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CLOUD-STREET FLYING
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NOTATION

Drag coefficient
Lift coefficient

Drag, assumed to be D(U) in a
constant-density atmosphere

A function such that

T = |F(U)ax

= F + AG

A function such that
H, = [6(U,x)dx
Acceleration due to gravity

True height

Energy height

Total change of energy height
Lift

Time

Total flight time

Forward speed

Speed corresponding to

(L/D),,

U/UO
Average cross=country speed

ax

- Ucc/UO

Rate of sink
Rate of sink at UO

Vs/vso

Rate of climb

vc/vso

Strength of up-current
w/vso

Tl

w*/vso

Weight

Distance along flight path

A Lagrange multiplier, con-
stant for an optimum flight
profile

Flight ?ath slope (positive
nose-up

%g§§ices are explained in the

INTRODUCTION

The criterion for the optimum
inter-thermal speed was first publi-
shed in its simplest form by Barrin-
ger in 1940 and has since been ela-
borated to deal with more realistic
sltuations, notably by MacCready. All
of these analyses assumc a "normal"
cross=country flight in which the
sailplane generally gains height by
circling in thermals,

Kronfeld's "Austria" was designea
in the hope that it would be possible
to carry out cross-country flights
without circling in the thermals but
gsimply flying straight through them
at a low forward speed, At that time,
the performance available from even
the most refined machines was inade-
gquate for sustained flight in such a
fashion and it is only recently that
the performance of sallplanes has
become so good that sipgnificant por-
tions of flights may be carried out
without circling, Of course, it has
been possible almost since the be=
ginnings of thermal soaring to take
advantage of cloud streets, where one
finds an almost continuous line of
1ift or a well-defined closely=spaced
succession of thermals.

Whilst the title of this paper
refers specifically to cloud streets,
its analysis 1s applicable to any
cross=country flight carried out with-
out circling., A criterion for opti-
mising such flights has not been pre-
viously proposed, to the best knowle
edge of the author, doubtless be-
cause even a simplified analysis can
involve several independent variables.
Moreover, as is formally the case in
any flight, the forward speed is not
necessarily constant and hence the
equation of motion involves an accele-
ration term. Conseguently, various
integrands similar to those derived
in the analysis below are functions

-

(inter .lia) of the derivative of
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forward speed with respect to some
other quantity such as time, dilstance
or height, as may be convenient. The
analysis then becomes an exercise in
the Calculus of Variations, similar
to that of the Reference. However,
the introduction of the energy height
concept serves to eliminate accelera=-
tion terms and the problem effective=-
ly becomes one in ordinary calculus.

This leads to a result of such a
nature that its practical application
is difficult. However, it does en-
able one to assess the conditions
under which such flights are possible
and indicates the maximum attainable
performance.

The analysis below is only con-
cerned with those parts of the flight
path having a small inclination to
the horizontal. It can also be shown
by the methods of the Reference that,
if the salilplane's speed at any in=-
stant does not correspond with the
optimum speed appropriate to the pre-
vailing conditions, it should be ad-
justed by performing a vertical climbt
or dive, In reality, such maneuvers
are both impracticable and unneces=
sary but this result does suggest
that it is advantageous, when adjust-
ing the speed to the prevailing
optimum, to do =0 as rapidly as 1is
practicable, The aralysis neglects
the effects of transitions between
different conditions of flight, in
that it dimplicitly assumes that the
load factor is always unity. Other
things being equal, push=-over and
pull=up maneuvers will produce de-
creases and increases 1n induced drag,
respectively, so to some extent the
effects of a series of such maneuvers
will be self-cancelling so far as the
overall dissipation of energy is con=
cerned,

ANALYSIS

Consider a sailplane flying on a
constant heading. Let x denote dis-
tance along the flight path and w
(positive upwards) the local vertical
velocity of the alr. To an external
observer, w will in general be a
function of both x and time t but,
from the point of view of the pilot,
it may be regarded as a function of
¥ only. Suppose that the instanta-
neous forward specd of the sallplane

is U, Assume also that the air den-
gity is substantially the same as the
standard sea-level value.

