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Abstract 

When a bird or vehicle is oriented with a horizontal component of its lift vector aligned with the natural 

wind work is done on the flight system.  Consequently, by suitable trajectories, variations in wind speed 

can be used to add energy to the system.  These maneuvers are used by albatrosses and many other birds.  

An energy neutral cycle, defined as one where an unpowered vehicle returns to initial velocity and 

height, depends on the maximum lift/drag ratio of the vehicle and the wind speed variation.  The 

minimum speed difference for a neutral energy cycle occurs for a vertical or horizontal step in wind 

speed.  The equations of motion can be normalized by the minimum drag speed and have been solved 

numerically for an arbitrary wind profile.  This solution is complicated and not provided here, but the 

results are discussed.  In this paper a physical interpretation of the energy extraction mechanism is 

provided.  Birds and small UAVs, with flight speeds comparable to atmospheric wind variations, can 

profit from wind energy extraction.  

Introduction 
Leonardo da Vinci observed and described the maneuvers of 

birds in natural winds in 1502, while conducting experiments 

aimed at building a man-carrying flying machine.  He 

marveled at their ingenuity in using air movements to assist 

their flight as described by Domenico
1
.  Lord Rayleigh

2
 

described how the albatross of the Southern Ocean maneuvers 

to maintain altitude without flapping in winds with only 

horizontal flows, provided wind shear is present.  So energy 

can be obtained from air motions with suitable maneuvers.  

Vehicles with low cruise speeds, of the order of 10 m/s, such 

as birds and small Unmanned Aerial Vehicles (UAVs), can 

benefit significantly from the use of atmospheric energy 

present in the form of spatial wind variation or turbulence, 

extracting energy from natural flows with no mean vertical 

component.   

   The dynamic soaring maneuver of pelagic birds, typically the 

albatross in the boundary layer of the Southern Ocean, is used 

to traverse thousands of kilometers with minimal energy 

expenditure.  Their flight path has been studied by Sachs
3
 and 

Lissaman
4
.  Sachs developed a variational procedure to 

optimize the control schedule for an unpowered vehicle 

operating in a linear wind profile (uniform gradient).  He 

derived fundamental results for the minimum gradient required 

to execute a flight path, called an energy neutral loop, in which 

the vehicle returns to the original height and speed vector.  In 

an extended analysis, Sachs and Mayrhofer
5
 analyzed the case 

of non-uniform wind shear, as obtained on the lee slopes of 

hills.  For the fundamental Sachs case the vehicle does not 

return to its original position in inertial coordinates, but drifts 

downwind of its origin.  Lissaman extended the analysis, 

showing that an energy neutral closed cycle can be flown such 

that the vehicle does, in fact, return to its original state and 

inertial starting point.  This requires a slightly more intense 

wind gradient than the canonical case with downwind drift.   

     In regions of spatially varying wind energy can be extracted 

by a downwind turn, by a climb into wind, or by a downwind 

dive.  A downwind turn is defined as one where the vehicle 

initially heading upwind executes a 180
0
 banked turn to head 

downwind.  In these cases the lift produces a force in the 

direction of motion, like a normal vehicle thrust system.  

Lissaman
4
 described this in a simple but sufficient “belly to the 

breeze” rule.  These maneuvers can be accomplished by some 

control that changes N, the normalized aerodynamic force 

normal to the vehicle axis, and by banking the vehicle.  

   The exact expression for the motion of the vehicle can be 

obtained by integration of the equations of motion, as has been 

done in the cited references.  There are few exact analytical 

expressions and these for quite restrictive cases.  The present 

paper is written with minimum use of mathematics as a simple, 

physically accurate description of the process of energy 

extraction from the wind. 

  

Simple cases of energy addition 
   Two fundamental maneuver cases are described here: the 

downwind turn and the upwind climb. 

 

Mechanics of a 180
0
 downwind turn 

   Consider a space fixed curved wall, or alcove, as shown in 

Fig. 1, and assume a ball, thrown into the right side at 10 m/s, 

returns out the left side at 8.0 m/s, with 2.0 m/s lost in friction.  

