinic mode
has a fixed vertical wind speed profile; the extrema are always
at the same depth in the fluid. Keep in mind that although we
consider each mode separately, the final solution to the vertical
wind profile is a superposition of various modes (the barotropic
and an infinite number of baroclinic modes). For the first
baroclinic mode, the vertical wind profile is a half-period
sinusoidal curve with the maximum upward vertical velocity in
the middle troposphere. The second baroclinic mode adds a
half-sinusoidal period, with the maximum upward velocity at
one-fourth the tropopause altitude (and maximum downward
velocity at three-fourths the tropopause altitude). The third
baroclinic mode adds another half-sinusoidal period with
upward vertical velocity maxima at one-sixth and five-sixths
the tropopause altitude, and so on (see Fig. 2). When we speak
of wave lift, associated with a particular baroclinic mode, we
are concerned with the “first maximum” of the vertical velocity

' Here we have ignored the fact that, in general, the wave tilts
upwind with altitude.
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profile above the surface (see Fig. 2), since this 1s where lift is
first encountered.

Schematic of vertical wind for various modes of oscillation

troy e altitude
o ——lropopause a

—4— 15t baroclinic mode
—a-— 2nd baroclinic mode
——e— 3rd baroclinic mode
e barotropic mode

Altitude (arbitrary units)

1st maxima

0.5 1
Vertical wind speed (arbitrary units)

Figure 2. Schematic of the vertical wind structure for the barotropic
and first several baroclinic modes. The magnitudeof the wind is
arbitrary. The barotropic mode has the highest magnitude vertical
wind, with the wind of each subsequent baroclinic mode of lesser
magnitude. However, the relative amplitude is not known. When
considering the existence of wave, we focus on the altitude of the “first
maximum” in the upward vertical wind profile for each mode

The barotropic mode, if present, provides the largest
vertical velocity at high altitude, with a maximum at the top of
the troposphere. It becomes clear why, if we think of the
momentum of the entire troposphere moving en masse. In the
first baroclinic mode, a much thinner layer of fluid is moving
upward, therefore there 1s much less momentum transfer. Each
subsequent baroclinic mode (see Fig. 2) has a smaller vertical
wind magnitude.

The Froude number for the barotropic mode
Recall that for the barotropic mode of oscillation, the
troposphere moves like a fluid layer of constant density. Our
approach for the barotropic mode of the troposphere is to treat
the stratosphere and troposphere as the upper and lower layers
of a two-layer system. The Froude number is then

Fr=U/.g(Ap/ p)-Z, , where p is the mean density of

the troposphere and Z, is the tropospheric depth. For a

straightforward two-layer system, Ap 1s the density difference
between the two fluids, each of constant but different densities.

However, we argue that since ./g(Ap/p)-Z, is the phase

speed of the wave at the tropopause, the relevant density
difference, Ap, is that between stratosphere and
troposphere in the region near the interface. This is similar to
the approach Smith and Grubisic [6] used to compute the phase
speed of internal gravity waves. However, they used potential
temperature differences as a proxy for density differences,
across a “well-defined jump in potential temperature” (Smith
and Grubisic [6]).

Our problem, therefore, is to determine the mean density of
the troposphere and the density difference from our sounding

the
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data. Using temperature soundings, we first compute a mean
tropospheric temperature, from which we determine a mean
pressure scale height HF

H,=RT/g, (10)

where R is the specific gas constant for dry air, T is the mean
tropospheric temperature (in Kelvin) and g is gravity. The
surface density, p,, can be derived from the sounding using
the ideal gas law

Po=po/RT, (11)

where p, is the surface pressure and 7 is the surface

temperature. The density profile is then

p=pyexpl-z/H,) (12)
The mean density for the troposphere, g, , is given by
3 _l:/ o cxp(— z/H, )dz
p! == _‘r =
_r dz
]
H
:-p"z 2 lexp(- 2, /1, )-1] (12a)

1

where H , is the pressure scale height and Z, the height of the
tropopause (specified in the sounding).