The time to travel from xq to X,

2
_ dx
= U/ﬂ S (1

The equation of motion of the
sailplane along its flight path will
be, in still air,

-1 S o

+ W gi - 2
D sin 8§ o at

ghere & is positive nose-up (See Figel

w

Figure 1

I the energy height is ho, where
2
he = Ix =+ USiog 4 :

and h = true helght, then

Me _ aw,uau
dt B t z d
= U sin 8 + T Ot
and from (2)
dho .
H. - W (5)



But 8 is the rate of sink of
the sailplane, v_, when flying stead-
ily at speed U,

In the presence of the upcurrent
w, the total rate of change of energ
height will be

oo = W= V_. )
dt tot =

The total change of energy height
between % and %, will be:

2
X
2 [an
q =f/ """“"?- dt dx
e ; _dt Sk dx
2y
_._r-xa 1
:/ (w - VS) U dxe (5)
&
™y

Let us suppose that we wish to
fly in such a fashion that, for a
given (x? - xl), T is a minimum and
He = 0, This is not the only crite-
rion which could be applied but it
represents a simple case analogous to
the usual criterion for analysing
cross=country flyine,

T is of the form .rF(u)dx and

H, 15 of the form [G(U,x)dx.

It therecfore follows that the
criterion to be satisfied is

aF*
ST = 0,
where P = F + \G
= % + % (w - VS), (6)

and Xk is a constant Lagrange multi-
plicr.
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50 the criterion-is:

I - o boiiEe
72 (w Vs) vt57 = O

ﬁLPJ

since v_ is a function of U only,
e

This can be re-arranged to give

BV Vo= W - %

oy T U 2

9% o since'* must clearly have the di-
mension of velocity,

avs ) VS - - w¥ . (7)
ol U

The criterion expressed by eqn. (7)
is shown graphically in Fig, 2.

. v
Wi
w ik
s 1
S
e
S
S
%
Figure 2
This is the standard '"MacCready"
situation, (Indeed any optimum flight

path for a sailplane gives a similar
result, leaving w* to be interpreted
according to the circumstances.)

w* 1s, in effect, the zero-setting of
the MacCready ring and, whilst the
diagram is drawn for a positive value
(equivalent to setting the datum op-
posite some rate of sink figure), the
sign of w* remains to be determined,
In practice, 1%t will often be neeative
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It sheould be noted that circumstances
can arise in which one should fly at
less than the aneed for minimum rate
of sink: din other words, 1t may be
advantageous to spend a long time in
the upcurrenltl at the expense of sone
ingrease in rate of sink,

From the pilot's point of view,
this analysis contains a severe difl-
ficulty: w* is ultimately determined
by the condition that He = 0 and hence

requires a knowledpge of w as a func=
tion of x over the distance X5 = X7,
Unfortunately, the pilot has no powers
of prophecy. %When flying under a
cloud-street, the pilot may initially
wish to gain height (on the averare)
until he is reasonably clecse to clouds
base and then adjust the MacCready
ring by a process of successive ap-
proximation so that, overall, there
iz no net change of height. In rea.
life, there tends to be insufficient
time to make the adjustments other
than very approximately,

ITlustrative calculations for a
fixed-geometry sailplane

For a sailplane with a parabolic

CD = CI curve, the performance polar

may he described by

v
=] .

