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From the Editor

Publication Date

This issue is the third of Volume 41 of T, corresponding to
July-September 2017. For the record, the issue was published in
March, 2019.

About this issue

In this issue, the main articles deal with meteorological top-
ics. The first paper, contributed by Nilcan Akatas et al. and
titled “Investigation of the Vegetation Effects on Convection by
Using COSMO-CLM?”, was presented at the XXXIII Congress
of the OSTIV held in Benalla, Australia, in January 2017. It was
honored with a best students paper award. Congratulations!

The second article, prepared by Edward Hindman, focusses
on an important safety aspect everyone should be well aware of
when soaring gravity waves: Don’t get caught on top!

Right after the editor’s section, a short note follows on
weather forecasting for soaring flight based on numerical
weather prediction models (NWP). This contribution was also
provided by Ward Hindman. It is not a full, reviewed article but
I think it contains valuable information on the current status of
NWP that is of interest for the soaring community. I will con-
tinue these informal notes in 7S whenever I receive interesting
stuff. For example, in one of the next issues you will find a short
note on new handicap factors for club class gliders that are used
in German glider competitions.

ATAA Aviation 2019
If you get the chance to visit the 2019 AIAA Aviation and
Aeronautics Forum and Exposition held on 17-21 June at the

Hilton Anatole, Dallas, Texas don’t miss to attend the “Spe-
cial Session: Low Speed and Motorless Flight”. The session is
scheduled for the first day, starting at 9:30am in hall Cortez D.
Chair will be Judah Milgram, who made me aware of this event.
The following technical papers will be presented:

o Flight Testing Stability and Controllability Otto Lilien-
thal’s Monoplane Design from 1893.

e Aerodynamic Design of a Morphing Wing Sailplane

e Studies of Anisotropic Wing Shell Concepts for a
Sailplane with a Morphing Forward Wing Section.

e Flight Trajectory optimization of a Sailplane after Rope
Break during Tow-Assisted Takeoff.

e Stability and Stability Augmentation of Dynamic Soaring
Orbits.

Sounds interesting!

Acknowledgments
We gratefully acknowledge Associate Editor Zafer Aslan,
who oversaw the review of the Hindman paper in this issue.

Very Respectfully,

Arne Seitz
Editor-in-Chief, Technical Soaring
ts—editor@ostiv.org

Status and future of weather forecasting for soaring flight
based on predictions from numerical weather prediction (NWP) models

Edward Hindman
hindman@sci.ccny.cuny.edu
Earth and Atmospheric Sciences Department, The City College of New York, New York, USA

The status — as of 2009 — of weather forecasting for soar-
ing flight was detailed by the OSTIV Meteorological Panel in
a World Meteorological Organization publication [1]. The aim
of the publication is to provide an internationally agreed set of
guidelines for meteorological forecasting in soaring flight and
related activities.

Since that publication, Liechti [2] presented a NWP-based
system for predicting soaring flight in isolated and aligned lift
for Europe. Hindman [3] presented a less sophisticated system
for predictions world-wide. Both investigators reported the fore-
casts to be accurate.

Three additional NWP-based soaring weather prediction

Presented at the meeting of the OSTIV Meteorological Panel, Benalla, Australia, 13 January 2017
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systems, used world-wide, are found on the Internet. To my
knowledge, the systems have yet to be reported in the peer-
reviewed literature. First, regional atmospheric soaring predic-
tions (RASP), using a locally-run US weather research and fore-
casting (WRF) model, are user-generated following guidance
from the RASP web site www.drjack.info/DRJACK/RASP/
index.html. Second, global soaring weather forecasts are
available at the XC Skies website www.xcskies.com. They
are derived from predictions made by the US North American
mesoscale (NAM) and global forecast system (GFS) models.
Third, soaring weather forecasts for Europe and the US are avail-
able from the TopMeteo site www.topmeteo.eu/weather/
gliding. They are derived from predictions made by unspeci-
fied NWP models. Presumably these three systems, the last two
require subscriptions, produce accurate forecasts otherwise they
would not be on the Internet? Rogers [4] reports “my impression
from many flying seasons is that XC Skies thermal strengths are
too strong, TopMeteo’s and DrJack’s too conservative ....... rd
say plus or minus 30%”.

A significant contribution to soaring meteorology would be a
peer-reviewed report of a comparison of predictions made by the
Liechti, Hindman, RASP, XC Skies and TopMeteo systems with
flights from a World Gliding Championship, following Liechti’s
validation procedure [2].

o e L s TR
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o e

Fig. 1: One frame of an animation of surface winds that reveal con-
vergence zones and the resulting regions of expected ris-
ing air (colors). The animation is available via wroger-
swx@gmail.com.