To compute the density difference across the tropopause,
we compute mean densities for the top one-kilometer layer of
the troposphere,

ff-mm 20 cxp(— zf.f H, )dz

ﬁ:(mp) = 7,
dz
£ —lkm
H Z, Z —
- e exp| ——— |—exp &~ (12b)
Lkm " "

and the bottom one-kilometer layer of the stratosphere,

fﬂm O exp(— 2, ]d:

Psbouomy = ARV
Jj dz
21 88 Z, + 1k zZ .
B ) exp _Z, + i) —exp| ——= ||. (12¢)
Lkm H, i,

The one-kilometer value for the layer thickness was chosen,
based on the assumption that the maximum peak-to-peak
amplitude of the wave does not exceed about two kilometers.
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That is, an air parcel is perturbed no more than about one
kilometer (up or down) from its equilibrium level. The Froude
number is then

Fr=U / \[g(.(ﬁr(mp) = ﬁx(bom;m} ) / Er ) H (l 3)

where p, is the mean density of the troposphere.

With this approach, we use the copious temperature
sounding data in the troposphere to obtain an approximate
density profile for the atmosphere. Otherwise, due to the lack of
temperature sounding data at stratospheric altitudes, we would
be forced to choose, rather arbitrarily, a potential temperature
difference between the stratosphere and troposphere (as was
done by Smith and Grubisic [6]).

The Froude number for the baroclinic modes
The baroclinic modes of oscillation are wave motions internal
to a fluid, in our case internal to the troposphere. To obtain the
baroclinic modes mathematically, we use the rigid lid
approximation, where the vertical displacements of the free
surface are considered small compared to internal wave
displacements, i.e. the vertical velocity of the tropopause is
assumed close to zero. In reality, the motion of the troposphere
is a superposition of many modes. Before giving the quite
simple form of the Froude number for the baroclinic modes, we
will show how this approximation simplifies our treatment of
the baroclinic modes and determines their vertical structure.
Equation (6) has wavelike solutions of the form

W= M}(Jef(kr+mz—wl} )

(14)
where & and m are the wavenumbers in the x and z directions,
respectively; the real portion of Eq. (14) is the physically
meaningful solution. Considering tropospheric waves of large
horizontal scale, we can simplify our treatment to waves
moving only in the horizontal direction, and Eq. (14) reduces to
i kx—ar)

w' =w,(z)e (14a)
where we have performed a separation of variables, to express
the solution as a sum of normal modes (Gill [5]). The boundary
conditions for the rigid lid approximation specify that the

vertical velocity is zero at the surface and the tropopause, Z, ,
fixing the vertical structure of the baroclinic modes to a
function w,(z) having sinusoidal form. In the longwave limit,
the phase speed of these internal waves is given by

a5

2 2 2 2.2
e, =NZ, /n?r

m

(15)

where ¢,” is the phase speed squared, and n=1,2, ... is the

baroclinic mode number (Gill [5]).
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The Brunt-Viisild frequency?, N7 = gll,-00/0z, in
the above equation is a measure of stability, analogous to the
buoyancy term, B=g(Ap/p), which we used for the
barotropic mode. From this equation, we can see that if the
potential temperature does not change with altitude, then

N? =0: this is the criterion for a neutrally stable atmosphere
(assuming no condensation). If the potential temperature
decreases with altitude, then the atmosphere is unstable and

i - oy - . .
N< < 0. Conversely, if potential temperature increases with

altitude, the atmosphere is stable, N2>0 and N is the
oscillation frequency of the perturbed parcel’. Recall that a
stable atmosphere is conducive for lee wave, so N must be real-
valued, for gravity waves to be present.

The Froude number, the ratio of fluid flow speed to phase
speed, is then

Fr, =Ulc, =Unx/NZ, (16)

where ¢, is the phase speed as defined above and # is the mode
number.

To compute the buoyancy frequency N, the 66/0z are
calculated for each pair of temperature data points in the
sounding, between the surface and tropopause. These values
are then averaged to give the mean derivative of potential

temperature with height over the troposphere. The quantity &,

is the mean potential temperature of the troposphere. From
this, we obtain a single, mean buoyancy frequency for the
troposphere. The buoyancy frequency should be more properly

given by
~=4le/6,) 6]z (17)

where the overbar indicates the average over the depth of the
troposphere. The buoyancy frequency most likely changes over
the depth of the troposphere, however, for this first order
approximation an average N for the troposphere should suffice.
We now have all the equations needed to compute the
Froude numbers for the various modes from the sounding data.

Preliminary Results and Analysis
Brief description of flights
Four wave flights, over the Sierras and Tehachapi Mountains in
California, were selected for analysis. These were chosen
because we had the most information about these flights, and
could obtain upstream sounding information for the days in
question. Of particular interest is Robert Harris’ world altitude

* The term buoyancy frequency is generally agreed to be the
more physically descriptive. The two terms will be used
interchangeably.

