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Abstract 
When a bird or flight vehicle is oriented with a component of its lift vector aligned with the natural wind work is 

done on the flight system.  Consequently, by suitable maneuvers, variations in wind speed can be used to add 

energy to the system.  These procedures are used by albatrosses and many other birds.  The equations of motion 

are simplified by normalizing using the minimum drag speed and integrating numerically for the control cycles 

involving angles of attack and bank.  An energy neutral cycle by which an un-powered vehicle returns to initial 

velocity and height depends only upon the maximum lift/drag ratio of the vehicle and the wind speed variation.  

The minimum speed difference for a neutral energy cycle occurs for a vertical or horizontal step in wind speed.  

For a continuous wind profile a variational method is used to find the minimum gradient for a neutral energy 

cycle.  Simple expressions are derived for the minimum wind variations for these two cases.  The oceanic 

boundary layer and the shear layer downwind of a ridge are studied, and neutral energy wind criteria derived for 

them.  Birds and small UAVs, with flight speeds comparable to atmospheric wind variations, can profit from 

wind energy extraction. 

 

Nomenclature 
a,b = constants for fixed bank trajectory 

D’ = drag 

D*0 = profile drag at cruise speed  

D*i = induced drag at cruise speed 

d =   unit vector in direction of relative wind 

F = normalized distance along flight path 

G = maximum value of L/D 

g = acceleration due to gravity 

H =  normalized height above reference 

Hmax = maximum circuit height 

Ho = height of wind shadow in lee of ridge 

Hr = reference height for ridge wind flow  

i = unit vector in horizontal direction 

k = unit vector in vertical direction  

L =  ratio of lift coefficient to that for maximum    

L/D 

L’ =  lift 

L/D =  lift to drag ratio 

l = unit vector in direction of lift  

M = vehicle mass  

N = normal acceleration, normalized 

Q = dynamic pressure normalized to that for max. 

L/D 

Qo = initial value of Q 

QF = value of Q at F  

Q = value of Q at  

q* = dynamic pressure at cruise speed. 

S = normalized wind shear gradient 

V =    inertial speed 

V =    normalized inertial velocity vector 

V* =    cruise speed  

 

U,V,W =  normalized components of velocity in inertial 

space 

v =    velocity vector 

W* =    normalized wind speed  

Wo = wind speed at reference height  

Wmax = wind speed at maximum circuit height 

X = normalized horizontal distance in U direction 

Y = normalized horizontal distance in V direction 

W  =   change in wind speed 

VD  =   change in flight speed due to drag 

               =   inclination of drag force to the horizontal 

 = azimuthal angle

 =angle of bank about axis parallel to wind    

 

Fundamentals of energy extraction and dissipation 
   An unpowered vehicle (bird or sailplane) operating with an 

inertial speed, V, and height, h, with respect to some ground 

reference is considered.  In zero wind conditions it experiences 

an airspeed equal and opposite to V.  Its total energy per unit 

mass with respect to the ground reference can be expressed as 

an equivalent height, He, defined as h + V
2
/2g.  It can climb, 

turn, dive and execute maneuvers, although these will be 

performed at the expense of total energy, He.  Drag acts in the 

direction of, and in opposition to, the motion, while lift is 

normal to the motion.  As a result, drag always does work on 

the vehicle while lift forces cannot.  Gravitational forces 

perform conservative work on the vehicle, so that if the 

potential energy, h, is included in the total energy then He is 

always reduced by drag forces, or dissipated, regardless of the 

vehicle motion, while lift forces cannot change He.  This is a 

fundamental consideration. 
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   If the vehicle operates in a wind field so that the airmass has 

a speed relative to the ground reference, then the aerodynamic 

forces are a function of the local airspeed, the vector sum of 

the inertial speed and the local wind speed.  The vehicle 

response is a function only of the aerodynamic forces but 

changes only the inertial speed.  It is now possible for the wind 

to do work on the vehicle, increasing its total energy, He, as 

described below.  