—_— = =

v 3

50

(ﬂ3 +

Pof

=l

) (8)

where U = U/U_ and both v__
relate to the (L/D)max condition,

and UO

Let w = w/v_, and w*/v_,+ Then in di-

mensionless terms, the criterion of
eqn. (7) becomes

- r= = =y
Bvs ) VS W W ; (9)
af i}

This is illustrated in Fig. 3.
From (8) and (9)

1 1y _ L1 g2, 1y & + w
2 (30 - g2’ "2 (0 GP) 7
] = ok o & 3
whence w + wW* = 5 ~ Tty (10)

)

o=l

Figure 3

Suppose for the sake of simpli-
city, that a distance X9 in which

the upwards velocity of the air has -
the constant value w, is covered at
an optimum speed U1 and a distance

X,y 1n which w = 0, is covered at the
cérresponding optimum speed U,.

Then trom (10)

l,
]
and e S Uz,
tT._) st
whence ¥ = 4= 02 - L . Ug i LEL)
Ul 2 i

Also, the rate of e¢limb over

distance x will be v = w - vV _-.
c sl

For zero overall height change: |

2's2 . (12)

X1?C
Ul

(Strictly, since the previous
theory dealt with energy heights
rather than true heights, this ex-
pression should include a kinetic
energy correction.)




% v . Ul
(w - vsl)

.(13)

Since V_q and V_, are functions
of Ul and Ua respectively, (11) and

(12) can in principle be solved si=-

multaneously to give Ul and U2 ifw

and x./x. are known.
1 %2

It is interesting to consider
what combinations of thermal strengtn
(w, in effect) and distance ratio
xl/xp are required to maintain con-

tinuous flight. One obvious particu-
lar case occurs when UD/Vs? is a maxi-

mum (i.e., when the sailplane is flown
at (L/D)maX over the distance x?).

This will correspond to U2 =1,

Vo @ 1,

Under these conditions

w* = 0,
S =i (14)
0 i1
1
2
xn 2% (15)
X2 1 - 30¢

Eliminating U, from (14) and

(15) gives a relationship between W
and the least value of xl/x2 which

will just permit continuous flight.

1t is apparent that Ui <1/3, from
(15). Now, from (8), Ug = 1/3 corres-

ponds to V so, as is apparent on

smin
physical grounds, the limiting case

corresponds to flying at minimum sink
in a continuous up~current of the same

strength (i.e., xl/X2 = ®,

W = 2/30.?5) 1-; 1 o 2/30'75)0

8
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The choice of values of Ul is
therefore very limited: the maximum
value is 3—% and the minimum value is
that corresponding to the stall.

A few results are given in Table
1‘

TABLE 1
Ul xl/x2 W
0,759 L 0.877
0,75 20.4 0.91
0,70 %,.,50 1,09
0.65 1.87 1.27
= Thermal strength
Rate of sink of glider at
best L/D
5. - Speed
17 Speed at
best L/D

These results are not realistic
because we have imposed the condition
that the average speed shall be a
max., even very weak thermals require
the glider to be flown at unrealis=-
tically low speeds. The expression
we have used- for the performance (8),
has no implied lower limit to U. Tt
would be better to assume that the
sailplane is never flown at a speed
less than its speed for min, sink, in
which case, in examining the limiting
conditions for continuous flight, we
abandon the maximum average concept,
The sailplane is flown at min, sink
in the rising air and at its best
gliding angle in the still air.

Inserting Ua =V . =1, Ul = B

s2
and ?sl = 2/50'?5 in (13), this be=
comes approximately:

1__o0,75%9 . (16)

X, w - 0.878
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Figures obtained from eqn.
given in Table 2,

(16) arc

TABLE 2
W Xl/}:2 1
'}{1 + }{2

0.878 o 1
1.0 622 0.86
Tals l.22 0.55
2.0 0.675 0.403
3.0 0.375 0272
L.,0O 0.243 0.196
5.0 0.184 0155
£.0 0,148 0.129
7.0 0.1l24 0,110
LS.O 0.1065 0,096

= Thermal strength

W = Rate of sink Of
sailplane
at best L/D
Xy = distance in X2 = distance in
riging air still air