? As pointed out elsewhere (Gill [5]; Durran [3]), V is actually
the highest frequency of a parcel moving purely vertically. In
general though, a standing wave tilts upstream with altitude, so
the actual oscillation frequency is most likely less than N
(which will slightly increase the valuc of the Froude number).
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record flight, since it occurred over such a great vertical extent.
The wave tlights that were analyzed are:

1) February 17, 1986 - Robert Harris’ world altitude
record, ~15 km (over 49,000 feet).

2) May 6, 2000 - Jim Payne’s world record speed flight
over a 100-km triangle.

3) May 7, 2000 - a wave flight, described as “good all
day 12PM to sunset” (personal correspondence);
maximum altitude of ~8 km (about 26,400 fect).

4) June 8, 2000 - described as a poor wave day (personal
correspondence), used as a counter example.

The descriptions of the year 2000 flights were sent to us by Jim
Payne, and Cindy Brickner of Caracole Soaring (Rosamond,
California).

Here is Jim Payne’s description of his world record flight

(taken from his web site):

“The second run started at 17:30:21 PDT at 14,598
feet MSL. The first leg of 43.97 km took just over 10
minutes (258 kph). The second leg of 28.5 km into
the wind took 9 minutes (190 kph). The last leg of
28.5 km took 6.5 minutes (263 kph). 1 finished at
11,785 feet MSL. The run around the 100.97 km
28% FAI triangle took 25 minutes and 47 seconds.
The GPS shows speed of 234.85 kph (145.93 mph)
which betters the World 15-Meter 100 km Triangle
Record by 53 kph (29%) and raises my Open Class
World Record by 17 kph. It is within a few scconds
of the US National 100 km Triangle Speed Record 1
set in 1996 on a triangle that used the (now retired)
rule that allowed the start and finish to be 10 km
apart.”

The only detailed information on the May 7, 2000 “good wave”
flight, is that the maximum altitude was approximately 8000
meters (about 26,400 ft.). We do not know why the pilot
terminated his climb at that point (airspace restrictions, fatigue,
or the top of the 1ift?). As for the “poor wave” day (June 8,
2000), we only know that wave was present, but not strong.

For our computations, we used the Oakland sounding,
taken at 1200Z (5:00 AM local), as the closest, upstream
sounding for these flights. We used moming soundings to test
the Froude number as a predictor of wave during the day in
question.  Wind speed data were missing from the Oakland
sounding for February 17, 1986 (1200Z) above about 7,000
meters. We obtained wind speed data at higher altitudes (at the
tropopause near 200-mb) using a reanalysis provided by the
NOAA-CIRES Climate Diagnostics Center
(www.cdc.noaa.gov), Boulder, Colorado. SkewT plots for the
three most recent flight days are presented in Fig. 3a; the 200-
mb “reanalysis” winds, averaged over February 17, and 18,
1986, are presented in Figure 3b.
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Analysis of the Scorer parameter
One purpose of this study is to compare the Froude number, as
a predictor of wave conditions, with the Scorer parameter, since
the Scorer parameter has been used for many years by the
soaring community.  Therefore, we present the Scorer
parameter profile for the troposphere, using the approximation
of Durran [3]
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Figure 3a. SkewT plots for three of the wave days analyzed. The
upper two plots are for the “good”™ wave days. The bottom plot is for
the “poor” wave day. It should be noted that the wind direction was
more consistent for the “good” wave days.
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The plot of this profile 1s given in Fig. 4. The value of N is
taken to be the average buoyancy frequency, used to compute
the Froude number for the baroclinic modes. The value of U is
the zonal wind speed at the indicated altitude.

Let us examine the Scorer parameter profile (Fig. 4). Both
Reichmann [1] and Durran [3] indicate that an airmass will
have suitable conditions for wave when the Scorer parameter
decreases with altitude. Durran [3] is even more explicit and

states that: “Waves will be favored whenever the /" profile
decreases significantly with height.” The profiles for the good
wave soaring days (May 6, and 7, 2000 and February 17, 1986)
certainly decrease with altitude. It is not obvious, however,
whether their decrease is any more “significant” than on the
poor wave soaring day (June 8, 2000). Indeed, the Scorer
profile for February 17, 1986, the day of the world altitude
record, decreases the least with altitude (about a factor of two
over its altitude range versus about a factor of five for the “poor
wave” day; see Fig. 4). The criterion that the Scorer parameter
decrease significantly with altitude would not have, a priori,
differentiated the likelihood of wave on these four days.