   For the wings level case of climb into wind, the inclination 

of the relative wind to the horizontal is shallower than the 

actual climb angle.  As a consequence, the lift is not 

orthogonal to the flight path, but inclined forwards, so it does 

work on the vehicle, increasing its energy.  For a downwind 

dive the same mechanism does work on the vehicle and again 

adds to its energy.  

   A similar situation occurs in level flight during a banked 

downwind turn (“downwind turn” is defined as one in which 

flight direction changes from upwind to downwind).  The lift 

vector is inclined towards the center of the flight path, and a 

component of the wind also acts in this direction, so does work 

on the vehicle. 

   In the case of a level upwind turn, however, negative work is 

done on the vehicle.  So, in the course of a general maneuver 

cycle, consisting of an upwind climb, downwind turn, 

downwind dive and an upwind turn to complete the cycle work 

is done by the wind during the first three legs of the trajectory. 

A simple rule is: “belly to the breeze”, indicating that any 

orientation of the vehicle in which the lift vector is inclined in 

the direction the wind is blowing will enable the wind to do 

work on the vehicle.  

    In order to extract energy from the wind in a circuit the 

vehicle must fly in regions of different wind speed during this 

cycle.  A wind shear profile with wind speed increasing with 

height is not necessary, although this is what usually occurs in 

the earth boundary layer. 

   The simplest manifestation of wind variation for dynamic 

soaring is that of an infinite gradient, a horizontal shear layer 

above (or below) the vehicle so that the vehicle can enter the 

high-speed flow with negligible change in height.  To exploit 

this, the vehicle enters the wind flow from the calm, flying 

upwind, executes a 180
0
 downwind turn in the wind, drops out 

of the wind back into the calm and then makes an upwind 180
0
 

to return to the start with no significant change in height.  This 

maneuver can be flown by a vehicle operating under (or 

above) a shear layer of very small thickness so that by small 

changes in height it can immerse itself in either stream.  This 

is the most efficient way of extracting energy because no 

energy is lost in climbing or diving to seek out the energetic 

wind flow.  The only parameters involved in the flight 

mechanics are the drag and W, the wind speed step. 

  The energy increase is estimated as follows.  The vehicle, 

with an initial inertial speed of V in calm air enters a head 

wind of speed W.  The airspeed now becomes V+W.  The 

vehicle completes a 180
0
 level turn to finish flying downwind 

at an airspeed of V+W - VD, where VD is the speed loss 

due to drag.  It re-enters the calm with an airspeed and inertial 

speed of V+2W-VD.  It entered the headwind flow with an 

inertial speed of V, and departed with an inertial speed of V + 

2W- VD.  The difference in kinetic energy between these 

states is the work done on the vehicle by the wind minus that 

due to drag dissipation.  For the return leg of the upwind turn, 

the loss is again approximately VD so that the final speed 

change in the cycle is 2(W-VD), illustrating that the work 

done by the wind must balance that lost in drag for no energy 

change in the cycle.   

   Another energy extraction case due to flow speed differences 

occurs when there is a region of higher speed flow horizontally 

adjacent to the calm with a thin shear layer in the vertical plane 

separating the airmasses.  This is a vertical shear layer, such as 

occurs downwind of the sides of an obstacle at the edge of the 

wake.  In this case the vehicle flying into the wind from the 

wind shadow, drifts laterally to enter the headwind, climbs, 

gaining energy and then moves laterally back into the adjacent 

calm where it can execute 360
0
 turn and dive to return to the 

original state with increased energy.    

   A common natural flow state is that of the planetary 

boundary layer (PBL), where wind speed increases with 

height.  In order to enter the energetic higher speed flow, the 

vehicle must climb, which involves penalties in increased drag 

and length of flight path.  The simplest model is to postulate a 

linear wind profile with a uniform shear as the driving 

parameter and the maximum lift/drag ratio of the vehicle as the 

energy loss parameter and to determine the minimum shear for 

a given G.  The least restrictive cycle constraint is to require 

only that the original velocity vector and height are regained. 

Normally the vehicle will not return to its inertial space 

starting point at the end of a cycle.  In this case, because the 

cycle is not closed, we refer to it as a “loop”. 

