
Optimal Paths in Still Air for a Sailplane
with a Quadratic Glide Polar

Artur Wolek and Craig Woolsey
artur.wolek.ctr@nrl.navy.mil,cwoolsey@vt.edu

Virginia Tech, Blacksburg, VA

Abstract

This paper considers the optimal control problem of minimizing the altitude loss of a glider maneuvering in
still air to a nearby position and heading angle under shallow bank angle assumptions. The glider’s motion,
as viewed from above, is modeled as a kinematic car with control inputs of forward speed and turn rate. (In
practice, a glider can adjust its flight path angle and bank angle to achieve a desired forward speed and turn
rate.) The speed control is strictly positive, varying from the stall speed to the maximum speed, and the turn
rate is symmetrically bounded about zero. The sink rate of the glider is assumed to be a quadratic function of
the forward speed, approximating the “glide polar”. Necessary conditions derived from the Minimum Principle
are used to characterize the extremal controls. Further, suboptimality conditions are identified geometrically
to arrive at a finite and sufficient set of candidate optimal controls. The extremal paths are shown to consist of
(i) straight line segments flown at the glider’s “best glide” speed and (ii) maximum rate turns with either: (a)
a heading dependent speed input, (b) the stall speed, or (c) the minimum sink speed. A synthesis procedure is
proposed to solve for the optimal path. These results may be applicable to autonomous sailplanes or manned
aircraft experiencing loss of thrust (under autopilot control).

Introduction
This paper concerns optimal maneuvering of a sailplane be-

tween nearby positions and heading angles with minimal loss of
altitude. The length scale of interest is on the order of a few turn-
ing radii of the glider. The minimum turning radius and the sink
rate depend on the airspeed in gliding flight, and there is a trade-
off between turn radius and altitude loss. (At slower speeds the
glider can turn more sharply, but with an increased sink rate.) In
this work, an optimal control problem is formulated that approx-
imately captures this tradeoff – we model the glider as a planar
kinematic car with speed and turn rate controls, a sink rate that
is a quadratic function of the speed, and a minimum turn radius
that scales linearly with the speed.

Previous work concerning glider path optimization has largely
focused on how to make the most effective use of available
sources of lift (such as thermals, ridge lift, lee waves, etc.) along
a flight route. Flight between thermals for given wind condi-
tions has been studied to determine optimal equilibrium flight
speeds [1, 2] and optimal transient motions for leaving and en-
tering a thermal [3, 4]. Further, the use of various flight tech-
niques, such as dolphin-style soaring (traversing thermals with-
out circling) [5, 6] or essing maneuvers (alternating partial left
and right turns while traversing thermals) [7], has been studied
extensively. Stochastic optimal control techniques have been
used to address the problem of gliding with uncertain knowl-
edge of future lift conditions [8–10]. Graph-based approaches

have been used to compute energy optimal sailplane routes [11].
In most cases, the path optimization problem is constrained to
the vertical plane and the turning motions of the sailplane are
ignored.

On the scale of cross-country soaring, the negligible effect of
turning motions may justify ignoring them. However, optimal
turns become important over small distances when there are no
sources of lift (still air) and the altitude loss to a desired posi-
tion and heading can only be minimized by careful maneuver-
ing. This is the setting for the present study. An autonomous
sailplane may take advantage of these results to perform short
maneuvers that reposition the glider relative to a thermal, change
course angle, avoid obstacles, or align with the runway for a
landing approach.

Past work most relevant to this study relates to emergency
landing paths for powered aircraft experiencing a loss of thrust.
At a low altitude after experiencing a loss of thrust during climb-
out, civil aviation authorities recommend selecting a landing site
within a 60 degree heading angle downrange from the point of
failure [12]. Alternatively, one encounters the so called “im-
possible turn” problem [13] where the task is to maneuver with
minimum altitude loss and return to the runway safely. Ignoring
transient motions, it has been shown that the steady-state optimal
path, in this case, is tear-drop shaped, consisting of a 45-degree
bank angle turn at the stall speed, followed by a best glide slope
straight segment [13]. Related studies have considered the prob-
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lem of maximizing range in a given direction (that is, parallel
to but not necessarily coincident with the runway) [14], or op-
timizing the turnback maneuver to the nearest point along the
runway [15]. However, in all of these studies, the final end-
point is not fully constrained and hence the boundary conditions
differ from the problem considered here. (We assume the termi-
nal position and heading angle are given.) If an aircraft experi-
ences loss of thrust at a high enough altitude then it may be able
to perform a wider range of turning motions safely and there
may be several suitable landing sites to consider (rather than
restricting the search for a landing site to areas directly down-
range, as previously discussed). The emergency landing prob-
lem then requires planning a path to each candidate landing site
and comparing the associated altitude loss with each path. This
case is perhaps the most relevant to the present work, since the
boundary conditions and the objective are the same – to glide
to a desired point with a specified approach angle while min-
imizing altitude loss. Graph-based approaches are particularly
useful to determine the landing trajectory when obstacles are
present [16]. In the absence of obstacles, the reliable and com-
putationally efficient Dubins path planning approach [17] has
been proposed to quickly compare several landing sites [18,19].
In [20], emergency flight paths are computed using a modified
Dubins parameterization that incorporates acceleration, variable
turn rate, constant wind conditions, and rate limits on bank an-
gle. (Dubins path planning gives a simple geometric way to
construct minimum length paths of bounded curvature. These
consist of straight segments and circular arcs. This planning ap-
proach has been widely used for guidance of aircraft [21] and
planar robots [22, 23]. It has also been extended to account for
various wind conditions [24–26] or for the motion of an aircraft
with a damaged steering mechanism [27, 28].)

Last, we note that another related problem concerns the de-
ployment of a glider to a desired point, with a free heading angle,
while maximizing endurance [29, 30]. This problem was con-
sidered in the context of a military aircraft deploying a gliding
weapon, wherein the goal was to maximize the time to impact
the target so that the aircraft can escape to safety. In this case,
however, the cost function is not equivalent to maximum range
and the boundary conditions differ from those we consider.

In the present study, we assume a similar kinematic car model
as in [18, 19], however we relax the fixed speed constraint and
consider a cost function derived from the glide polar. One ad-
vantage of this formulation is that it becomes tractable to solve
the optimal control problem using the indirect method. (That is,
we may apply the Minimum Principle and study the resulting
necessary conditions for optimality.) This allows us to analyti-
cally characterize the structure of the optimal control and gain
greater insight into the problem. (Alternatively, relying on direct
methods that discretize the problem, one obtains a numerically
approximate solution that may inform one’s understanding of
optimal paths.) The disadvantage, of course, is that the sailplane
dynamics have been approximated, using the kinematic car and
quadratic sink rate model, and the solution is only as good as this

approximation. We view the present study as an exercise aimed
at gaining new insight regarding optimal paths for a glider ma-
neuvering in still air.

Properties of the Glide Polar
The objective is to minimize the change in altitude while

steering a glider to a desired position in the horizontal plane
(viewed from above) and with a desired final heading angle. The
control inputs are horizontal speed v and turn rate u. The sink
rate is often expressed as a function of the glider’s speed using
the so-called “glide polar” plot, sketched in Fig. 1. The glide
polar illustrates the relationship between horizontal speed v and
sink rate w for a glider in steady flight in still air. (In the presence
of horizontal or vertical winds the glide polar can be adjusted
accordingly.) The angle between the horizontal axis and the ray
emanating from the origin to a point (v,w) along the curve gives
the corresponding flight path angle γ . Several important flight
conditions are labeled on the glide polar in Fig. 1: the “stall
speed” vstall, the “minimum sink” speed vms, the “speed to fly”
vstf and the maximum speed vmax.

