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Abstract 

This paper presents a numerical process for determining optimal flight paths for competition soaring.  The goal 
is reduction of flight time required to fly towards an ascending thermal and climb to a given altitude.  The opti-
mization procedure applies a direct method to obtain sub-optimal solutions through parameterization of state 
variables, unlike a previous study by the same authors which was based on control parameterization.  A mathe-
matical programming procedure is used to determine the sub-optimal values for the parameterized state vari-
ables.  The optimal control law, which is necessary for the generation of the sub-optimal state, is obtained 
through a step-by-step penalty technique.  The results demonstrate that the optimization of transitory phases is 
important for the minimization of total flight time. 

 
Introduction 

The classic problem of cross-country sailplane flight trajec-
tory (Fig. 1) consists in minimizing the time spent flying be-
tween two thermals (A-B) and climbing back to the starting 
altitude (B-C). 1-3  The classic solution for this problem, pre-
sented in the 1950’s by MacCready,4 is based on an equilib-
rium analysis which does not account for the transitory effects 
during the trajectory.  Other authors5-12 presented studies using 
dynamic models which account for the transitory effects of the 
problem, however, their models were simplified. 

Recently, preliminary results were presented regarding op-
timization of a sailplane flight path, based on a dynamic model 
for symmetric flight, without analysis of climbing flight6.  This 
paper, a continuation an earlier study13, shows the entire prob-
lem, taking into consideration: i) the acceleration phase as the 
sailplane leaves the thermal (pitch down); ii) the deceleration 
phase when the sailplane enters the thermal (pitch up) and iii) 
the phase of climbing within the thermal.  Optimization is 
reached through parameterization of state, unlike the previous 
paper of the authors which was based on control parameteriza-
tion.  

 
Problem definition 

The complete problem to be analyzed in this paper can be 
seen in Fig. 2.  According to this figure, the optimization proc-
ess can be written as: 
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The three first terms in Eq. (1) represent, respectively, time 
spent during the steps: acceleration, soaring, and deceleration.  
The fourth term represents the time spent in the climbing 
phase.  The inequality constraints represent the upper opera-
tional limit of sailplane velocity (VNE), the load factor limit 
( ), the imposition that the initial altitude of the sailplane 
( ) be greater than the largest altitude loss and the limits of 
elevator deflections (d d ). 

  
Dynamical model 

The dynamic model (Fig. 3) is the same as in Ref. 13, 
modified by the addition of simplified equations to represent 
the dynamic of the turning flight of the sailplane14. 

As in Ref. 14, the state variables are: 
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The sailplane motion equations are: 
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where (see Fig. 3) the aerodynamics forces (lift and drag) and 
moments (pitch) can be calculated as: 

 ( ) ( ) 21
2 L AL z S Cρ α= V  (5)  

 ( ) ( ) 21
2 D AD z S Cρ α= V  (6)  

 ( ) ( ) 21
2 M AM z S c C Vρ= α  (7) 

where the relation between the airspeed ( ) and the inertial 
speeds (

AV

4 5,x x ), including the effects of wind speed ( ,x zu u ) 
and wing bank angle (φ ) is: 

  (8) 4Ax xV x u= +

 ( )5 cosAz zV x u φ= +  (9)  

 2
A Ax AzV V V= + 2  (10) 

The sailplane path angle can be determined as: 

 sin Az
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V
V
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The lift force at the horizontal tail can be calculated as: 

 ( ) ( ) 21 ;T T LT TL z S Cρ α δ=
2 ATV

w p q

]

 

where the airspeed at the tail, including the effects of down-
wash ( ) pitch ( ) and yaw speeds ( ), can be calculated as 
(see Fig. 3): 

 [2 2 2 sin 2 sinV V V V x V x3 3AT Ax Az Ax Az ζ ζ= + + + + ⋅ (13) 
where: 
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The airspeed angle and the attack angle at the horizontal 
tail can be calculated as: 

 3T xγ α= −  (19) 
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These values permit the determination of tangent (V ) and 
normal (V ) airspeed at horizontal tail as: 

 = −

3 3sin cosNT Ax AzV V x V x p w

 (23) 
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In order to evaluate the constraints present in Eq. (2), it is 
necessary to state the following relation between the states 
variables and the load factor: 

 = +& &

aft; 

 (25)  

Notice that the previous equations included simplified 
equations for circular movement with small angular accelera-
tion, which allows the analysis of climbs in thermals. 