 

Normalization of equations of motion 
   An unpowered vehicle is subject to aerodynamic and 

gravitational forces.  The aerodynamic forces are a function of 

the angle of attack and airspeed.  The response following 

Newton’s Second Law can be written: 

                                      

               Mdv/dt = D’d + L’l + Mgk                       (1) 

 

where M is the mass, v the vector velocity in an inertial frame, 

D’ the drag parallel to the relative wind with d the unit vector 

in the direction of airspeed relative wind and L’ the lift normal 

to the relative wind and in the plane of symmetry of the 

vehicle, with l the unit vector in this direction.  The unit vector 

k is vertical. 

   The equations can be normalized by the cruise speed, V*, 

defined as the speed at which the vehicle has its minimum 

glide angle, or maximum L/D.  This maximum is called the 

glide ratio, and denoted by G.  Dynamic pressure for this state 

is q* and at this dynamic pressure the profile drag and induced 

drag are given by D*o, D*i   with D*o = D*i.  The minimum 

drag is given by D*o + D*i.  The ratio of dynamic pressure to 

that at minimum drag, q*, is defined by Q (= q/q*), while the 



VOLUME 31, NO. 2 - April 2007                                                                                                                     TECHNICAL SOARING 54 

ratio of lift coefficient to that at minimum drag is given by L. 

Time is normalized by V*/g, and length by, V*
2
/g.  Dividing 

by weight, W (= Mg), and normalizing provides for the non-

dimensional vector acceleration:               

        

                            dV/dT = {D’/W}d + { L’/W}l + k          (2) 

 

  The drag, D’, consists of profile drag, proportional to 

dynamic pressure, and given by W{D*0Q}, plus induced drag, 

proportional to dynamic pressure and lift coefficient squared, 

and given by W{D*i L
2
Q}.  The lift L’, is proportional to 

dynamic pressure and lift coefficient and given by W{LQ}. 

Substituting the above provides: 

 

                         dV/dT = Q[{(1+L
2
)/2G}d+Ll] + k             (3)

    

   Equation (3) defines the vehicle motion, and it is seen that 

the only parameter is G, the maximum lift-drag ratio.  Controls 

are exerted by L, which is a function of angle of attack, and 

controlled by the elevator (or similar tail aerodynamic 

mechanism for birds) and , the inclination of the lift vector, 

controlled by ailerons or wing twist, which dictate rate of 

change of the bank angle.   The normalized relative wind, Wr 

is given by Wr = V + Wi assuming the normalized inertial 

speed of the wind is W and its direction is in the horizontal, i 

direction, that is orthogonal to the vertical denoted by k.  From 

this vector the direction and magnitude of Q can be calculated. 

   Generally, practical limits are imposed on Q by structural 

factors relating to the never-exceed speed of the vehicle (about 

2.5 for modern sailplanes), on L by aerodynamic factors 

relating to maximum lift (about 2.0 for modern sailplanes), and 

on N (=LQ) by structural factors relating to wing bending 

(about 5 for modern sailplanes).  It is likely that all these limits 

are lower for birds than for those of mechanical aircraft. 

 

Fundamental Sachs solution 
   Sachs

2
 has solved the fundamental problem of determining 

the minimum linear shear required for a vehicle to fly a cycle 

and return to the same height and speed vector, but not the 

same inertial location.  This is called an “energy neutral” loop. 

A variational procedure was employed using the exact 

equations of motion.  This produced an optimal bank and lift 

routine as a function of wing loading and G.  This energy 

neutral trajectory requires extreme maneuvers – dynamic 

pressures vary by a factor of 16, G loads, defined by N, vary 

by a factor of 8, drag coefficients by about 4, while bank 

angles go from zero to 80
o
.  This loop is of importance in 

establishing an exact lower bound for energy neutral cycle 

operating in a linear shear.  As noted in the following 

paragraphs, although this loop is optimal in requiring the 

minimum gradient, the cycle requires a long time to execute, a 

lengthy flight distance, large height gain at the upwind end and 

a significant downwind drift for each loop. 