Flying in a straight line at the minimum sink speed vms gives
the lowest sink rate and will minimize the loss of altitude per
unit time; this speed will maximize endurance. However, an ob-
servation well known to sailplane pilots [1] is that flying faster,
at the speed to fly vstf (also called the “best glide speed” or the
“best L/D speed” where L/D is the lift to drag ratio), maxi-
mizes range per unit altitude and minimizes the flight path angle
γ . Note that the term “speed to fly” is used to refer to the opti-
mum airspeed in a more general class of optimization problems
(such as maximizing cross-country speed for various wind and
thermal conditions). However, in this work we use the term to
strictly refer to the best glide speed in still air. The following
assumptions are made about the glide polar:

Assumption 1. The glide polar is given by w(v) = av2 +bv+c,
where a > 0, v ∈ [vstall,vmax] and w(v)> 0.

Similar assumptions of a quadratic glide polar are often made
in the literature [31]. The coefficients a, b and c characterize a

Fig. 1: A typical glide polar
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particular sailplane’s sink rate as a function of airspeed in still
air. The range of w(v) excludes the possibility of a zero sink rate
and the assumption that a > 0 implies that w(v) is convex. We
assume that the stall speed vstall > 0.

Assumption 2. The minimum sink speed occurs at the critical
point vms ∈ (vstall,vmax).

The critical point of w(v) occurs at vms = −b/2a so that
w(vms) = −b2/4a+ c. Since vms > 0 and w(v) > 0 is required,
it follows that b < 0 and c > b2/(4a).

Assumption 3. The speed to fly occurs at vstf ∈ (vstall,vmax).

The speed to fly is the point along the glide polar where the
tangent line to the polar passes through the origin [1, 32] as
shown in Fig. 1; equivalently, it is the speed at which d

dv w(v) =
w(v)/v. Given the previous assumptions, this condition is satis-
fied at vstf =

√
c/a with vstf > vms.

Assumption 4. The minimum sink speed occurs at least half
way between the stall speed and the speed to fly: vms > (vstall +
vstf)/2

This condition is a simplifying assumption used in the deriva-
tion of the extremal controls. In the example case considered
later in this work it is shown that this is a reasonable assump-
tion, however not all glide polars will satisfy this condition.

Remark 1. Typically, there is no experimental data for gliders
in turning flight. However, it is possible to estimate the sink rate
in a turn from level flight polar data as discussed in [33]. Alter-
natively, one might derive the sink rate as a function of both the
turn rate (or the load factor) and speed w(u,v) by considering a
performance model of a glider subject to aerodynamic, gravita-
tional, and inertial forces [34]. In this work we assume that the
sink rate w(v) is independent of the turn rate u, recognizing that
this may only hold for shallow turns.

Problem Formulation
Consider the projected planar motion of a glider (as viewed

from above) where (x,y) ∈ R2 is the planar position of the ve-
hicle and ψ ∈ [0,2π) is its heading, as shown in Fig. 2. The
equations of motion for this model with speed v and turn rate u
controls are:

ẋ(t) = v(t)cosψ(t) (1)
ẏ(t) = v(t)sinψ(t) (2)

ψ̇(t) = u(t) (3)

The turn rate control is symmetrically bounded
u ∈ [−umax,umax]. The speed control interval is strictly
positive v ∈ [vstall,vmax] with vstall > 0. The control input
function is then u(·) = (u(·) v(·))T. Assuming quasi-steady
flight, we define the cost functional J(u(·)) as the integral of the
sink rate w(v) to give the total altitude loss:

J(u(·)) =
∫ t1

t0

(
av(σ)2 +bv(σ)+ c

)
dσ (4)

Let the boundary conditions include the initial state x0 =
(0 0 0)T and an initial time t0, and the terminal state x1 =
(x1 y1 ψ1)

T and some unknown final time t1 > t0. Define the
control constraint set

Ω = {(u,v) | vstall ≤ v≤ vmax and |u| ≤ umax} (5)

Denote the set of real n-dimensional vectors of piecewise con-
tinuous functions on the interval [t0, t1] as PWC(t0, t1;Rn). Then
the set of piecewise continuous admissible controls that satisfy
the boundary conditions is

Θ =

 u(·) ∈ PWC(t0, t1;R2) : u(t) ∈Ω

except at a finite number of points
and u(·) steers x0 to x1


The problem is to find an optimal control u∗(·) ∈ Θ such that
u∗(·) steers x0 to x1 at t1 ≥ t0 with J(u∗(·)) ≤ J(u(·)) for all
u(·) ∈Θ.

Controllability and Existence of
an Optimal Control

The “Dubins car” problem [17] satisfies the same state equa-
tions (1)-(3) as the problem considered here, but with a con-
stant speed constraint and a cost functional for minimum time.
Since it has already been established that the Dubins car is con-
trollable [17], it follows that the system considered here is also
controllable. An optimal control exists for a system in the form
ẋ = ~f (x,u) with a Hamiltonian that is strictly convex in the con-
trols (assuming ~f (x,u) satisfies certain continuity and bounded-
ness assumptions). Referring to Ref. 35, one can verify that
these conditions are satisfied by the system considered here,
therefore an optimal control exists.

Applying the Minimum Principle
The Minimum Principle provides necessary conditions for an

optimal control. For an in-depth discussion, the reader can refer

Fig. 2: The state of the glider model is its planar position (x,y) and
heading ψ
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to one of the standard texts [36–38]. To apply the Minimum
Principle, we introduce the variational Hamiltonian

H = η0w(v)+ 〈~η , ~f (ψ,u,v)〉
= η0

(
av2 +bv+ c

)
+ v(ηx cosψ +ηy sinψ)+ηψ u

where ~f (ψ,u,v) is the right hand side of the state-system (1)-
(3) and ~η = (ηx ηy ηψ)

T is a vector of corresponding adjoint
variables. (The explicit time dependence of the variables is sup-
pressed for brevity.) Also, w(v) is the integrand of the cost-
functional (4) and η0 is the associated adjoint variable. The
Minimum Principle states that if a control pair (u∗,v∗) is op-
timal, then there exists a constant η0 ≥ 0 and absolutely contin-
uous functions ηx(·), ηy(·) and ηψ(·) such that

η̇x(t) =−
∂H
∂x

= 0 (6)

η̇y(t) =−
∂H
∂y

= 0 (7)

η̇ψ(t) =−
∂H
∂ψ

= v(t)(ηx sinψ(t)−ηy cosψ(t)) (8)

(Note that a trivial solution to (6)-(8) is not admissible, and ηx
and ηy remain constant because the states x and y do not appear
in the Hamiltonian.) Moreover,

min
(u,v)∈Ω

H(η∗0 ,~η
∗,x∗,y∗,ψ∗,u,v) = H(η∗0 ,~η

∗,x∗,y∗,ψ∗,u∗,v∗)

= 0

That is, the Hamiltonian is minimized with the optimal controls,
and is equal to zero along the optimal trajectory, which is de-
noted by the superscript asterisk. (This notation is suppressed in
the following for brevity.) Recalling that the adjoint variables ηx
and ηy are constant, we may write

ηx = η cosθ ηy = η sinθ

for some constants η and θ . Then the differential equation for
ηψ can be rewritten as

η̇ψ = vη sin(ψ−θ) (9)

and the variational Hamiltonian as

H = η0
(
av2 +bv+ c

)
+ vη cos(θ −ψ)+ηψ u (10)

Characterizing the Extremal Controls
The Minimum Principle characterizes extremal controls as

minimizers of the variational Hamiltonian. Here, we study the
necessary conditions of the Minimum Principle to identify these
extremal controls.