If we now consider in general
terms the case of achieving maximum
average speed, we can asslpn some
likely constant value to Ul and then

consider a series of values of UP' From
(11), we can obtain the value of W,

Since Ecl and Vv_, are simply related

e
to Ul and U? respectively, X.!/X2

can be found from (12)., A more use=
ful quantity is (xl + xayxl, Lsley

the ratio of the total distance to
the distance traversed in 1ift. It
is then possible to derive the non-
dimensional average cross-country
sbeed, since

cc?

b

M
i s =, (17)
cec 1+ X /%,

For the present purposes, the
assumed values of Ul were 0,7 (for

the sake of illustration; slightly
less than the gpeed for minimum rate
of sink), 0,759 (speed for minimum
rate of sink), 1.0 (speed for best
rliding angles and 1,2. Values of
ﬁp up to 2.0 were takcn,

The results are presen*ed in
Table 3 and in Fig, 4 on (xl + Xq)/xl:
i
W, ares.

Lines of constant Ul’ UB

and Ucc are drawn.

TABLE 3
[[‘.E w )(l_;lxa _cc
1.0 1.086 1.287 0.765
1.1 | 1.508 | 1.8-9 0.886
B, =070 1.2 1.981 2.469 0,995
Vg1 = U886 1ok 3.116 3.584 1.207
1.6 La557 4w Dl5 1.398
1.8 | 6.363 | 5.405 1.600
2.0 | 8.586 | £.173 1.785
1.0 |0.878 | 1.0 0,759
a3 1.300 1.543 0.878
0; = 0.759 l.2 1.773 2.114 38
_ 1.4 | 2.908 | 3.164 1.197
Ty 2 B 1.6 | 4.349 | 4115 1.392
1.8 | 6.155 | L.926 1.590
2.0 8.378 54649 1.783
l.22 | 1.0 1.0 1.0
7 = 1.0 1.4 | 2.030 | 1.838 1.182
_ 1.6 | 3.471 | 2.710 1.378
Vi o= 1.0
1.8 5277 3.401 1.56L
2.0 |7.500 | 4.048 1.750
1.395( 1.120 | 1.0 1.2
0, = 1.2 1.5 | 1l.135 | 1.010 1.2
% 1.6 |2.576 | 1.B25 1.382
1.8 4.382 24545 1.565
2,0 | 6.605 | 3.145 1.745
= p—




ax

Velocity of rising air

Rate of sink of the sailplane at (L/D),,

X +Xo _ Total distance
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I=

o

X; " Distancein lift

1 2 3

4 5 6

Figure 4

Numerical example

Consider a sailplane whose

(L/D)max is 42 at 42 knots EAS,

If w = L over 255 of the flight
path, the upcurrent strength would be
} knots, Flown at U, = 0,759, the
rate of c¢limb would %e 4 - O.é?S =
5¢122 knots, & would be about 1.3/,

corresponding to an average Sﬁeed of
56.2 knots, The aprropriate 5 would
be 1.55, or 65 knots, =

For the same glider with the
same vertical air velocity extending
over one=third of the distance the
results become:

Speed to flv in 1ift: L2 knots
Ratec of climb: 5 knots

Speed to fly hetween 1ift: 70 knots

Averapge speed: 60 knotg
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CONCLUSIONS

If a cross-country flight is
carried out in conditions which per-
mit it to be made without circling,
the criterion which must be applied
in order to achieve maximum average
speed 1is similar to the MacCready"
criterion for determining optimum
speed between thermals in a normal
cross=country flight., However, the
datum vertical velocity (denoted by
w¥* 1n the analysis, and corresponding
to the datum sctting of a MacCready
variometer ring) is determined by
the overall distribution of vertical
air velocity along the flight path
together with some overall condition
such as zero change of energy height
between the bheginning and the end of
the flight. In practice, a pilot
would have to proceed by a process
of successive approximation,

Some calculations have been made
for fixed=geometry sailplanes flying
through air which has a constant
vertical velocity over part of the
flight path and is at rest elsewhere.
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