Development of equations of motion 

General equations in inertial frame 

   The equations derived above in vector form are re-written in 

scalar form in an inertial orthogonal Cartesian coordinate 

system fixed in the earth.  The normalized inertial horizontal, 

lateral and vertical velocities, U, V, W, modified for various 

inclinations, become: 
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      The non-dimensional airspeed squared, Q, is defined as: 

                               222
WVWUQ  *                       (5) 

where W* is the normalized wind at the appropriate height. 

   The orientation of the vehicle is in general three dimensional 

and defined by three angles, and The angle , the 

inclination of the drag force to the horizontal and identical to 

the angle of the relative wind to the horizontal, is defined by:  

                                     QW /sin                                 (6) 

        The azimuthal angle,  is given by:    

                                      */tan WUV                        (7) 

while the bank angle,  is defined as roll about an axis 

parallel to the relative wind with zero being wings level.  The 

bank is positive in the clockwise sense viewed from the rear 

(right wing down) using a right hand screw rule oriented with 

this axis. 

   The inertial position, X, Y, H is defined:  

 

               dX/dT = U,  dY/dT = V,  dH/dT = -W             (8) 

 

where H represents height measured positive upwards, in the 

opposite direction to Z, which is taken downwards for this 

coordinate system.  The above equations, 4a, b, c, are compact 

expressions of the dimensional equations used by Sachs. 

   The above set was solved, using fourth order Kutta-Runge, 

for an arbitrary lift ratio, L, and bank, , schedule.  The lift and 

bank controls were specified at twenty equidistant time 

intervals on the cycle and the integration was performed using 

400 equal time intervals per cycle.  It is useful to compute the 

total energy, He, at each step to check the accuracy of the 

numerics.  Setting the wind speed to zero for any time step 

must give a negative change in He 
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Analytic solutions 

   The equations above can be integrated exactly in the case of 

no wind for some special cases.  Two particular cases are those 

of wings level, constant angle climb or dive and of constant 

bank angle, constant height turn.  These are useful for checking 

numerical methods to determine step size in the numerical 

procedure for acceptable accuracy.  They can also be patched 

together as approximations of smooth trajectories.  The 

solutions are listed below. 

 

Wings level, constant N 

   For the case of an unpowered wings level climb or dive at an 

angle of , the normal acceleration, N, is constant and given by 

N = cos.  The equations of motion can be integrated 

analytically to provide the dynamic pressure QF after a distance 

F from the initial state of Q0 by the expression: 

                   
GFba
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F

a
F

e

bQaQbQaQ
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
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Here a, b are defined as the roots: 

                  
22  cos}sin{sin,  GGba            (10) 

For the level flight case (=0) the above expression 

degenerates, but using the basic equations gives the final 

dynamic pressure as: 

                          GF
F eQQ /

)()(
22

0
2

11                       (11)  

The final dynamic pressure is a function only of flight path 

angle, distance flown along the flight path, F, and glide 

ratio, G. 
 

 

Constant height, constant N 

   For the case of an unpowered constant height turn at constant  

bank angle,  and constant N the equation of motion is 

integrated analytically to provide the dynamic pressure, Qo 

after a turn through the azimuth angle, , by the expression: 

 

                  Q  = N tan{[atan(Q0 /N)] - /[Gsin}             (12) 

 

   Here Q0 is the dynamic pressure ratio at = 0 and Q the 

value at .   The final dynamic pressure is a function only of 

normal acceleration, N, turn angle, , and glide ratio, G. 
 

Validation by comparison with Sachs open loop 

optimal case 

   The Sachs
2
 result for optimal trajectory is not a closed circuit 

in inertial space.  As shown in Fig. 1, it is a hairpin-like open 

loop where the vehicle starts flying cross wind horizontally, 

banks into wind climbing to maximum altitude, performs 

downwind 180
0
 turn, dives towards original height and then 

banks to return to crosswind flight.  This figure is drawn to 

scale for a reduced length scale of unity, and G of 45. 