Lemma 1. If ηψ 6= 0 then u =−sgn(ηψ)umax.

Proof. Since the controls are not coupled in (10), then minimiz-
ing H with respect to u is equivalent to minimizing the term
ηψ u. Recall that |u| ≤ umax. Thus the term ηψ u is minimized
with u = −sgn(ηψ)umax. The minimum value of ηψ u is then
−|ηψ |umax. Note that the minimum value of H is zero along an
optimal trajectory (as required by the Minimum Principle).

Lemma 2. If ηψ vanishes on an interval then u = 0 and ψ = θ

or ψ = θ +π .

Proof. If ηψ vanishes on an interval then η̇ψ = 0 for this in-
terval. Given (9), consider the cases under which the condition
η̇ψ = 0 holds:

1. v = 0, but v 6= 0 by assumption.

2. η = 0, then a necessary condition is that H = η0w(v) = 0.
Since w(v) > 0 by assumption then η0 = 0. However, the
Minimum Principle does not allow a trivial solution to the
adjoint equation.

3. sin(ψ − θ) = 0, and since θ is a constant, then ψ = θ or
ψ = θ +π and u = 0.

Only the third case is admissible. If ηψ = 0 at isolated points
(rather than vanishing over a continuous interval), then these
points correspond to discontinuities in the piecewise continuous
control input and can be ignored. (Such points do not affect the
solution.)

Lemma 3. (Bstall extremals) If η0 = 0, then v = vstall, u =
−sgn(ηψ)umax, η > 0 and ηψ 6= 0. Further, the change in head-
ing along a Bstall extremal is |∆ψ|< π .

Proof. If η0 = 0 and η = 0 then a necessary condition is H =
ηψ u = 0. Considering Lemma 1 and Lemma 2, this requires
ηψ = 0. However, the Minimum Principle does not allow a triv-
ial solution to the adjoint equation. Alternatively, if η > 0 then
a necessary condition is

H = vη cos(θ −ψ)+ηψ u = 0 (11)

Since (11) is linear in v, the minimizing speed control may be
on the boundary of the admissible speed interval [vstall,vmax] de-
pending on the sign of cos(θ−ψ) (the slope of the linear Hamil-
tonian). Consider several cases under which (11) is minimized
with respect to v:

1. if cos(θ −ψ) > 0, then the first term in (11) is strictly
positive and, from Lemma 1, the second term ηψ u =
−|ηψ |umax ≤ 0. Then the necessary conditions are met
if v = vstall minimizes the linear Hamiltonian and, from
H = 0, we require

|ηψ |=
vstallη cos(θ −ψ)

umax
(12)
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2. if cos(θ −ψ) = 0, then ψ = θ +π/2 or ψ = θ +3π/2 and
H is independent of v. However, from (9) it is clear that at
these headings η̇ψ 6= 0 and thus ηψ 6= 0 (except at isolated
points). This implies that u 6= 0, so that a constant heading
cannot be maintained.

3. if cos(θ −ψ)< 0, then it is clear that H < 0 and the neces-
sary condition H = 0 cannot be satisfied.

Only the first case is admissible. The corresponding extremal
path is a constant speed turn (left or right) with radius vstall/umax.
The change in heading is |∆ψ| < π since cos(θ −ψ) > 0 is re-
quired. We denote this extremal with the symbol Bstall to indi-
cate that it is a “bang” (maximum) turn-rate control input at the
stall speed.

Lemma 4. If η0 > 0, then the critical point vcrit of H with
respect to v is a minimum. Further, if η > 0 then vcrit =
vms + λ cos(ψ − θ) where λ = η/(2η0a) > 0. Otherwise, if
η = 0 then vcrit = vms.

Proof. The condition for a critical point of H with respect to v
is

∂H
∂v

∣∣∣∣
v=vcrit

= 2η0avcrit +η0b+η cos(θ −ψ) = 0

and assuming η0 > 0,

vcrit =
−(η0b+η cos(θ −ψ))

2η0a
(13)

Since ∂ 2H
∂v2 = 2η0a > 0, this critical point is a minimum. Substi-

tuting (13) into (10), a necessary condition is that

H =−η0av2
crit +η0c+ηψ u = 0 (14)

With Assumption 2 the critical point (13) becomes

vcrit = vms−λ cos(ψ−θ) (15)

Otherwise, if η = 0 then (13) becomes

vcrit =
−b
2a

= vms (16)

Lemma 5. (Bms extremals) If η0 > 0 and η = 0, then v = vms,
u =−sgn(ηψ)umax and ηψ 6= 0.

Proof. If η = 0 then from (16) vcrit = vms and, by Assump-
tion 2, this is an admissible control that minimizes H. (It is
clear that this is a global minimum since H is quadratic in v.)
If ηψ = 0, then H = η0w(vms) > 0 so this case is not admis-
sible. Alternatively, if ηψ 6= 0 then a necessary condition is
H = η0w(vms)−|ηψ |umax = 0 which may be satisfied by a non-
zero constant ηψ . (Since η = 0 then (9) implies that ηψ is
a constant and the turn rate is fixed.) The corresponding ex-
tremal path is a constant speed turn (left or right) with radius
vms/umax. We denote this extremal with the symbol Bms to indi-
cate it corresponds to a bang turn-rate control input at minimum
sink speed.

Lemma 6. (S extremals) If η0 > 0, η > 0 and ηψ = 0, then
v = vstf, u = 0, ψ = θ +π and λ = vstf− vms.

Proof. If ηψ = 0, then u = 0 and (14) gives

vcrit =±
√

c
a
=±vstf (17)

Only the positive case is admissible and the corresponding ex-
tremal trajectory is a straight line flown with speed vstf. We
denote this extremal with the symbol S. This extremal con-
trol is analogous to MacCready’s result [1] (in still air). From
Lemma 4, vcrit is given in an alternative form by (15). Recall
from Lemma 2 that ηψ = 0 occurs with ψ = θ or ψ = θ + π

and from Assumption 3 vstf > vms. Thus for (17) and (15) to be
equivalent ψ = θ +π and λ = vstf− vms.

Lemma 7. (B extremals) If η0 > 0, η > 0 and ηψ 6= 0, then
v = vms−λ cos(ψ−θ) and u =−sgn(ηψ)umax.