The US has developed a high-resolution (3km), rapid-
refresh (15min) NWP model, called the HRRR (ruc.noaa.
gov/hrrr/), which resolves isolated and aligned convection
and mountain waves. US meteorologist and glider-racing pilot
Walter Rogers has developed unique displays of soaring weather
using HRRR model predictions. For example, Fig. 1 is one
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frame of an animation of surface winds that reveal convergence
zones that led to convection. As I understand, these animations
have been shown at morning pilot briefings and the actual zones
were flown in the afternoon. A careful comparison of the pre-
dictions with glider flight recorder data would establish their ac-
curacy and usefulness.

The Perlan Project (www.perlanproject.org) is attempt-
ing to fly an engineless aircraft to the edge of space. As reported
on the website, “three groups of phenomena have been simulated
with numerical models in the mid-latitude atmosphere; however,
experimental data is rare with which to validate these simula-
tions”. Further, the project claims to represent a balanced effort
among modeling, observations and theory. To date, the project
has measured 3-dimensional wind fields in mountain waves us-
ing sailplane flight data as reported by Zhang, et al. [5]. And,
Millane et al. [6] reported that Jim Doyle of the US Naval Re-
search Laboratory numerically simulated the atmospheric flow
for the 2016 Perlan world-record-altitude flight with the follow-
ing significant result: the location of the predicted rising air cor-
responded well to the actual location of the flight. Bravo!

Now, imagine, prior to another Perlan launch, the Doyle
model is used to predict the atmospheric flow. And, using the
flow, a flight path is proposed. Then, after the flight, the flight
recorder data is compared to the proposed path and the path is
validated! And, if this result is reported in the peer-reviewed
literature, the project could add immensely to our knowledge of
predicting mountain waves.

In conclusion, the future is bright for using glider flight
data to validate soaring weather predictions resulting from NWP
models and reporting the results in the peer-reviewed literature.
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Investigation of the Vegetation Effects on Convection by Using COSMO-CLM
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Abstract

Convection is affected by vegetation cover considering variation of water and heat retention of different soil
surfaces. Vegetated areas also change the amount of incoming and outgoing components of the surface energy
budget, therefore the areas affect the atmospheric convection. In this study, vegetation effects on convection
were investigated using a non-hydrostatic, limited-area, atmospheric prediction model (COSMO-CLM) with
different land cover maps that use different vegetation fractions and normalized difference vegetation index
(NDVI) values. The model domain covered especially forested regions from the northeastern part of Turkey and
Black Sea to the eastern coasts of Caspian Sea. In this context, changes of atmospheric parameters considered
as indicators of convection obtained by model simulations were investigated.

Introduction

Vegetation covered area promotes convection both by extrac-
tion of soil moisture and by shading the soil so that conduction
of heat into the soil was reduced (thereby increasing the avail-
able energy) [1]. Considering surface energy budget, vegetated
area change the amount of incoming or outgoing components of
the budget. Fig. 1 shows the schematic illustration of the surface
heat budget over different types of covers [2]. In order to better
understand the effects of vegetation on convection, fluxes over
the surfaces should be examined.

There are several studies about varying of surface fluxes and
precipitation by vegetation covered area. Some examples of
these studies can be found following:

Lyons et al. found a reduction of sensible heat flux in south-
western Australia as a result of the conversion of land to agri-
culture [3]. In other studies it is found that the leafing out of
vegetation in the spring has a dramatic effect on a reduction in
sensible heat flux [4,5]. Machado et al. investigate the vari-
ability of convection over different vegetation types. It is shown
that the main differences between rainforest and savanna or de-
forested sites occur in the dry season, whereas the magnitude
and diurnal cycle of convection as well as amount of rainfall [6].

In this study, vegetation effects on convection has been inves-
tigated by COSMO-CLM simulations using different land cover
maps covering especially forested regions.

Presented at the XXXIII OSTIV Congress, Benalla, Australia, 8-13 Jan. 2017.
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Data and Method

Vegetation effects were simulated by using COSMO-CLM.
The COSMO model is the non-hydrostatic operational weather
prediction model applied and further developed by the national
weather services joined in the COnsortium for SMall scale
MOdeling (COSMO). COSMO was developed from the Local
Model (LM) of the German Meteorological Service by CLM-
Community which is an open international network of scien-
tists (http://www.cosmo-model.org). In 2005, the CLM-
Community improved the COSMO-Model to be capable of
long-term simulations so it is called COSMO model in CLi-
mate Mode (COSMO-CLM or CCLM), then CCLM became the
regional Community-Model for the German climate research.
This model version has been applied on time scales up to cen-
turies and spatial resolutions between 1 and 50 km in different
regions of the world (http://www.clm-community.eu). The
COSMO model is based on primitive thermo-hydrodynamical
equations that define compressible flow in a moist atmosphere
without using any scale approximations. The general aim is
to be used for both operational numerical weather prediction
(NWP) and research applications on meso-scale. COSMO
model flowchart is shown in Fig. 2.