18 1aRe
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Figure 3b. Winds at 200 mb, the approximate altitude of the
tropopause, on the day of Robert Harris” altitude record flight.
This reanalysis is provided by the NOAA-CIRES Climate
Diagnostics Center, Boulder, Colorado

(http://www .cdc.noaa.gov).
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Scorer parameter
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Figure 4. The Scorer parameter for the wave days analyzed; gaps
between points indicate missing intermediate data. The criterion that
the Scorer parameter decrease with altitude, for wave to be present
(Reichmann [1]; Durran [3]), seems to be satisfied for all cases.
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Figure 5. Froude numbers for the wave days analyzed. The highest

barotropic Froude number occurs on the day of the record altitude
flight. This is consistent with our theory; i.e. a barotropic mode,
having increasing climb rate with altitude, would allow the highest
altitude flights.

Analysis of the Froude number
To reiterate, our hypothesis predicts that a Froude number of
order one for a particular oscillatory mode should indicate the
presence of that mode and its associated wind profile. So, for
example, if the barotropic mode is excited, the vertical wind
speed increases with altitude to the tropopause (or even higher,
Whelan [7]); such conditions would be conducive to high
altitude flights or speed flights at high altitude. If only the first
baroclinic mode is excited then the highest, vertical wind
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speeds should be located near mid-troposphere; in this case,
high-speed flights could be flown near this altitude.

For the Froude number profile plotted in Fig. 5, the
rightmost point on each curve indicates the barotropic mode for
the troposphere on that day; the next point to the left is the first
baroclinic mode, and so on. Referring to Fig. 5, the highest
barotropic Froude number (Fr-0.82) is on the day of the world
altitude record (February 17, 1986), presumably indicating that
this mode was excited. The first baroclinic Froude number is
also quite high (Fr~0.62) on this day.

On May 6, 2000, we know that there were wave conditions
at least between about 4000-5000 meters, the altitude range of
Jim Payne’s flight. The Froude number for the first baroclinic
mode, corresponding to the mode’s peak vertical velocity at
about 6000 meters, was Fr~0.43. The barotropic Froude
number was ~0.50 suggesting higher vertical winds at higher
altitudes. The following day (May 7, 2000, with “good wave”
to about 8 km or 26,000%) gives an even higher barotropic
Froude number (Fr-0.64), with the first baroclinic Froude
number higher yet (Fr~0.76). This suggests excitation of the
first baroclinic mode (and perhaps the barotropic mode) with
high lift at (and above) 6000 meters. Our hypothesis suggests
that conditions on May 7, 2000 may well have been stronger at
the altitude of Jim Payne’s record flight (the previous day).

The Froude number values for our contrasting day (June 8,
2000, the “poor” wave day) were Fr~0.21 and Fr~0.43, for the
first baroclinic and barotropic modes, respectively. The
barotropic mode may have been present, but no one reached the
altitude of highest lift. However, these values are considerably
less than their respective values on the “strong” wave days.

For all flights, the second baroclinic modes are located
near the altitude of the perturbing ridge. If a second baroclinic
mode is excited, as for example may have occurred on May 7,
2000 (Fr~0.64), the combined effect of wave and orographic
lift at the ridge may produce very strong lift. This may be
experienced as strong smooth ridge lift, upwind of the ridge.
The third baroclinic modes, on the other hand, are located well
below the ridge. It 1s not clear how this mode would contribute
to wave lift. We will discuss the consequences of Froude
numbers greater than one, as occurred on February 17, 1986, in
the conclusion section.

This preliminary analysis shows that strong wave, even
resulting in record setting flights, does occur on days, and at
altitudes, known to have exhibited a Froude number of order
one (say, above ~0.5-0.6). It appears that a Froude number less
than Fr~0.3 corresponds to weak wave conditions. It should be
kept in mind that these values for the Froude number might
well be underestimated, since we have assumed purely vertical
movement of the restoring (buoyancy) force. As mentioned
above, waves often tilt upstrcam with altitude, therefore the
phase speed is lowered and the Froude number higher.

Conclusions and Suggested Further Research

We have presented a theoretical basis for using the Froude
number to determine the vertical extent of mountain lee wave.
According to our theoretical treatment of this problem, a
Froude number of order one for a particular oscillatory mode
should indicate wave conditions (lift) in the altitude range of
the first maximum of that mode. The Froude number contains
measurements of atmospheric stability and zonal wind speed,
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both important factors for the existence of mountain lee wave.
In addition, for a standing wave the Froude number, which is
the ratio of the zonal wind speed to the phase speed of the
wave, should be of order one.