Proof. If η0 > 0 and η > 0, the critical point of H with respect
to v is (15). If this critical point is in the admissible speed range
[vstall,vmax], then it is the minimum of H. Otherwise, the min-
imum must occur on the boundary of the interval [vstall,vmax].
With a fixed turn rate (9) becomes

dηψ

dψ
=

dηψ

dt

(
dψ

dt

)−1

=
(vη

u

)
sin(ψ−θ) (18)

Suppose the extremal begins at time ta with ψ(ta) = ψa. Then
for a fixed speed (e.g., vstall or vmax) and fixed turn rate we inte-
grate (18) to obtain

ηψ(ψ)−ηψ(ψa) =

(
−vη

u

)
(cos(ψ−θ)−cos(ψa−θ)) (19)

Substituting (19) into the Hamiltonian (10) gives

H = η0w(v)+ vη cos(θ −ψ)

−
[(
−vη

u

)
(cos(ψ−θ)− cos(ψa−θ))+ηψ(ψa)

]
u

= 2vη cos(θ −ψ)+η0w(v)− vη cos(ψa−θ)+ηψ(ψa)u︸ ︷︷ ︸
a constant

(20)

Clearly, (20) cannot remain constant (H = 0) with v and u
fixed since ψ changes during a turn. It follows that if an ex-
tremal control exists, the corresponding speed control is given
by the heading dependent speed (15) with the condition that
vcrit ∈ [vstall,vmax]. This extremal is denoted B to indicate a
“bang” turn-rate control input.

Theorem 1. The set {Bstall,Bms,S,B} contains all the extremal
controls.

Proof. In the preceding work, all admissible forms of the adjoint
vector were considered. The results are summarized in Table 1,
where explicit reference to adjoint components implies they are
not identically zero, and time dependence of adjoint variables is
indicated explicitly.
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Table 1: Candidate extremals

Symbol Adjoint
Vector

Speed & Turn Rate
Control

Bstall

 0
η

ηψ(t)

 v = vstall
u ∈ {−umax,umax}

Bms

 η0
0

ηψ

 v = vms
u ∈ {−umax,umax}

S

 η0
η

0

 v = vstf
u = 0

B

 η0
η

ηψ(t)

 v = vms−λ cos(ψ−θ)
u ∈ {−umax,umax}

Additional Optimality Conditions
Having identified the set {Bstall,Bms,S,B} of all extremals,

we consider the possible sequences in which these extremals can
be joined. We refer to a sequence of extremal symbols (e.g.,
BSB), read left to right, as a word. Since the adjoint variables
η0,η (equivalently, ηx and ηy) are constants, it is clear from
Table 1 that only certain words can be formed. In this section,
sub-optimality conditions are identified that restrict the optimal
control to a finite and sufficient set of extremal sequences. To aid
in this analysis, the paths corresponding to the extremal controls
are parametrized in Appendix A.

Lemma 8. Switches in the turn rate u only occur when ηψ = 0.

Proof. This follows immediately from Lemma 1 and Lemma 2,
since switches between successive turns occur when ηψ changes
sign, and switches between turns and straight segments (or vice
versa) occur with ηψ = 0.

Lemma 9. Bstall extremal segments can only be joined to other
Bstall extremal segments. Further, if a Bstall arc joins other Bstall
arcs (of the opposite sense) on both ends, then it corresponds to
a heading change |∆ψ|= π

Proof. A Bstall extremal is the only extremal with η0 = 0. Be-
cause η0 remains constant, when ηψ changes sign, the switch
can only be to another Bstall extremal of the opposite sense. (As
discussed in Lemma 3, ηψ 6= 0 except at isolated points.) Since
extremal switches occur only with ηψ = 0, consider a Bstall ex-
tremal that begins at time ta with heading ψa and ends at time

tb with heading ψb. If this Bstall extremal arc connects to other
Bstall arcs at ta and tb, then it follows that ηψ(ta) = ηψ(tb) = 0.
For a fixed speed v = vms, and fixed turn rate control u, setting
the expression (19) to zero gives cos(ψb−θ) = cos(ψa−θ) = 0
which is satisfied with ψa = {θ + π/2,θ + 3π/2} and either
ψb = ψa or ψb = ψa + π . The former case corresponds to a
complete revolution so that the end state coincides with the ini-
tial state, and thus it is suboptimal. The latter case implies the
heading change is |∆ψ|= π .

Lemma 10. An extremal control that contains a Bstall extremal
segment is of the form BstallBstallBstallBstall (or a subset thereof).
If the sum of the angle magnitudes subtended by this extremal
sequence is ≥ 3π , then this sequence is suboptimal.

Proof. From Lemma 3, Bstall segments are admissible only
when cos(θ −ψ)> 0. In a sequence of Bstall arcs, the “middle”
Bstall arc that joins to otherBstall arcs (of the opposite sense) must
have a heading change |∆ψ|= π (Lemma 9). Thus, in such a se-
quence, successive Bstall turns must occur at the isolated points
where cos(θ −ψ) = 0, and so the heading is ψ = θ + π/2 or
ψ = θ +3π/2 at these isolated switching points.

Consider a series of Bstall extremals as shown in Fig. 3. At
the points C, E, and G, the heading is either ψ = θ + π/2 or
ψ = θ + 3π/2 corresponding to the switching points between
successive Bstall arcs. The path between two such heading an-
gles is a semicircular arc with ψ = θ at the midpoint of the arc
(see points D and F). Further, any Bstall extremal subtending an
angle≥ π/2 contains ψ = θ (see points B and H). It is clear that
any sequence of Bstall arcs whose subtended (unsigned) angles
sum to at least 3π will contain three points where the heading
angle is ψ = θ . The first and third occurrence of ψ = θ in such
a sequence can be joined by a straight line segment (e.g. line
DH or BF). This line segment can be flown with the same con-
stant speed (and sink rate) as the Bstall arcs. Since the straight
segment is shorter, it has a lower cost and it follows that the Bstall
sequence is suboptimal. The longest sequence of Bstall arcs for
which the sum of subtended (unsigned) angles is less than 3π is
BstallBstallBstallBstall, with the condition that the initial and final
arcs subtend angles with magnitude < π/2.

Lemma 11. A Bms extremal cannot join other extremals, and
has a heading change |∆ψ|< 2π .

Proof. Along a Bms arc the turn rate is u = −sgn(ηψ)umax.
From Lemma 5, ηψ is a non-zero constant. Therefore the
turn rate cannot change (Lemma 8) and other extremals can-
not be joined to the Bms arc. A Bms arc with a heading change
|∆ψ| ≥ 2π returns to the starting point, which is clearly subop-
timal.

Lemma 12. An extremal control sequence containing B and S
extremals, cannot join other types of extremals, and λ in (15) is
λ = vstf− vms.
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Fig. 3: A suboptimal BstallBstallBstallBstall extremal sequence.

Proof. From Lemma 10 and Lemma 11, B and S extremals can-
not join Bstall or Bms extremals. For both B and S segments the
conditions η0 > 0 and η 6= 0 hold. When ηψ = 0 a switch may
occur between these two extremals. From Lemma 6, S segments
require λ = vstf− vms. Thus λ is a fixed in (15) for B arcs that
join S segments. Further, this implies that the speed input along
the B arc is v ∈ [2vms− vstf,vstf], and by Assumption 4, this is
an admissible control.

Lemma 13. If a B extremal contains a heading angle ψ = θ ,
then λ ≤ vms− vstall.

Proof. If a sequence of B arcs does not join a S segment, then
Lemma 12 does not apply, and λ is a free parameter. The speed
along a B extremal is given by v= vms−λ cos(ψ−θ) where v∈
[vstall,vmax]. If ψ = θ the speed is at the minimum v = vms−λ .
For this speed to be admissible λ ≤ vms− vstall is required.

Lemma 14. If a B extremal contains two heading angles where
ψ = θ +π then it is suboptimal.