Optimal control problem solution 
In order to solve the optimization problem, it is assumed 

that the flight path is composed of the following phases (Fig. 
4a): 

i) Starting from the climb flight velocity in the thermal 
( CV ), the sailplane must accelerate to reach the velocity 
(V ).  This flight phase involves a pitch down accelera-
tion of the aircr

ii) Once the velocity (V ) is reached, the sailplane must 
cruise with constant velocity; 

iii) Once cruising is completed, the sailplane must decel-
erate (pitch up) until it reaches, once again, the climb 
flight velocity within the thermal ( CV ). 

iv) Until the entire loss of altitude during the trajectory is 
regained, the sailplane must maintain climbing flight 
within the thermal with a constant velocity ( CV ). 

For parameterization, it is assumed that the velocity evolu-
tion during the acceleration ( AB ) and deceleration ( CD ) will 
occur according to cubic polynomials.   The cubic interpola-
tions are performed by cubic Hermite polynomials.  Then, the 
coefficients to be determined represent the velocity and the 
respective derivative values at the beginning and end of each 
phase (Fig. 5).  

As suggested in Ref. 15, an approximation was used of the 
third degree using Hermite polynomials as: 

 

( ) ( ) ( ) ( ) ( )1 0 2 1 3 0 4 1N N N z Nξ ξ α ξ α ξ β ξ β= + + +  (26) 
where: 

( ) 3 2
1 2 3 1N ξ ξ ξ− +  (27)  =

 ( ) 3 23N2 2ξ ξ= − + ξ  (28) 

 ( ) 3 2 2
3N ξ ξ ξ ξ= − +  (29) 

 ( ) 3N 2
4 ξ ξ= −ξ  (30) 

 

TECHNICAL SOARING                                                                                                         VOL. 34, NO. 1 – January - March 2010 7



where: 
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As mentioned earlier, the dynamic model adopted accounts 
for, in a simplified manner, the sailplane in curved flight, 
which depends of the bank angle (φ ).  Therefore, it is neces-
sary to determine a variation law for bank angle during the 
acceleration and deceleration phases.  

In the present paper, a linear evolution of the bank angle is 
adopted, as shown in Fig. 4b.  This profile introduces rolling 
velocities which are compatible with maneuver capabilities of 
typical sailplanes.  

 
Elevator deflection law 

The elevator deflection law must be obtained along the 
numerical integration, step by step, as the one that minimizes 
the difference between the sailplane’s flight velocity and a pre-
established velocity.    

Also, it is important to “teach” the numerical integrator the 
direction of the velocity variables.  This is possible by adding 
to the objective function a term that corresponds to the condi-
tion of tangency to the flight trajectory.  

Therefore, for each integration step, it is necessary to find 
the elevator angle (δ ) which minimizes the function: 

 ( ) ( ) ( )2

1 2 'J k V V k V Vδ δ δ= − + −⎡ ⎤ ⎡⎣ ⎦ ⎣
2

'⎤⎦  (36) 
where  and  denote, respectively, the sailplane flight 
velocity and its derivative with respect to the state variable

V 'V
1x , 

while V  and '
1k

V  denote the respective pre-determined values.  
The constants  and  represent weights which must be 
chosen appropriately.  For this paper, the following was suc-
cessfully adopted: 

2k

  (37) 1 2 1k k= =
Notice that optimal elevator angle (δ ) can be found 

through a unidirectional search method.  A procedure based on 
the Golden Section Method was chosen16.  