Our results suggest a connection between the presence of
wave and a Froude number of order one (Fr=~0.5). A
Froude much less than one (Fr <~ 0.3) indicates weak wave
or its absence. The Froude number profile also indicates the
altitude range of wave lift. The limiting factor, in this study, is
the small sampling of data and the lack of flight information
regarding the vertical rate of climb as a function of altitude.

Clearly, more data must be taken in wave flights under
controlled conditions. The additional data required are the
climb rates as a function of altitude. This data would allow us
to correlate the maximum vertical wind with a particular
oscillatory mode and its associated Froude number. This data
would be most useful, if obtained over the entire altitude range
of the wave. For this to occur, we need the cooperation of Air
Traffic Control to allow flights into Class A airspace (above
18,000 feet). Again, Caracole Soaring scems to have a good
relationship with the local ATC center, so many flights above
18,000 feet in the Tehachapi-Owens Valley arca may be
possible. With a sufficient number of such flights, we should
be able to confirm or refute a correlation between the Froude
number values and the altitude range of wave.

Finally, we would like to point out that at lower altitudes
we computed baroclinic Froude numbers greater than one.
These are considered “supercritical” Froude numbers. In the
lee of a perturbing ridge, such flows (and even “critical” flows
with Fr~1.0) may experience a so-called hydraulic drop, 1.e. the
wave breaks. Such conditions, at low altitudes, may cause
damaging, high winds and surface dust storms in the lee of the
ridge. An important study might be to compute the Froude
number for these lower altitude modes to correlate their value
with the occurrence of dust storms.
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Appendix

The Buckingham Pi Theorem.

The Buckingham pi theorem can be stated as follows
(Williams and Elder [4]):

“Given n parameters (such as length, speed, density,
viscosity, force, etc.) and these parameters are
composed of a set of m fundamental quantities (...
mass, length, and time), then it 1s possible to express
the relation between the parameters in terms of (»
minus m) dimensionless products, formed from any #
parameters regarded as primary.”

What are the n physical parameters, which describe our
physical system? We assume an inviscid fluid, that is we
ignore viscosity above the surface layer, since we are not
interested in how the wave decays downstream from the
mountain (i.e. the secondary and tertiary waves). We also
assume flow on a scale such that effects of the Earth’s rotation
can be ignored. Referring to Fig. 1, we can see that the zonal
flow U is certainly important, since without it there is no
upward perturbation. The buoyancy B = g(Ap/ p), at the
top of the troposphere, is also important, since it detecrmines
the subsequent motion of the perturbed air. Here Ap is a
measure of the density difference between the troposphere and
stratosphere. The depth of the fluid Z, (which we take as the

depth of the troposphere) tells us something about the
momentum of the system; greater momentum is associated
with a deeper fluid layer. Likewise, the mountain height /
affects the degree of the upward perturbation. We have five
and A), three

fundamental quantities (length, time, and mass). According to
the Buckingham Pi theorem there should be two

physical parameters (g, U, p Z, with
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dimensionless quantities, formed from our five physical
parameters, which relate various characteristics of the system
in a meaningful way.

A first obvious choice is the ratio of the mountain height
to the fluid depth (#/Z,).

number, but since we are interested in the atmospheric
conditions leading to wave, we will not be concerned with
relations involving k. We can combine the remaining

This 18 a valid dimensionless

parameters (U and Z,, along with g and p, in the form of
buoyancy B) into the ratio of the wind speed to the phase
speed. This ratio, Fr=U/,/g(Ap/ p)-Z
number (note that this is for the barotropic mode of
oscillation),

Alternatively, instead of buoyancy B, we could use a
measure of stability, such as the Brunt-Viisild frequency,

. » is the Froude

N?=g/8,-06,/0z, where 0 is potential temperature,
without changing the results of the Buckingham Pi theorem.
We still have five physical parameters (g, U, 6, Z, and 4) and
three fundamental quantities (length, time and temperature, in
the form of potential temperature). In this case, we
have Fr=U/NZ, where NZ, is the wave’s phase speed.
This is the form of the Froude number used by Gill [5] for
internal waves.

We will use density differences between the troposphere
and stratosphere to compute the Froude number for the

barotropic mode (Fr=U/,/g(Ap/p)-Z, ). However, we

will use the Brunt-Viisild frequency, N° =g/8,-00,/0z,
to compute the Froude number for the baroclinic modes. The
details of these computations will be discussed in the main
text.
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