Proof. Consider a B extremal defined over the interval [ta, tb]
with ψ(ta) = ψ(tb) = θ +π . The heading change is |∆ψ|= 2π

and, without loss of generality, it can be assumed that x(ta) =
y(ta) = 0 and θ = π so that ψ(ta) = ψ(tb) = 0. Thus the vehi-
cle begins at xa = (0 0 0)T. Using (32)-(34), after one full
revolution, the vehicle ends at xb = (πλ/umax 0 0)T . Thus
the states xa and xb can also be joined by a straight line segment
of length πλ/umax with heading ψ = 0. Suppose this straight
segment is flown with the same time-varying speed as the B ex-
tremal defined over the interval [ta, tb]. Since the straight seg-
ment is shorter, if it begins at xa at time ta it will reach xb at
a time tc < tb. Further, since the altitude is monotonically de-
creasing at the same rate along both paths, it follows that the
straight segment will have a lower cost and that the B extremal
is suboptimal.

Corollary 1. If an extremal control contains a B extremal seg-
ment, with no switching points and a heading change |∆ψ| ≥ 4π ,
then it is suboptimal.

Proof. If a B extremal arc subtends an angle |∆ψ| ≥ 4π and
contains no switching points, then the turn rate is fixed and there
exist two points ta and tb along the arc such that the heading
ψ(ta) = ψ(tb) = θ . Then by Lemma 14 this extremal is subop-
timal.

Lemma 15. A B extremal that begins with heading ψa and ends
with heading ψb, and for which ηψ vanishes only at these bound-
ary conditions, must contain the heading ψ = (ψa +ψb)/2 = θ

and λ ≤ vms− vstall.

Proof. With the change of variables φ = ψ −θ the adjoint dif-
ferential equation (9) becomes

dηψ

dφ
=

dηψ

dt

(
dφ

dt

)−1

=
η

u
(vms−λ cosφ)︸ ︷︷ ︸

v(φ)

sinφ (21)

Consider a left turn (u = umax) that begins with ηψ(ta) = 0 and
φ(ta) = φa =ψa−θ , and ends with ηψ(tb) = 0 and φ(tb) = φb =
ψb− θ . During this turn, φ (equivalently ψ) is increasing and
ηψ < 0. Let η ′ψ(φ) denote the value of dηψ/dφ as a function
of φ , as given in (21). For ηψ to become negative, the turn must
begin at a point where η ′ψ(φa + ε) < 0 for arbitrarily small ε .
Since the speed v(φ) is always positive, then from (21) it is re-
quired that sin(φ) < 0 and therefore the turn must begin with
φa ∈ [π,2π). For all φ ∈ [π,2π) the adjoint variable ηψ is de-
creasing and at φ = 0, ηψ reaches a critical point corresponding
to a minimum. Clearly the trajectory of ηψ must contain this
minimum point in order for ηψ to then increase and vanish at
φb. Since φ = 0 implies ψ = θ , then from Lemma 13 it follows
that λ ≤ vms− vstall. Integrating (21) from φa to φb,

ηψ(φb)−ηψ(φa) =
−η

2umax
(cosφa− cosφb)

(−2vms +λ (cosφa + cosφb)) (22)

If ηψ(φa) = ηψ(φb) = 0, then from (22) either

cosφa + cosφb

2
=

vms

λ
≤ 1 (23)

or
cosφa = cosφb (24)

Since λ ≤ vms− vstall and vstall > 0 then vms/λ > 1 and the case
(23) cannot hold. If (24) holds, then φb = φa or φb = 2π − φa.
The latter case occurs first as φ increases from φa. Further, it is
clear that φ = 0 is half way in between φa and φb. It follows that
ψ = (ψb +ψa)/2 = θ is contained along the B extremal. Using
similar arguments, it can be shown that these results also hold
for right turns.

Lemma 16. If an extremal control contains B and S segments,
then it is of the form BSB (or a subset thereof).
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Proof. Recall that all S segments have ψ = θ +π . Thus if a S
segment connects to a B arc at a point ta then ηψ(ta) = 0 and
ψ(ta) = θ +π . If this B arc is to join another extremal at time tb
then ηψ(tb) = 0. From Lemma 15 with ψ(ta) = θ +π it follows
that ψ(tb) = θ − π = ψ(ta), corresponding to a 2π change in
heading. From Lemma 14 this B arc is suboptimal because it
contains two points at which ψ = θ + π . Thus a SB segment
cannot be followed by another extremal. A similar argument
can be made that BS segments cannot be preceeded by another
extremal. Therefore all extremals containing B and S arcs must
be of the form BSB (or a subset thereof).

Lemma 17. Consecutive B extremals, each beginning and end-
ing with ηψ = 0, are antisymmetric.

Proof. From Lemma 15, the heading along a B extremal, be-
ginning and ending with ηψ = 0, goes from ψa to ψb. If this
extremal arc is followed by a change in turn rate to another B ex-
tremal arc, the heading will go from ψb to ψa along this second
arc. Further, since the speed is heading dependent, the extremal
path followed by the second arc will be antisymmetric to that of
the first.

Lemma 18. A sequence of three B arcs, that begin and end with
ηψ = 0, is suboptimal.

Proof. Consider a sequence of three consecutive B arcs that
each begin and end with ηψ = 0. The corresponding extremal
path is sketched in Fig. 4 where the extremal sequence begins
at point A and ends at point F . Without loss of generality, as-
sume that the initial B extremal arc transfers the vehicle from
xA = (0 0 ψa)

T to xC = (∆x ∆y ψc)
T. From Lemma 17

the second arc is anti-symmetric to the first and transfers the ve-
hicle to xD = (2∆x 2∆y ψa)

T. Similarly, the third arc trans-
fers the vehicle to xF = (3∆x 3∆y ψc)

T. It is clear that there
will exist two points (e.g. B and E in Fig. 4), on the initial and
final arc respectively, that can be connected via a straight line
segment with heading

ϕ = atan
(

∆y
∆x

)
(25)

Suppose the straight segment is traversed with the same speed
control as the B arcs from point B to E. Since the straight line
path is shorter and the altitude is monotonically decreasing at
the same rate for both paths, it will result in a lower cost. Thus
the BBB sequence is suboptimal.

Lemma 19. Extremal controls containing only B arcs are of the
form BBBB (or a subset thereof).

Proof. In a sequence of B arcs, the B arcs that connect to other
B arcs at both ends (i.e., the interior B arcs in BBBB) are re-
quired to begin and end with ηψ = 0. Thus they satisfy the
conditions of Lemma 17 and Lemma 18. However the initial
and final B arcs that join a boundary condition (i.e. the first and

last B arcs in BBBB) do not necessarily satisfy these same prop-
erties. (These B arcs may be truncated to satisfy the boundary
conditions.) Thus the longest sequence of B extremals, in terms
of the number of extremals, is of the form BBBB with the re-
striction that the initial and final B arcs are sufficiently short,
such that they do not contain heading angles ψ = ϕ , given in
(25). The same restriction applies to a BBB extremal sequence.
Such sequences also require that the constant λ ≤ vms−vstall by
Lemma 15.

If the extremal sequence is of the form BB or B then
Lemma 17 and Lemma 18 do not apply. In this case λ is
restricted such that for all the heading angles traversed v =
vms−λ cos(ψ −θ) ∈ [vstall,vmax]. A BB sequence will contain
at least one point where ηψ = 0 (corresponding to the switch-
ing point), whereas a B arc is not required to contain the point
ηψ = 0.