Friction causes a slight loss in energy of the system (if there 

were none, energy would be conserved) and there are forces on 

the alcove, but only friction work is done on the system.  Now 

consider the same case, shown in the second diagram, where 

the alcove is moving, being pushed towards the thrower at 2.0 

m/s and the ball is launched at 8 m/s.  The ball dynamics on 

the alcove are identical to the first case, so that it emerges with 

an alcove relative speed of 8.0 m/s, and a ground speed of 10.0 

m/s.  The speed, and energy, of the ball has been increased, by 

2.0 m/s.  For zero friction the gain in speed would be twice the 
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alcove speed, 4.0 m/s.  This is due to the work done in moving 

the wall against the forces produced as the ball rounds the 

alcove.   

   An identical dynamics situation occurs when a flight vehicle 

or bird executes a 180
0
 banked downwind turn, as illustrated in 

Fig. 2.  The first diagram shows the case in zero wind, the 

second that when the turn is executed in a head wind.  The 

flight vehicle is assumed to have the same speeds as those 

given for the ball. 

   In this case, the ground speed of the vehicle is again 

increased by approximately twice the wind speed, less the 

speed loss due to dissipation caused by drag.  The work done 

on the vehicle is equal to the horizontal component of the lift 

vector, coupled with the wind speed.  It is seen that the lift 

vector is normal to the relative wind on the vehicle and 

inclined upwards, to provide lift.  The higher the lift 

component in the horizontal direction, the larger the energy 

acquisition by the vehicle during the turn.  If the vehicle enters 

the turn at 8 m/s ground speed, in a head wind of 2 m/s, with 2 

m/s loss due to drag, it will complete the turn with a ground 

speed of 10 m/s. 

   If the vehicle, traveling down wind, now enters an airspace 

where the ambient wind flow is zero (a calm) it can execute 

another 180
0 

turn so that its speed will drop to approximately 

10.0 - 2.0 = 8.0  m/s.  It will return to its original state with 

zero speed or height change.   

   If the speed loss is about 2.0 m/s for one 180
0 

turn, then it is 

only necessary to operate between a calm and a wind speed of 

2.0 m/s to execute a neutral energy cycle. 

   This is the basis of energy extraction due to turns in a wind.  

It is apparent that this has nothing to do with changing altitude, 

or laying off speed for height, as has been frequently suggested 

in discussions of this effect.  It is evident that a speed change 

occurring at heights above or below the present height can be 

utilized. 

 

Optimal turn states 

   The flight efficiency of the vehicle can be expressed in a 

single term, the maximum lift-to-drag ratio of the vehicle, 

called the glide ratio, defined as G here. 

   An unpowered vehicle can maintain height by laying off 

speed against the dissipation due to drag.  For a 180
0
 turn there 

is a minimum speed drop for a vehicle of given maximum L/D 

ratio and cruise speed (defined as the speed, V, at maximum 

L/D).  In a banked turn there will be a certain energy lost 

during the turn.  If the bank angle is increased, then the time 

for the turn is reduced, but the rate of dissipation is increased 

because of the increased induced drag.  Consequently there 

will be an optimal bank angle for given vehicle glide ratio, G, 

for minimum speed loss in a 180
0
 turn.  The speed loss in a 

uniformly banked turn can be expressed in closed form as 

documented in Lissaman
4
 in which the various parameters of 

turn speed, glide ratio, and bank angle were investigated to 

determine the optimal bank assuming a constant height, 

constant bank turn.  For a wind speed jump of W and a 

complete circuit it can be shown that the minimum value, W, 

is given approximately by: 

                                                                 

               W = 4.75 V/G 

 

   Considered as a wind gradient, the above case, a wind speed 

jump occurring over zero height, can be regarded as an infinite 

wind gradient.  Evidently for practical gradients, the vehicle 

has to reach a level of sufficient relative headwind (which may 

occur above or below the current height) to gain enough 

energy.  The trajectory to the region of higher head wind must 

be selected to minimize loss during the passage.  This indicates 

that there must be a minimum value of linear gradient for 

neutral energy trajectories, and a control schedule can be 

defined to accomplish this.  This is discussed in a later section. 

 

Mechanics of an upwind climb 

   If the vehicle inertial trajectory has a vertically upwards 

component, then the lift vector, that is normal to the relative 

wind, is inclined backwards, in the direction of the wind.  This 

now contributes a component of force that can perform work 

on the vehicle.  The mechanics of this can be visualized in 

moving ramp shown in Fig. 3. 