In order to obtain the simulations, ERA-Interim data set with
six hour interval belonging to the year 2012 was used as input
data for COSMO-CLM. ERA-Interim by European Centre for
Medium-Range Weather Forecasts (ECMWF) is a global atmo-
spheric reanalysis from 1979, continuously updated in real time.
The ERA-Interim reanalysis is produced with the ECMWF In-
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tegrated Forecasting System (IFS), which incorporates a fore-
cast model with three fully coupled components for the atmo-
sphere, land surface, and ocean waves [7]. Fig. 3 shows the
ERA-Interim variables used as the initial values (http://rda.
ucar.edu/datasets/ds627.0).

Study area locates from the northeastern part of Turkey and
Black Sea to the eastern coasts of Caspian Sea. Fig. 4 shows the
study area used as base map for the model. The model runs with
one hour temporal and 30km spatial resolutions. GLC2000 and
GLOBCOVER were used as land use cover maps for the simu-
lations. They differ from each other according to the satellites
and sensors that they use. GLC2000 land cover map uses SPOT
4 satellite and has 1km spatial resolution. GLOBCOVER land
cover uses 300m MERIT sensor of ENVISAT satellite.

Results

Model results were obtained as six hourly data and then con-
verted to the daily values. The figures of model outputs shows
the monthly averages for temperature, sensible heat flux, latent
heat flux and total cloud cover and the monthly total values for
precipitation data. Analyses illustrates on both GLC2000 and
GLOBCOVER land use maps. Land use maps shows different
vegetation fractions and normalized difference vegetation index
(NDVI) values. For GLC2000 land use, plant cover and leaf area
index for the COSMO-Model and for a special day are produced
by using only the data set for vegetation and an averaged NDVI
ratio by NDVI type choosing. For GLOBCOVER land use plant
cover, leaf area index and roughness length for the COSMO-
Model and for a special day are produced by using 12 monthly
climatological mean values for plant cover, leaf area index and
roughness length. The difference for the vegetation area frac-
tions for GCL2000 and GLOBCOVER are shown in Fig. 5.

Different land use maps caused different results although the
initial data and boundary conditions are the same. Distribution
of simulated temperature (Fig. 6) and precipitation (Fig. 7) show
similar distribution to the vegetation fractions. Especially pre-
cipitation values are highest where the vegetation fractions are
also high. This situation may be caused by the forest area due
to gas exchanges by photosynthesis and also respiration. Be-
cause GLC2000 land use map has higher values of vegetation
fraction, maximum precipitation amounts are also higher than
GLOBCOVER land use.

Sensible heat flux (Fig. 8) and latent heat flux (Fig. 9) have
not much difference for different land use maps but where vege-
tation fraction is high for GLOBCOVER, values are higher than
GLC2000. Especially in summer times, over the Caspian Sea
and the western part of the sea, lower negative values can be
seen. Sensible heat flux values are lowest in the western part
and also in the southeast part of the Black Sea. Heat fluxes can-
not be linked to only vegetation cover of the surface. Sea-land
distribution and topographic effects should also be considered.
However, in winter times, heat fluxes have highest values where
vegetation fractions also high.

Total cloud cover mainly affected by moisture sources. In this
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study, existence of sea trigger in convection by evaporation and
air masses pass over the Black Sea. However, vegetation cover
is also a source for connectivity by the gas exchange between
plants and atmosphere. Total cloud cover distribution is illus-
trated in Fig. 10.

Conclusions

The impacts of vegetation on convection occur as affecting
surface fluxes of gases (CO,, O, H0O etc.) and wind speed
over the plant canopies and extraction of soil moisture. Sur-
face fluxes over canopies have different behavior from bare soil.
Because vegetation processes and change directly affect the sur-
face energy and moisture fluxes into the atmosphere. Of course
convection in the atmosphere depends on many other factors and
causes the change of many other parameters. Thus, for the future
studies, changes of other parameters like wind shear and wind
shift need to be examined. Beside monthly variations, daily and
hourly variations need also to be considered in the examinations.
It is hard to examine only vegetation effects, so atmosphere-
ocean-cloud-agriculture coupled models need to be applied in
future studies.
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Fig. 1: Schematic illustration of the surface heat budget over (a) bare soil and (b) vegetated land [2].
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Fig. 2: COSMO-CLM flow chart [7].
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Fig. 3: ERA-Interim variables.

Fig. 4: Study Area.

GLC2000 2012 GLOBCOVER 2012

wegetation area fraction 1 wegelation area fraction 1
34°E 36G°E 36°E 40°E 42°E 44°E 45°E AB°E 3E 36°E 38°E 40°E 42°E 44°E 4B°E 48°E

Fig. 5: Vegetation area fractions for GLC2000 and GLOBCOVER land use maps.
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