For brevity, we use the word BBBB to denote all of these ex-
tremal sequences (including those of the form BBB, BB, and
B), recognizing that for each sequence there are unique con-
straints on the extremal arcs.

Theorem 2. The set

Γ = {BSB, BBBB, Bms, BstallBstallBstallBstall} (26)

of extremal controls contains the optimal control.

Proof. In Theorem 1 it was shown that the set {Bstall,Bms,S,B}
contains all candidate extremals. In Lemma 10 it was shown
that all extremal controls containing Bstall arcs are of the form
BstallBstallBstallBstall (or a subset thereof). In Lemma 11 it was
shown that Bms extremals cannot join other extremals. In
Lemma 16 it was shown that if an extremal control contains B

Fig. 4: The sequence of three B extremal arcs, that each begin and
end with ηψ = 0, is suboptimal.
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and S segments, then it is of the form BSB (or a subset thereof).
Last, in Lemma 19, it was shown that extremal controls con-
taining only B arcs are of the form BBBB (or a subset thereof).
Thus it follows that Γ is a finite and sufficient set of candidate
extremal controls. It has been established that an optimal control
exists, and therefore Γ contains the optimal control.

Path Synthesis
The set Γ contains all of the extremal control sequences that

are candidates for an optimal control. We refer to each member
of Γ as a class of candidate controls. In Appendix A individ-
ual extremals are parametrized to describe their resulting pla-
nar displacements and heading changes. Similarly, each class
of controls in Γ can be parametrized to give the glider’s final
state resulting from the corresponding extremal sequence. We
denote the space of parameters admissible for a given class and
path type as P. The path synthesis problem is to determine the
specific optimal control history u∗(·) (equivalently, the class in
Γ and parameter p ∈ P) that minimizes the cost while satisfying
the boundary conditions.

For a given class, solutions satisfying the boundary conditions
may exist at several isolated points or neighborhoods in the pa-
rameter space. If the solutions exist at several isolated points,
path synthesis is similar to a root finding problem. If there exist
continuously parametrized sets of solutions, we seek to find the
lowest cost (locally) optimal solution within each such neigh-
borhood. Intuitively, we might expect that these locally opti-
mal controls correspond to paths that are qualitatively distinct.
(Paths within a class may be qualitatively distinct, for exam-
ple, if the orientation or a number of extremals they contain is
unique.)

Consider the class of BSB candidate optimal controls. If
we denote left turns with the symbol L, right turns with R, and
straight segments with S, then the set {LSL,LSR,RSL,RSR} con-
tains all the possible orientations of a BSB control. In this case,
we might expect that the boundary conditions can be satisfied
by several paths corresponding to different orientations. (For
example, if the final endpoint is on the negative x-axis with head-
ing ψ = π then, by symmetry, any path to the endpoint can be
reflected about the x-axis to obtain a path with the same cost
but with a different orientation.) Similarly, controls in the class
BBBB, Bms or BstallBstallBstallBstall may either begin with a right
(R) or left (L) turn and successive turns are of the opposite sense.
Therefore there are two orientations to consider in these cases.
If a particular extremal within a class has zero length then the
corresponding control is unique in terms of the number (and se-
quence) of extremals. For example, if the BSB sequence con-
tains one or more extremals of zero length, the controls may be
of the form BS , SB, BB, B or S.

One approach to solving the path synthesis problem is to enu-
merate all of the locally optimal controls within each class, for
all classes in Γ, and compare their respective costs. A numerical
optimization routine that enumerates all locally optimal solu-
tions would always give the globally optimal control (accurate

to within a user specified tolerance). In practice however, it is
difficult to construct such an algorithm. One may therefore ex-
pect only locally optimal paths, in general. In the Appendix we
detail a method for computing the candidate controls for each
class in Γ. We find that BSB controls can be easily computed
by solving a root finding problem in one parameter, as shown
in Appendix B. The class of BBBB paths is parametrized with
more unknown variables than constraints and a unique solution
is not available. Thus, in Appendix C, a constrained optimiza-
tion problem is formulated to solve for the parameter vector p in
this case. Last, in Appendix D it is shown that the parameters of
Bms or BstallBstallBstallBstall extremals can be found algebraically
(when they exist).

Illustrative Examples
To illustrate the path synthesis procedure, we assume a glider

model that is representative of the DG-1001M motorglider.
(This is a modern optionally powered glider, with a 20 meter
wingspan, manufactured by DG Flugzeugbau in Germany.) The
glide polar curve given in the DG-1001M flight manual [39],
corresponding to a wing loading of 35 kg/m2, was digitized and
is indicated by the dashed line in Fig. 5. A quadratic curve was
fit to this data to give an approximate glide polar (solid line in
Fig. 5) expressed by the function:

w(v) = 0.0002093︸ ︷︷ ︸
a

v2−0.0381︸ ︷︷ ︸
b

v+2.3146︸ ︷︷ ︸
c

(27)

where the units of sink rate w are in meters/second and the units
of speed v are in kph (kilometers/hour). Since the previous anal-
ysis showed that the extremal controls are confined to the speed
interval v ∈ [vstall,vstf], only a subset of the available data was
used for curve fitting. A data set was chosen that resulted in the
smallest error between the approximate and actual stall, mini-
mum sink and best glide flight conditions. Since flying at the
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Fig. 5: Digitized glide polar of the DG-1001M motorglider (dashed
line), adapted from [39], compared to a quadratic approxi-
mation (solid line).
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stall speed is not desirable, and since this stall region deviates
significantly from the parabolic shape of the remaining glide
polar, the stall speed was artificially increased to vstall = 75.6
kph. This is a more realistic minimum operating speed, and the
quadratic glide polar is a better approximation of the data with
this conservative assumption. The speed and sink rates at these
various flight conditions are indicated with circle markers for ac-
tual values and square markers for approximate values in Fig. 5.
The corresponding numeric values for these flight conditions are
given in Table 2. With this tabulated data we may verify that
Assumption 4 is satisfied by the quadratic approximation. (It is
also satisfied by the actual glide polar if we use the actual stall
speed.)

As discussed in Remark 1, we assume the glide polar
w(v) is independent of the turn rate u. This approximation
is only valid for mild turns with very shallow bank angles.
For the DG-1001M we assume the turn rate limit is umax =
π/15 (radians/sec) (i.e., it takes 15 seconds to complete a turn
with a 180 degree heading change). For the kinematic car model
the minimum turn radius R scales with the speed: R = v/umax.
Thus the approximate minimum turn radius at the speed to fly
is about Rstf = 139 m, and at the stall speed the radius is about
Rstall = 100 m. Note that the change in sink rate on the interval
[vmin,vstf] is very small compared to the changes in speed and
turn radius. Over large distances a small change in sink rate may
become significant, however on the scale of a few hundred me-
ters these effects are not as pronounced. Instead, the altitude loss
is largely influenced by the transit time to the goal. Intuitively,
we might think that strictly operating at the speed to fly will
minimize the altitude loss to the goal. However, the advantage
of slowing down is that the minimum turning radius decreases,
potentially allowing a shorter and faster path to the goal; with
a smaller turn radius the reduction in transit time may be large
enough to justify the penalty incurred by a small increase in sink

Table 2: Comparison of approximate and actual speeds and sink
rates at various flight conditions.