   The vehicle returns to its original kinematic velocity state 

and height, but not the original position.  It covers ground in a 

crosswind direction and drifts downwind.  The case analyzed 

by Sachs for a vehicle of 35 kg/m
2
 wing loading and G = 45 

maximum lift to drag ratio was repeated using the present 

formulation.  The bank angle and lift ratio schedule quoted by 

Sachs was used to exercise and validate the present code. 

Sachs defined the vehicle by wing loading and G, and does not 

quote cruise speed.  To check the present code cruise speed 

was varied until the loop matched that given by Sachs.  A good 

match was obtained for a speed of 26.8 m/s.  The shear 

gradient for an energy neutral loop was 0.0324 per second, 

normalized by cruise speed.  This gives the non-dimensional 

shear, S, of 0.089.  The control schedule was that used by 

Sachs and is shown as Fig. 2.  The “clipped” top of the L 

schedule is caused by Sachs imposing a CLmax limitation on the 

control.  Principal characteristics of the loop are a circuit 

period of 8.9 time units, maximum speed of 3.0 speed units, a 

maximum bank of 68
0
, a total climb of 4.5 units, a crosswind 

displacement of 4.5 units and a downwind drift of 1.8 units 

   As a consequence of the normalization, the critical shear, S, 

can be a function only of G, so that S = S(G).  It is of interest 

that by using this normalization all of Sach’s data, for all 

vehicles in all linear shear flows, can be approximately 

collapsed to the simple form expressed by the equation: 

 

                                        S = 4.00/G                               (13)     

   Sachs results are for G = 20 – 80.  The above expression is a 

good approximation for G within this range.  A more precise 

determination of the function S(G) could be made by using the 

variational method to compute S for G values below 20, and 

refining Eq. (13).  

 

Open loop, G = 25, linear wind shear 

   Modern sailplanes have glide ratios in excess of 40.  No bird 

performs as well.  A reasonable G value for an albatross is 

about 25 with a cruise speed of 15 m/s.  This G value is used in 

all following calculations so that they will be applicable for 

comparison to observed performance of large birds.  For the 

open loop G = 25 case the bank and lift ratio schedule 

developed by Sachs for G = 45 was used.  Surprisingly, even 

for G = 25, this gives an adequate control schedule for an 

energy neutral open loop at an S value of 0.16, as predicted by 

the above equation.  The loop has a shape similar to the G = 45 

case.  Principal characteristics for this glide ratio, (with the G = 

45 result shown in parenthesis) are a circuit period of 9.0 (8.9) 

time units, maximum speed of 3.0 speed units, a total climb of 

4.8 (4.5) units, a crosswind displacement of 5.8 (4.5) units and 

a downwind drift of 3.2 (1.8).   

   The control schedule, shown in Fig. 3 can be a function only 

of G.  It is, in fact, almost independent of G, as shown in 

numerical results quoted by Sachs for different G cases.  The 

optimal control schedule is not very sensitive to small changes. 

An ad hoc sensitivity study was made to determine the 

precision required for the bank and lift schedule.  It is found 

that a simple, but smooth, schedule, arbitrarily selected to 

consist of Fourier cosine series with only a few terms (three for 
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lift ratio, L, two for bank angle, ) gives almost identical final 

performance.  The two schedules are shown in Fig. 3. 

   The ground tracks for two open loop canonical cases, G = 

45, 25, with a linear profile are shown in Fig. 4.  The loop 

satisfies the energy neutral condition, but is not the optimal 

control routine. 

 

Closed circuit, G = 25, linear wind shear 

   As has been noted, an alternative, but more demanding, 

objective is that the cycle should return not only to the same 

inertial speed and height state but also to the same inertial 

position.  We call these closed cycles “circuits”.  This is a 

more restrictive constraint and requires a stronger shear than 

the simple energy neutral “loop”.  The circuit yields more 

options for navigation in any arbitrary direction.  For example, 

the circuit will permit orbiting about a given inertial position 

indefinitely, while the minimal energy neutral loop would 

involve a steady downwind drift. 

   A trial and error procedure was used to define a control 

schedule for such a circuit.  The solution indicates that a shear 

value of 0.17 is required.  The open loop requires 0.16. 

