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ABSTRACT

ince the sailplane represents &
highly optimized aerodynamic form, the
influence on performance of small sffects
such as stabiliver 1ift is worth consider-
ing. This paper analyzes the induced drag
of the stabilizer and its eflect on sinking
speed. Bn equation is derived relating
the fracticnal increase in sinking speed
to the stakilizer lift coeflicient and the
aircraft's shape parameters. The equation
for aircraft pitching moment in steady
flight is introduced in order to obtain
the reldation between fractiondal increases
in sinking speed and airspeed and center
of gravity lecation, Data from a
Schleicher K-8B is used to illustrate the
resulting formula, It is concluded that
non-zero stabilizer 1ift increases sinking
speed and for a K-8B the greatest effect
is with a forward C.G. position and a high

airspeesd,

INTRODUCTION

Concerted efforts by sailplane design-
ers over the years nave resulted in craft
with highly optimized aerodynamic forms.
Therefore, small effects which may be ig-
nored for other aircraft are of interest
to sailplane designers and pilots,
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EFFECT OF STABILIZER LIFT

use the custeomary analysis of
gliding flight, assuming The
y to be small, From Fig. 1 we
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and the sinking speed is
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We compars the sinking speeds
ally similar aircraft of equal weight
which differ only in tail lift, The
ratio of sinking speeds at tha same air-
speed is;
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For the lifting tail case, we add the
induced drag ol the stabilizer to obtain:
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From Eq. 12, we can concluds that for
= 2
(CL /CT) 7 0 and reasonable values of
.t. 4

A/h_ and S5 /S that V. >V Further-
T L 5 s
T 0
more, this expression leads to a trim
criterion, namely for best cruilse or
glide performance; trim for zero stabi-
lizer 1ift.
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The stabilizer and elevator have
no camber and the elevator is
streamlined.

- in the low Mach num
regime, so compressibility eff

are negligible,

Bercelastic effects are negligible,

For steady flight, C, = O

CH 50 the
trim is:

D=1, %+ V. C (14)
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W

solving for C. /C., we obtain:
L. L

. = ' CE5)

We substitute LBg, 15 into Eg, 12 and

result 1s:
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tion h.

CALCULATED PERFORMANCE LOSS

FOR I K-8B SATLPLRENE

Schleicher X-83 sailplance was
example to illustrate
16 because it is widely known and
author had already made previous

o

performance analysis of it.
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Data from Ref. & gave: W/5 = 4.47 DISCUSSION

1b/ft°: S, /8 = 0.13%; and V,, = 0.568. i
/ d ut/) > 0 H The result of the [irst part of the

The quantity analysis, Lag. 12, is pletted in Fig. 2.
_ The fractional loss in sinking speed is
ef o simply a parabola symmetric about the
T C /C = 0 axis so the functicn is pletted:

PPE} for positive values of the argument.
was estimated from two sources. From It is obvious then that only the JllagI_l‘L.u_ldC
ing loading and performance of the stabilizer lift coefficient matters,
= C el 2 Upward 1ift degrades performance just as
/ much as downward stabilizer force.
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