 
Optimization of flight trajectory 

When the velocity profile shown in Fig. 4 is adopted, one 
will have, initially, the following parameters to be optimized: 

i) The flight velocity during the climbing ( CV ); 
ii) Soaring velocity (V ); 
iii) Acceleration distance  ( 0X ); 
iv) Decelaration distance  ( 1X ); 

v) The velocity derivatives in the cubic extremes 
( ' ' ' '

2 3, , ,V V V V ). 0 1

However, in order to smooth the velocity profiles, it was 
imposed that ' ' ' '

0 1 2 3 0V VV V= = = =

CV

0

.  In addition, the optimal 
flight velocity during climb flight ( ) was determined sepa-
rately through a statistical analysis of the thermal rising flight 
problem.14  Therefore, during the optimization procedure, this 
velocity is determined a priori.   The three remaining optimiza-
tion variables (V , X  and 1X ) were determined through a 
mathematical programming algorithm (Fletcher-Reeves Me-
thod) implemented by the authors. 

This problem has been shown to be stable and easier than it 
seems, once, as shown through experiments, optimal V , 0X  
and 1X  were determined almost independently.  

 
Results 

This procedure was applied for the optimization of the tra-
jectory of a PIK-20-B sailplane with a wing load of 
31.2kgf/m2,17-18 with the distance between thermals ( fX ) 
ranging from 2000m to 16000m and thermal intensities ( IT ) 
of 2m/s and 5m/s.  The thermal profile adopted was:  

 1 cos
2thermal
IT rV

R
π⎡ ⎤⎛ ⎞= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

R 250R m

 (17) 

where denotes the radius of the thermal ( = was 
adopted).   

Tables 1 and 2 present the optimal results obtained for the 
thermal intensities of 2m/s and 5m/s, respectively. 

Figure 6 shows a typical trajectory (distance between ther-
mals of 2000m and thermal intensity of 5m/s) obtained through 
the optimization procedure, where one can observe the optimal 
trajectory and the respective curves of: flight velocity, elevator 
deflection, load factor and mechanical energy (potential and 
kinetic) of the aircraft. 

Notice in Tables 1 and 2 that the optimal distances of ac-
celeration and deceleration are not sensitive to the variation in 
distance between thermals.  Also, the optimal deceleration 
distance, in particular, does not vary in relation to thermal 
intensity.  This translates into the fact that, in practical terms, 
the acceleration and deceleration can be optimized separately.  

 
Discussion 

From Tables 3 and 4, it is clear that the relative gains ob-
tained with the proposed optimization procedure are greater for 
smaller distances between thermals.  Indeed, the greater the 
distance between thermals, the smaller the relative participa-
tion of the transitory phases (acceleration and deceleration). 
However, it is relevant to take into account the time gain ac-
cumulation during long competitions where, even small time 
gains on each thermal cycle can produce significant time saved 
at the end of the entire competition. 

It is interesting to observe in Fig. 6 that, for an optimal ac-
celeration, the sailplane must gain some altitude in the begin-
ning of the glide, reducing total altitude gain during the accel-
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eration phase.  Also in the figure, it is seen that the load factor 
values associated to acceleration and deceleration maneuvers 
are within the sailplane operation limits, but are atypical if 
compared with usual values observed in such maneuvers.   

Figure 7 shows a comparison between the optimal veloci-
ties obtained: i) through the proposed procedure and ii) 
through the two different interpretations of the MacCready 
theory.  The different interpretations of the MacCready theory 
refer to the determination of the average velocity of climb 
flight.  In the traditional interpretation of the MacCready the-
ory, average climb velocity in thermals is the ratio between 
lost altitude until the beginning of the deceleration phase and 
time spent between this point and the end of the climb.  The 
second interpretation considers as average velocity the climb 
velocity inside the thermal  ( ). thermalV

One can observe that the difference between the soaring ve-
locities obtained numerically and those obtained with the 
MacCready theories are greater the smaller the distance be-
tween thermals or the greater the intensity of the thermal.   

Figure 8 shows a comparison between flight times using 
the three velocities presented in Fig. 7, with 0X  and 1X  opti-
mized.  Notice that, although the velocity differences are sig-
nificant, flight time differences are imperceptible.  This sug-
gests that the time saved for flight, as observed in Tables 3 and 
4 are owed almost exclusively to optimization of the accelera-
tion and deceleration phases.  