Principal characteristics of the circuit are a circuit period of 8.6 

time units, maximum speed of 3.0 speed units, a total climb of 

4.5 units, a crosswind displacement of 0.0 units and a 

downwind drift of 0.0.  This cycle, which provides more range 

access for the bird, does not require a significantly higher shear 

than the minimal loop. 

   The control schedule was first approximated by adjusting the 

schedule by hand and observing the result.  This gave a circuit 

which matched the closure conditions but involved a 

somewhat irregular schedule.  A solver code with 40 

unknowns (Lift ratio and bank at 20 stations) was then 

constructed and a solution obtained for eight conditions (U, V, 

W, X, Y, H, L, ) returning to T = 0 state.  Because there are 

many more variables than constraints, this can be satisfied by 

an infinity of schedules, but the apparently smoothest schedule 

was selected.    

   It is of interest small variations in the schedule will still give 

a satisfactory solution, as is the property of an extremal.  The 

schedule selected cannot be the theoretical optimal, but must 

be close.  The final smooth schedule, called Schedule 7, is 

used here.  The differences between it and the first ‘ad hoc’ 

solution, called Schedule 1, are shown in Fig. 5.  Both 

schedules produce energy neutral circuits. 

   The fact that an acceptable energy neutral circuit can be 

obtained from a fairly crudely controlled schedule is of interest 

in dynamic soaring by birds, suggesting that extreme precision, 

which could not be achieved by the bird in a natural, variable 

wind shear, is not necessary.  Temporal variations in wind 

profile must be particularly trying for the bird to handle.  The 

period of a circuit is about 10 so that for a bird with cruise 

speed of 15 m/s the period is about 15 sec., and it becomes 

necessary for the bird to control its trajectory anticipating a 

likely wind profile that will occur about 7 1/2 seconds in the 

future. 

 

Closed circuit, G = 25, in step shear 

   A fundamental wind shear model is that of step shear, 

expressed as W and discussed qualitatively in the first 

section.  The existing codes were used to exactly compute a 

cycle of this nature to give quantitative results.  The circuit 

analyzed here is not optimal, but it is a possible flight path and 

provides an upper bound of the W required.  The procedure 

was as follows.  

   The optimal bank was determined for a 180
0
 constant height 

turn as a function of entry speed.  Such an optimum exists 

because a shallow bank will expend less energy per unit 

distance, due to reduced induced drag, but will require a longer 

distance to complete the turn.  The downwind turn takes place 

in the wind field, starting upwind.  After the 180
0
 turn the bird 

enters the zero wind field at the same inertial speed, and selects 

the optimal bank for a 180 upwind turn.  A short straight and 

level segment is required to regain the ground lost during the 

downwind drift, and return to the starting point.  The wind 

speed is selected so that the final speed returns to the initial 

value.  This process was iterated over a range of flight speeds 

to determine the minimum wind step, W, required for a 

complete circuit.  For G = 25, the wind step, W is calculated 

to be 0.19.  For other levels of G the wind step, W, was 

calculated numerically using the above procedure.  The results 

can be expressed to a good approximation by:     

  

                             W = 4.75/G                   (14) 

 

   Ground tracks for these loop and circuit trajectories are 

shown in Fig. 6.  Examination of this figure shows that the 

length of the flight path and time of cycle is much shorter for 

the step shear case than those for the linear shear case. 

 

Circuits with planetary boundary layer wind profiles 
   Because of mixing in the lower layers of the atmosphere, the 

planetary boundary layer (PBL) normally has a profile in 

which the speed increases with height while the shear gradient 

reduces.  The actual natural profiles vary widely, depending on 

heat flux, surface roughness and wind speed itself. 

Consequently, there is no particular characteristic profile to 

choose for fundamental calculations.  Two possible, but not 

general, profiles are chosen for illustration: ridge flow and 

oceanic flow.   

    Ridge flow is the profile created by an obstacle to the flow, 

where the vehicle emerges from a zero speed wind shadow into 

a typical separated PBL.  This occurs naturally when a vehicle 

climbs from downwind and below a ridge into a normal wind 

flow, or in the separated flow in the lee of an ocean wave.  