Flight
Condition

Actual
Speed
(kph)

Approx.
Speed
(kph)

Actual
Sink Rate
(m/s)

Approx.
Sink Rate
(m/s)

Stall
Speed

75.6 75.6 0.66 0.63

Minimum
Sink

88.0 91.1 0.56 0.58

Speed
to Fly

104.0 105.2 0.62 0.62

rate. To demonstrate the path synthesis algorithm we select three
final endpoints, plot the resulting candidate paths, and compare
their costs (see Fig. 6a,7a and 8a). In each case the glider begins
at the origin, pointed east along the x axis with x0 = (0 0 0)T

and the candidate paths to the endpoint x1 are labeled with their
path type, orientation, and cost. (The cost is altitude loss in
meters and is given in square brackets next to each path.) For
comparison, the Dubins path at the speed to fly is plotted in each
case with a dashed line. Note that the x and y axes have been
normalized by the turn radius at the speed to fly Rstf. Further,
the optimal control history corresponding to the lowest cost path
in each case is given in the adjacent plots (see Fig. 6b,7b and
8b). The turn rate limits and the speed limits at vstall and vstf are
plotted with dashed lines.

In Fig. 6 we have x1 = (0 Rstf 2π/3)T and the lowest cost
control is of the type BBB, with orientation RLR. Since this
endpoint is very close to the initial state, significant maneuvering
is required. In comparison to the Dubins path the altitude loss
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Fig. 6: Path synthesis result for the final state x1 = (0 Rstf 2π/3)T. Change in altitude is indicated by square brackets.
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Fig. 7: Path synthesis result for the final state x1 = (−3Rstf 4Rstf 0)T. Change in altitude is indicated by square brackets.

is reduced by 2.4 meters which is an 11% improvement. From
the optimal control history in Fig. 6b, we find that the glider
speed changes drastically and reaches the minimum speed (and
smallest turn radius) in the middle of the second turn.

In Fig. 7 we have x1 = (−3Rstf 4Rstf 0)T and the lowest
cost control is of the type BSB, with orientation LSR. Since
the endpoint is relatively far from the starting point, it cannot be
reached by a BBBB candidate control. For endpoints that are
sufficiently far away, we do not have to compute all candidate
controls in Γ and instead may only check the BSB class of con-
trols. In this case, the altitude loss is reduced by about 1.8 m or
6.5% relative to the Dubins path. Note the smooth transition in
the speed control between the B and S extremals as shown in
Fig. 7b.

Last, in Fig. 8 we have x1 = (0 2Rstf 7π/4)T and the low-
est cost control is of the type BSB, with orientation LSL. It is
interesting to note that the orientation of the Dubins path is also
LSL. In this case the altitude loss is reduced by about 1.7 m or
7.8% relative to the Dubins path.

Conclusion
In this paper we consider the problem of minimizing altitude

loss for a sailplane maneuvering in still air to a nearby posi-
tion and heading angle. The sailplane is modeled as a kine-
matic car, with speed and turn rate controls, and with a sink
rate that is a quadratic function of the speed. We find that
the extremal controls correspond to straight segments flown
at the best glide speed (denoted as S extremals) and maxi-
mum rate turns with either: a heading dependent speed in-
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Fig. 8: Path synthesis result for the final state x1 = (0 2Rstf 7π/4)T. Change in altitude is indicated by square brackets.
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put (B extremals), the stall speed (Bstall extremals), or the
minimum sink speed (Bms extremals). The optimal control
is found to be a member of the finite and sufficient set Γ =
{BSB, BBBB, BstallBstallBstallBstall, Bms}. A path synthesis
procedure is proposed to numerically solve for each candidate
path in Γ, and to identify the lowest cost (locally) optimal con-
trol. An illustrative example, based on the DG-1001M motor-
glider, demonstrates a significant improvement in altitude loss
resulting from the proposed approach when compared to a stan-
dard Dubins path planning algorithm (with a fixed speed for best
level glide). One limitation of the proposed approach, however,
is that we have assumed that sink rate does not vary with turn
rate. The proposed algorithm is therefore appropriate for shal-
low banked turns where the sink rate remains relatively constant
and for autonomous sailplanes that can track the required veloc-
ity and turn rate controls.
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Appendix
A Parameterizing the Extremal Controls

The extremal controls are given in Table 1. If the glider em-
ploys a given extremal control for some duration, the result will
be a change in the state (heading and position) and cost (alti-
tude). To aid in further analysis, we may uniquely parametrize
extremal controls to quantify such changes. Recall that an S ex-
tremal has speed v = vstf and turn rate u = 0. This straight line
path can be parametrized by its length L and initial heading an-
gle ψi. In this case, the state and cost rates are fixed, and the
time to traverse the length L is simply L/vstf. Thus the changes
in heading (∆ψS ), planar positions (∆xS and ∆yS ), and altitude

∆hS , are obtained by multiplying the fixed state and cost rates
by the time interval L/vstf:

∆ψS(L,ψi) = 0 (28)

∆xS(L,ψi) = Lcosψi (29)

∆yS(L,ψi) = Lsinψi (30)

∆hS(L,ψi) = L
(

avstf +b+
c

vstf

)
(31)

B extremal arcs have v = vms − λ cos(ψ − θ) and |u| = umax
and can be parametrized by the initial heading ψi, the change in
heading δ , and the parameters θ and λ . These extremals corre-
spond to a fixed turn rate and we may change the independent
variable from t to ψ where dt = (sgn(δ )/umax)dψ . Then inte-
grating the equations of motion (1)-(3) and the cost functional
(4) with respect to ψ , we obtain the changes in state and cost:

∆ψB(ψi,δ ,θ ,λ ) = δ (32)

∆xB(ψi,δ ,θ ,λ ) = sgn(δ )(
vms[sin(ψi +δ )− sinψi]− 1

2 λ [δ cosθ + cos(2ψi−θ +δ )sinδ ]

umax

)
(33)

∆yB(ψi,δ ,θ ,λ ) = sgn(δ )(
vms[cosψi− cos(ψi +δ )]− 1

2 λ [δ sinθ + sin(2ψi−θ +δ )sinδ ]

umax

)
(34)

∆hB(ψi,δ ,θ ,λ ) =

(
sgn(δ )
umax

)
[
(av2

ms +bvms + c+
1
2

aλ
2)δ +

aλ 2

2
sinδ cos(δ +2ψi−2θ)

−2λ (b+2avms)cos
(

δ

2
+ψi−θ

)
sin
(

δ

2

)]
(35)

Likewise, Bstall (or Bms) extremal arcs have |u| = umax and v =
vstall (or v = vms). Such extremals can be parametrized by the
initial orientation ψi, and the change in heading δ . Choosing v
appropriately, the changes in state and cost, for both Bstall and
Bms extremal arcs, are given by:

∆ψBmin/ms(ψi,δ ,v) = δ (36)

∆xBmin/ms(ψi,δ ,v) = sgn(δ )
(

v(sin(ψi +δ )− sinψi)

umax

)
(37)

∆yBmin/ms(ψi,δ ,v) = sgn(δ )
(

v(−cos(ψi +δ )+ cosψi)

umax

)
(38)

∆hBmin/ms(ψi,δ ,v) =
|δ |(av2 +bv+ c)

umax
(39)