Finally, Fig. 9 presents a comparison between time loss due 
to flights in non-optimal airspeeds as calculated with the pre-
sent procedure and as presented in Ref. 19.  The optimal air-
speed value, as calculated by the proposed procedure or by the 
MacCready theory, is the airspeed that results in no time loss. 
It must be noted that the time loss calculated with the present 
procedure (i.e. including the acceleration and deceleration 
phases) is lower than Ref. 18 indicates when the airspeed is 
lower than the optimal value.  Furthermore, it is higher than 
Ref. 19 indicates when the airspeed is higher than the optimal 
value.  This suggests that the penalty for flying with airspeeds 
below the optimal value is lower than the penalty predicted by 
Ref. 19, indicating that the recommendation of Ref. 19 to fly 
slower than the optimal airspeed is even better than what was 
expected. 

Conclusion 
The optimization of competition sailplane flight trajectory 

was presented, including the acceleration and deceleration 
phases.  A dynamical model was used using the elevator de-
flection as control variable.  This model showed advantages 
over previous approaches as it makes possible detailed study of 
the transitions between the cruise and thermal phases of the 
flight, especially in order to verify constraints of load factor 
and elevator deflections.  The obtained results, based on state 
parameterization, were compared to those of the MacCready 
theory and the usual acceleration and deceleration maneuvers.  
The advantages of the numerical procedure were significant, 
indicating that the practical considerations it takes into account 
are important.  

Comparative results indicate that the optimal time is not 
sensitive to small variations in soaring velocity.  This suggests 
that the indications proposed by the MacCready theory can 
continue to be used with little significant compromise to flight 
time.  However, attention should be given to optimization of 
the phases of acceleration and deceleration.  

One important result obtained is the time loss due to non-
optimal airspeed flight.  As suggested in many references, the 
time increased due to flying slower than the MacCready speed 
is not large, when you take into consideration that it allows for 
more time for decision making during the flight.  The results 
obtained with the model proposed in this paper show that fly-
ing below the optimal speed, which is, in fact, slightly lower 
than the MacCready speed, especially in small thermal dis-
tances, is even less harmful than what had been expected when 
using the classic MacCready model. 
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Table 1 f

Optimal results for Thermal Velocity IT = 2m/s 
fX  X0[m] X1[m] V[m/s] t[s] 

2000 100 300 30.12 171 
4000 100 300 30.54 317 
8000 100 300 30.62 610 

16000 100 300 30.55 1194 

 topt[s] tMC[s] Δ[s] Δ[%] 
2000 164 171 -7 -4.2 
4000 303 317 -15 -4.9 
8000 596 610 -13 -2.2 

16000 1184 1194 -10 -0.8 
 
 

Table 4  
Comparison between optimal and usual times for Thermal 

Velocity IT = 5m/s   
X f  topt[s]] tMC[s] Δ[s] Δ[%] 

2000 90 93 -4 -4.0 
4000 165 171 -7 -4.1 
8000 320 327 -6 -2.0 

16000 632 638 -6 -0.9 

 

 

 
 

 
 
 

 
Figure 1 Classic sailplane trajectory optimization problem  
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http://%20www.betsybyars.com/guy/soaring_symposia/72price.html


 

 
Figure 2 Sailplane trajectory optimization problem with transitory and climbing phases 

 

 

 
Figure 3 Dynamic model 
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 a                     b 

Figure 4 a Typical airspeed and b bank angle profile during the proposed optimization procedure 
 

 

 

 
Figure 5 Hermite polynomial parameters 
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Figure 6 Typical optimal trajectory – Thermal Distance fX = 2000m and Thermal Velocity IT = 5m/s 
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Figure 7 Comparison between optimal soaring airspeeds obtained by MacCready theory and proposed theory  
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Figure 9 Comparison between time loss due to fly without the optimal airspeed obtained using MacCready theory (Ref. 18) and 
the proposed theory 
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