This is a practical approximation of the ideal step shear case 

already discussed.  The important feature of this type of flow is 

that extreme wind shears occur, and the vehicle can make its 

return path sheltered by the wind shadow, thus paying little 

penalty of downwind drift or of energy loss during the upwind 

turn.   
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   This wind model has recently been studied by Sachs and 

Mayrhofer
3
.  They used a wind profile of the form: 

 

W = 0,         H<H0 

                         W = Wr{(H-H0)/Hr}
m
,            H>H0  (15) 

 

where m = 0.2 and H0 = 0.097 and Hr = 0.097 was selected.  H0 

represents the vertical extent of the calm below the ridge in 

which the vehicle makes the upwind turn.  For the scale used 

by Sachs and Mayrhofer this is about 10 m.  Results are shown 

in Table 1.  For the high performance vehicle of G = 45 it is 

noted that there is a small discrepancy between the results of 

Sachs and Mayrhofer and those of the present paper.  The 

reason for this is unknown, but may be due to numerical 

round-off errors.  Sachs and Mayrhofer do not provide a 

solution for the G = 25 case, which has been calculated by the 

present method and is shown in Table 1. 

   A possible PBL profile above the ocean for some flow states 

can be represented by the Sachs model with H0 = 0.  The 

present model was exercised for this for the case G = 25, and 

provided the loop having Hmax = 0.80, with the other 

parameters shown in Table 2.  This provides a trajectory and 

performance that is between that for the linear profile and the 

step shear, as is expected. 

 

Maximum wind speed for basic profiles 
   Four types of profiles are modeled to provide basic flow 

cases: step shear, linear shear, ridge flow and oceanic flow. 

The first two are mathematically ideal cases, and the latter two 

represent idealizations of real flows.  Energy considerations of 

these types are discussed below. 

   Energy addition always occurs through coupling with the 

wind speed during the downwind turn, and consequently it is 

the maximum wind speed that is the fundamental criterion for 

an energy neutral circuit.  The vehicle must climb in order to 

reach this energy bearing flow.  But drag energy is expended 

during the cycle so that the required magnitude of the upper 

level wind depends on how much height (and drag loss) must 

occur in reaching it.   

   Minimum upper level wind speed occurs for the case of a 

step change in speed, a vertical sharp-edged gust, W.  The 

next most favorable case, ridge flow, is similar, where the 

return loop occurs in calm conditions under the wind shadow 

of an obstruction.  For a normal PBL, as experienced by 

oceanic birds, the situation is slightly less favorable, since part 

of the upwind turn is made in lower level wind.  For the linear 

shear the most unfavorable condition occurs.  These four cases 

have been calculated, all for G = 25 and for a neutral energy 

circuit.  They are summarized in Table 3, which shows the 

height at which the wind flow starts, H0, the maximum height, 

Hmax and the maximum wind speed, Wmax, required for an 

energy neutral circuit.  The difference between the first two 

cases is not extreme.  For linear shear a large height change 

and wind speed is required to extract the requisite energy. 

Oceanic flow is between these cases.  Since operating 

conditions for birds and gliders more closely match the first 

three cases, it is apparent that energy extraction from natural 

winds and ridge conditions requires less extreme profiles than 

are required using the linear model. 

   The wind profiles for the basic cases are shown in Fig. 7.  It 

is seen that the cases of ridge flow and oceanic flow require 

quite modest wind speed changes, and small changes of height 

through a cycle.  For example for an albatross of the 

characteristics specified to perform in an energy neutral cycle 

in an ocean boundary layer the wind speed would have to rise 

from zero at sea level to about 3.7 m/s at 18 m. 

Conclusions 
   The basic dynamics of energy extraction from wind 

variations is described.  The wind will do work on a vehicle if 

there is a component of the lift in the direction of the wind.  