B Solving for BSB Extremal Controls
In Appendix A individual B arcs and S segments are

parametrized to give the resulting planar displacements and
changes in heading resulting from each extremal control. How-
ever in a BSB extremal sequence, the three consecutive ex-
tremals are related by additional constraints. (For example, the
final heading of a given extremal must correspond to the initial
heading of the following extremal.) Let the first B arc begin with
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heading ψi = 0 and result in a heading change δ =α . Recall that
the S segment must have a heading ψ = θ +π , thus α = θ +π .
Further, if the S segment is of length L and the final B arc cor-
responds to a heading change δ = γ , then the BSB extremal is
uniquely defined. Also, for a BSB sequence λ = vstf−vms, thus
this constant is known. Hence the parameters α , L and γ are
sufficient to define a BSB extremal and all subsets thereof. To
satisfy the boundary conditions, this sequence must result in a
final heading ψ1, thus we have the constraint:

ψ1 = ∆ψB(0,α,α−π,λ )+∆ψS(L,α)+∆ψB(α,α−π,γ,λ )

= α + γ mod 2π (40)

Similarly, for the final planar positions x1 and y1

x1 = ∆xB(0,α,α−π,λ )+∆xS(L,α)+∆xB(α,α−π,γ,λ )

=
λ [αc(α)+ s(α)]+2vmss(α)

2umax
sgn(α)+Lc(α)

+
λ [γc(α)+ c(α + γ)s(γ)]+2vms[s(α + γ)− s(α)]

2umax
sgn(γ) (41)

y1 = ∆yB(0,α,α−π,λ )+∆yS(L,α)+∆yB(α,α−π,γ,λ )

=
λαs(α)+2vms[1− c(α)]

2umax
sgn(α)+Ls(α)

+
λ

4 [c(α)− c(α−2(α + γ))+2γs(α)]+ vms[c(α)− c(α + γ)]

umax

sgn(γ) (42)

where the shorthand notation c(·) = cos(·) and s(·) = sin(·) is
used. The system of three equations (40)-(42) has three un-
knowns (α,L,γ) and can be solved with a multi-variate root
finding routine. However, we may also simplify this solution
procedure by transcribing the problem into a root solving prob-
lem for one parameter. One advantage of this approach is that
root-finding routines, such as chebfun developed by the Univer-
sity of Oxford [40], are capable of reliably finding all roots of a
single variable on a given interval. The system (40)-(42) can be
rearranged into the form:

f1(α,L,γ)cosα + k1 sinα + k2 sinγ = k3 (43)

f1(α,L,γ)sinα + k4 cosα + k5 cos(α +2γ) = k6 (44)

α + γ mod 2π = ψ1 (45)

where
f1(α,L,γ) = 2umaxL+λ (|α|+ |γ|) (46)

and the constants depend on the sign of α and γ , (corresponding
to a given path orientation):

k1 = (λ +2vms)sgn(α)−2vmssgn(γ)

k2 = λ sgn(γ)cosψ1

k3 = 2umaxx1−2vms sinψ1sgn(γ)

k4 =
(λ +4vms)sgn(γ)

2
−2vmssgn(α)

k5 =−
λ sgn(γ)

2
k6 = 2umaxy1−2vmssgn(α)+2vms cosψ1sgn(γ)

Assume that cosα 6= 0 and k3− k1 sinα− k2 sinγ 6= 0, and note
that for any nonzero triple (α,L,γ) the term f1(α,L,γ) > 0.
Then divide (44) by (43) to eliminate f1(α,L,γ):

sinα

cosα
=

k6− k4 cosα− k5 cos(α +2γ)

k3− k1 sinα− k2 sinγ
(47)

Using (45) the constraint (47) can be rewritten as

g1(α) = sinα[k3− k1 sinα− k2 sin(ψ1−α)]

− cosα[k6− k4 cosα− k5 cos(2ψ1−α)]

= 0 (48)

The roots of g1(α) over the interval α ∈ (−2π,2π) give candi-
date values for α , where positive roots correspond to initial left
turns and negative roots to initial right turns. For each candidate
α two candidate γ can be determined from (45), corresponding
to a final left turn (γ > 0) or a final right turn (γ < 0). Once
a candidate α and γ have been found, f1(α,L,γ) is computed
from

f1(α,L,γ) =
k3− k1 sinα− k2 sinγ

cos(α)

and, lastly, L is determined from (46).
However, if cos(α) = 0 or k3−k1 sinα−k2 sinγ = 0, then the

previous assumptions do not hold. Note that if k3− k1 sinα −
k2 sinγ = 0 then (43) implies that cosα = 0, thus both conditions
are equivalent. If cos(α) = 0 then the candidate α are ±π/2 or
±3π/2 and the solution is algebraic (we omit it here for brevity).

C Solving for BBBB Extremal Controls
Consider the class of BBBB candidate optimal controls, the

first B arc begins with heading ψi = 0 and subtends an angle α

(where the sign of the angle represents the direction of the turn).
The next two B arcs in the sequence are anti-symmetric to each
other. From Lemma 15, if the second arc subtends an angle β ,
then θ = (α +β )/2. Because the third arc is antisymmetric to
the first, the change in heading along this B arc is −β . Last,
the final arc subtends an angle γ . For this class and path type
λ ≤ vms− vstall and the parameter vector p = (α β γ λ )T

uniquely defines the sequence. Note that for a given path ori-
entation (for example, RLRL) the angles α,β ,γ are constrained
in sign and magnitude. Thus the parameters must lie in a region
defined by a polytope of the form Ap≤ b. Using the expressions
in Appendix A, a constraint for the boundary conditions can be
formulated as

g(p) =

 x(p)− x1
y(p)− y1

ψ(p)−ψ1

= 0

where xp = (x(p) y(p) ψ(p))T is the terminal state for a
given parameter vector p. Further the expressions for the change
in altitude can be used to express the total cost J(p). Then the
constrained optimization problem is:

minJ(p) (49)

subject to Ap≤ b

g(p) = 0

A numerical solver, such as fmincon, developed by MATLAB
[41], may return a locally optimal solution to the problem (49),
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if one exists. Note that this formulation applies only to BBBB
sequences, however shorter sequences, such as BBB or BB
will have different constraints and they are not detailed here for
brevity.

D Solving for BstallBstallBstallBstall
and Bms Extremals

Recall that the “middle” Bstall arcs in a BstallBstallBstallBstall
sequence are anti-symmetric and each correspond to heading
changes |∆ψ| = π . If the first arc in this sequence subtends an
angle α , and the final arc subtends an angle γ , then the sequence
is uniquely defined by these two parameters. Let k = sgn(α)
denote the sign of initial turn (left or right). Then the boundary
conditions are:

x1 = ∆xBstall(0,α)+∆xBstall(α,−kπ)+∆xBstall(α− kπ,kπ)

+∆xBstall(α,γ) (50)

y1 = ∆yBstall(0,α)+∆yBstall(α,−kπ)+∆yBstall(α− kπ,kπ)

+∆yBstall(α,γ) (51)

ψ1 = α + γ (52)

Using (50) and (52), we find that

sin(α) =
x1umax

6kvstall
+

sinψ1

6
(53)

gives α , and γ = ψ1 − α . Similarly, in a BstallBstallBstall se-
quence, let the initial Bstall arc subtend α the middle arc subtend
−kπ and the final arc subtend γ . In this case we obtain

sin(α) =
x1umax

4kvstall
− sinψ1

4
(54)

and γ = ψ1−α + kπ . Likewise, for a BstallBstall sequence

sin(α) =
x1umax

2kvstall
+

sinψ1

2
(55)

and, again, γ = ψ1−α . The case of a single Bstall or Bstall is triv-
ial since the arc must subtend an angle equal to the final head-
ing ψ1.
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