   To calculate the energy gain due to the wind in this case it is 

necessary to consider the total energy, He= V
2
/2g + h, where V 

and h are measured relative to the ground, and g is the 

gravitational acceleration.  Although many different 

trajectories are possible here, the significant item is the change 

in height over the period, h.  For an initial speed of V, a final 

horizontal speed of Vf, , a speed loss due to drag of Vd, and a 

wind speed of W by considering events in the frame of the 

wind, and where no work is done on the vehicle, it is clear that: 

 

      He* = (V+W)
2
/2g +0 =  (Vf + W - Vd)

2
/2g +h 

 

   In the ground fixed frame, the initial total energy may now 

be written: 

 

  He =V
2
/2g +0  

 

while the final total energy, Hef, becomes: 

 

                            Hef =  Vf
2
/2g + h 

 

   For no dissipative energy loss, Vd = 0, and if Vf is set to be 

zero, the increase in total head is given by: 

 

               He   =  W V/2g 

 

   This is an upper bound for the energy that can be extracted 

from an upwind climb.  This can be compared with the 

increase in total head for a downwind turn, which for no 

dissipative energy loss, is: 

 

He   =  2W V/2g 
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Coupling of wind with lift component 
   A force does work on a body, increasing its kinetic energy, 

when its point of application moves in the direction of the 

force.   A trivial example is that an initially stationary beach 

ball blown along a beach by a wind acquires kinetic energy.  In 

the case of a flight vehicle, if the wind is in the direction of the 

aerodynamic force then work is done on the vehicle.  The 

major component of the aerodynamic force is the lift, since the 

drag force is about 1/G of the lift.  Figure 4 demonstrates how 

the horizontal component of the aerodynamic lift force is 

oriented in the direction of the wind for the cases described 

above.   In the figure the stippled arrow represents the wind, 

the cross hatched the lift vector. 

 

Normalization of results 
   The lift, L, and drag, D, are normalized by dividing by the 

vehicle weight, W*.  The normalized lift is given by N = 

L/W*, so that N is the normal acceleration of the vehicle.  The 

normalized drag, D/W*, for a parabolic polar is given by: 

 

                              D/W* = (Q +N
2
/Q)/2G   

 

where G, the glide ratio is the maximum lift drag ratio of the 

vehicle, and Q is the ratio of the dynamic pressure to that for 

minimum drag.  Consequently the only parameters for any 

vehicle are G, defining the performance and V, the cruise 

speed at minimum drag.  This speed, V, essentially defines the 

size and speed scale.  If all speeds in the problem are 

normalized by V, then the results are independent of vehicle 

scale.  

 

Equations of motion 
   The three equations of motion can be written in horizontal, 

vertical and lateral frames, using the inertial velocity (the 

ground speed) as the dependent parameter and including the 

angle of climb, bank, and yaw.  An additional equation is 

provided by the airspeed, the vector combination of inertial 

vehicle speed and inertial wind speed.  A ground fixed frame is 

necessary to maintain a proper inertial reference as the vehicle 

moves though regions of different wind.    

   The equations contain two control parameters that can be 

arbitrarily chosen, one is N, the normal acceleration, 

controllable essentially by elevator (tail or wing sweep for 

birds) and the bank angle, controlled by aileron (tail or wing 

twist for birds).  These control inputs determine the vehicle 

motion.  These equations are fully expressed in Lissaman
4
 and 

solutions provided in that paper. 

   A typical solution for these equations is shown in Fig. 5, for 

the case of linear wind gradient.  The cycle is an open loop, not 

closed, in inertial space.  For a closed cycle, possible with a 

slightly higher linear wind shear, as shown by Lissaman
4
, the 

ground track is nearly elliptical, as in Fig. 6.  For a shear step, 

the ground track is roughly circular.  

 

 

Limitations on maneuver parameters 
   In maneuvering upper bounds are imposed on vehicle speed, 

normal G load and lift coefficient.  These limits are controlled 

by the skin structure, the wing structural strength and 

aerodynamic lift capability.  Generally, practical limits are 

imposed on speed, corresponding to dynamic pressure, defined 

by Q, by skin structural factors relating to the never-exceed 

speed of the vehicle (about 2.5 for modern sailplanes), on N (= 

L*Q) by structural factors relating to wing bending (about 5 

for modern sailplanes), and on L* (the ratio of the operating 

lift coefficient to the cruise lift coefficient) by aerodynamic 

factors relating to maximum lift.  L* is about 2.0 for modern 

sailplanes.  For birds these correspond to the flight speed 

limits, related to feather integrity, the pull-up load limit due to 

wing bone strength and the maximum lift coefficient, a 

function of wing aerodynamics.  It is likely that these limits 

are lower for birds than for those of mechanical aircraft. 