For the most extreme wind gradient, a step, the required step 

magnitude, W, is equal to the speed loss of the vehicle in a 

180
0
 constant height turn.  The equations of motion are 

normalized using cruise speed (speed for minimum drag) and 

the acceleration of gravity.  In the normalized form, the only 

parameter required to describe the vehicle drag is the 

maximum lift/drag ratio, G.  The control variables are the lift 

coefficient and the bank angle, which, for the classical aircraft, 

may be selected by elevator and aileron and, in the case of 

birds, by their ornithic flight control system   

   For the case of a linear wind profile the trajectory for 

absolute minimum wind shear is an open loop, called an 

energy neutral circuit, which returns to original speed and 

height, but to an inertial position displaced crosswind and 

downwind.  For this case the minimum normalized gradient, S, 

is given by 4.00/G, while for the step gradient the speed 

change, W, is given by 4.75/G.  

   By testing various control schedules, it is found that the 

exact optimal schedule for minimum wind shear, as developed 

by Sachs, need only be approximated.   

   Other wind flows are studied, including that of a closed 

circuit where the vehicle returns to its original height and 

speed and inertial position.  This requires a slightly higher 

gradient than the open loop.  Other wind flow cases involve 

the energy neutral loop in a boundary layer-like profile typical 

of an oceanic flow.  Another is characteristic of the flow 

downstream of a ridge.  In terms of the maximum wind 

required for a energy neutral cycle the lowest wind speed case 

is the step, followed by the ridge, followed by the oceanic and 

finally by the linear shear, which requires about four times 

more wind speed variation than the step case. 

   The modest wind differentials and relatively crude control 

schedules required for the cases of ridge-like flow and oceanic 

flow suggest that these loops and circuits are a fairly simple 

maneuver routine for birds to use in extracting energy from the 

wind, and that natural wind flows of sufficient speed 

differential are ubiquitous. 

   Results from the above conclusions are summarized below: 

   1. Fundamentals of wind energy extraction by flight vehicles 

are described. 
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   2. The equations may be normalized in terms of only 

maximum L/D, defined as G, and cruise speed,  V*. 

   3. Minimum wind variation for energy neutral cycles, a 

vertical step in speed, W, is given by: W = 4.75/G. 

   4. Minimum linear shear gradient for energy neutral cycles, 

S, is given by: S = 4.00/G 

   5. Solutions for natural wind profiles characteristic of 

oceanic and ridge flows are given. 

   6. Optimal control schedules have been developed, but 

performance is not sensitive to exact adherence to these 

schedules. 

   7. Oceanic wind profiles require quite modest wind speeds 

for birds with performance characteristics of the albatross, and 

these winds are common over the oceans. 
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Table 1 

Speed parameters for ridge flow 

                         _____________________________________________ 

G       Ho           Wr        Wmax      Source              Profile 

45     0.097   0.097      0.114    Sachs & M        Ridge 

45 0.097     0.097  0.104     Present              Ridge 

25      0.097     0.133      0.198       Present              Ridge 

 

Table 2 

          Speed parameters for oceanic flow 

                           ______________________________________________ 

 G        Ho      Wr          Wmax         Source           Profile 
                                       25    0.000    0.163   0.249         Present          Oceanic 

 

Table 3 

Maximum wind speed and height for basic profiles 

                                          _________________________________________ 

G            Ho          Hmax          Wmax             Profile      
25        0.000   0.097          0.167          Step Shear   

25  0.097     0.810           0.198      Ridge Wind    

25  0.000     0.800          0.249     Oceanic Wind   

25       0.000     4.500          0.757          Linear Shear 

 

 
 

Figure 1 Typical neutral energy loop for linear wind shear. 

 

 
 

Figure 2  Control schedule developed by Sachs. 
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Figure 3 Optimal control schedule compared with simplified 

Fourier schedule. 

 

 
Figure 4  Ground tracks for open loop energy neutral trajectories. 

 

 

 

 

 

 

 

 
Figure 5  Comparison of control schedules for two energy 

neutral circuits. 

 

 

 
 

Figure 6  Ground tracks for fundamental open and closed 

trajectories. 
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Figure 7  Wind profiles for basic cases. 

 

 

 

 

 

 

 

 

 

                                

                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