   The limits can be identified in the engineering V-N envelope 

of a vehicle, where Q (actually shown as equivalent airspeed) 

represents the right hand boundary of the envelope, normally 

vertical, N the upper horizontal boundary on the right and L 

the quadratic upper left hand boundary. 

   Operating with N and the bank angle in the equations of 

motion, it is noted that extreme values of these parameters are 

required to maximize energy extraction.  The physical reason 

for this is obvious: that the vehicle must maneuver into the 

region of energy-bearing wind as rapidly as possible to 

minimize normal drag dissipative losses.  The limitations on 

the amount of G load pulled and bank angle are also clear, 

namely that at higher N and bank angles the lift requirements 

are larger so that the induced drag is increased.  The optimum 

values of these are dictated by a trade-off between flying 

rapidly into a favorable wind field and not loosing too much 

energy in doing so.  The analyses for typical vehicles and wind 

profiles generally indicate that extreme N levels (exceeding 5) 

and banks (exceeding 70
0
) are required to obtain maximum 

energy capture. 

 

Effect of wind profile 
   Two canonical cases are natural for study, since they do not 

require an arbitrary definition of the wind profile.  The first is 

that of the wind step (infinite gradient), the second that of the 

linear wind profile (uniform gradient).  The first requires the 

minimum speed jump across the trajectory, the second seeks 

the minimum gradient.  Results for these cases have been 

quoted.  Fundamentally, a speed increase from base to apex of 

the trajectory is required and the higher the vehicle must climb 

to reach this speed level the greater the dissipation losses in 

the trajectory.  

   Real boundary layer profiles are of neither of the cases 

quoted here, so the actual wind jump needed will lie between 

them.  The normal boundary layer is closer to a speed step 

than a linear profile, so it is to be expected that the wind jump 

for the cases considered will be closer to the step than the 

uniform gradient.  
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    The real cases considered are that of a typical oceanic 

profile, and that of ridge flow, where the vehicle is in stagnant 

flow for the lower part of its trajectory and emerges from the 

topographic (or building shelter) into the strong flow.  These 

cases have been solved numerically and the magnitude of the 

speed jump calculated in each case.  The normalized wind step 

is nearly inversely proportional to G, so that the generalized 

expression GW/V for the wind jump has been used.  These 

values are shown in Table 1.  The magnitude of the “constant”, 

GW/V , provides a measure of the efficiency of the cycle. 

 

Conclusions 
   Conclusions  are as follows: 

1. Energy can be extracted from the wind by executing a 

downwind turn, by climbing upwind, or by diving downwind.  

For a cycle with net energy gain, it is necessary to return 

through a region of lower wind than that where the energy was 

gained. 

2. Simple mechanical trajectories have been described that are 

analogous to flight profiles for energy extraction from the 

wind. 

3. It is not necessary for wind speed to increase with height to 

extract energy from the flow. 

4. Vehicle performance is a function only of cruise speed and 

the maximum lift-to-drag ratio. 

5. A wind speed change in the trajectory is required for energy 

extraction.  The minimum occurs for a step change in wind 

speed over a vanishingly small height. 

6. For typical oceanic boundary layer profiles and flow over 

ridges a modest change in flow speed is required, because the 

vehicle returns through a region of essentially calm flow. 
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Table 1 

Maximum Wind Speed Factor for Basic Profiles 

 
         GW/V                     Profile 

                                                4.75                     Wind Step            

4.95                     Ridge Wind 

                              6.22         Oceanic Wind 

                                                    18.92                     Linear Shear 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Dynamics of ball in alcove. 
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Figure 2  Dynamics of flight vehicle in downwind turn. 

Figure 3  Dynamics of flight vehicle in upwind climb. 

Figure 4  Windwise lift component for flight maneuvers. 
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Figure 5  Typical trajectory for energy neutral loop in linear shear.   

Figure 6  Ground tracks for fundamental open and closed trajectories. 
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