DYNAMIC ANALYSIS OF DOLPHIN-STYLE THERMAL CROSS-COUNTRY FLIGHT.

Part II
Dr. Jozsef Gedeon
Technical University Budapest, Hungary

Prepared for the 14th OSTIV congress Waikerie, Australia 1974

Continuing the work reported on in Part I, a second thermal model patterned after Konovalov type "a" thermals has been introduced. Circling cross-country flight calculations and quasi-static dolphin flight calculations using "square shaped" thermals have been made in order to get a basis for comparison. The computer program doing the two degrees of freedom dynamic calculations has also been improved upon.

Analysis of a fair number of computer runs using both the first and the second thermal model seems to recommend following flight tactics:
a. A medium level of load factors and climb/dive angles looks to be the best choice ($n_{L} \cong 1.8$, $n_{G} \cong 0.56, \quad \theta_{H} \cong 21^{\circ}$).
b. As for the optimum place to initiate the pull-up, there are two alternatives. In order to get maximum energy gain from the thermal, i.e. when aiming for optimum glide distance, the pull-up has to be started some $3 \mathrm{R}_{\infty}$ to $5 \mathrm{R}_{\infty}$ before entering the up-draft. The correct pull-up point for best cross-country speed is in the thermal core, in case of the second thermal model at some $1.0 R_{\infty}$ to $1.5 R_{\infty}$ after entering the updraft. Taking into account the lag due to pilot reaction time and the lag time constant of the sailplane longitudinal short period motion a pull-up decision at the point of entering the core may be recommended.

INTRODUCTION

In Part I of the paper, presented at the 13th Congress (1), the author attempted to develop a computer procedure for taking into account some important dynamic losses in the flight path calculations of dolphin-style traverses through thermals. Incentives to start this work were the seemingly general lack of sound theory/simple instrumentation combination, to quote the well known MacCready theory and ring or special instrument for circling thermal crosscountry work by way of example, to enable this type of flying to be done most effectively and the fact that previous papers known to the author $(2,3)$ do not go beyond quasi-static treatment of the problem.

Since then several papers on the subject have been published - e.g. that of ANTWEILER (4) giving an ingenious graphical method of computing the cross-country speed - but all those known to the author deal with the problem by way of quasi-static methods, the most effective technique of piloting the transient sections of the flight (taking into account the limiting conditions and additional losses imposed by finite maneurverability of the glider) remaining unsolved. A continuation of the work, therefore, appeared to be worthwhile and the results are given in this Part II of the paper.

TECHNICAL SOARING, VOL. III, NO. 3

NOTATION

Subscripts

e
s
A
B
C
Superscripts

climb
glide
at point A
at point B
at point C
quasi-static idealized conditions, "square thermal"

1. Thermal Models

Dynamic dolphin-flight calculations reported in Part I were based on the isolated thermal model having the updraft profile

$$
\begin{equation*}
c=c_{0} e^{-\left(\frac{x}{R}\right)^{2}}\left[1-\left(\frac{x}{R}\right)^{2}\right] \tag{1}
\end{equation*}
$$

with maximum updraft c_{0} and nominal thermal radius R as free parameters (Fig. 1). The thermal field was supposed to consist of identical thermals of equal spacing S. In order to give some basis for preestimating the accuracy to be expected while using this model, isolated thermal profiles as given by WOODWARD (5) Fig. 2, and as given by KONOVALOV (6) Fig. 1, type "b", are reproduced in Fig. 2. It may be seen that there is a substantial difference between the two experimental results, the profile given by Equ. (1) and Fig. 1 lying between them and fairly close to the values reported by Konovalov.

FIGURE 1. Isolated Thermal and Thermal Street Model.

Sustained dolphin flight using only isolated thermals is rarely, if ever, made, so a need was felt to fill the gap between the isolated thermal and the fully developed cloud street. Fortunately, KONOVALOV has reported on multi-cell thermal structures also (6) Fig. 1, type "a", an early confirmation of his results for a country of different climate is given by MILFORD (7). Stimulated by these, an attempt was made to extend Equ. (1) to cover a four-cell,
blended-core thermal structure. After some trials; the following formula -was arrived at:

$$
\begin{align*}
c= & c_{0}\left\{\frac{13}{11} e^{-\left(\frac{x+2 R}{R}\right)}\left[1-\left(\frac{x+2 R}{R}\right)^{2}\right]+\right. \\
& \frac{4}{3} e^{-\left(\frac{x+\frac{2}{3} R}{R}\right)^{2}}\left[1-\left(\frac{x+\frac{2}{3} R}{R}\right)^{2}\right]+ \\
& \left.\frac{4}{3} e^{-\left(\frac{x-3}{R} R\right.}\right) \\
& {\left.\left[1-\left(\frac{x-2 R}{R}\right)^{2}\right]\right\} } \tag{2}
\end{align*}
$$

The profile given by Equ. (2) may be seen and compared to the Konovalov profile type "a" in Fig. 3. In the outer parts of the lift area there is a systematic error but in view of the limited number of test results known to the author the theoretically attractive principle of equal inner core spacing appears to be justified. The lift area as given by Equ. (2) extends from $x=-89 / 30 R$ to $x=+89 / 30 R$ the updraft section length being $\mathrm{L}=$ 89/15 R = 5.933 R. For practical purposes the border of influence of the thermal group, i.e. the downdraft region boundary, may be set at $x= \pm 5 R$. This thermal model may be referred to as type 2, or four-cell or group model as opposed to the type 1 , or single-cell or isolated thermal profile given by Equ. (1).

FIGURE 2. Thermal Profiles as Given by Woodward (Ref. 5) and by Konovalov (Ref. 6, type "b").

FIGURE 3. Four-Cell Thermal Profiles Konovalov Type "a" (Ref. .6) as given by Equation (2).

Looking for optima in multiparameter problems by way of numerical methods can be intricate and laborious so a comparative quasistatic, idealized cross-country speed calculation may not be out of place. For that purpose a thermal field composed of "square" thermals of uniform constant $\mathrm{c}=\mathrm{c}_{\mathrm{o}}$ lift along the traverse length L and with uniform downdraft -0.07 c o between the thermals was adopted.

2. Computer Program Improvements

As already described in Part I, the computer program was built around three types of path elements:

- procedure SIKL (for GLIDE) giving constant speed flight;
- procedure DELF (for DOLPHIN) to compute flight path sections with prescribed constant normal acceleration;
- procedure KIFUT (for RUN DOWN) giving constant attitude flight, conceived originally to smooth out minor speed differences between adjacent sections but employed later in more general roles also.

Correct sequencing of these path elements to give the desired flight profile seemed to be a straightforward matter at first but in practice this turned out not to be the case. A considerable amount of computer time had to be spent in "teaching the program to fly". Difficulties centered around arriving at a smooth transition between the end of the slow-down and re-accelerate sections and the beginning of the following climb glide sections respectively. The present state-of-the-art in program organization is to be seen at the flowchart on Fig. 4.

The starting point is at $\mathrm{x}=$ -2.5 R for single-cell thermal traverses and at $x=-5 R$ for four-cell ones. Constant speed'glide is computed to point $x=x_{A}$. At this point, before entering the ${ }^{A}$ pull-up phase of the slow-down section, with the knowledge of v_{e} and θ_{H} a crude value of the speed to initiate push-over $\left(\mathrm{v}_{\mathrm{H}}\right)$ is worked out. Pull-up is made

FIGURE 4. Flowchart of the Revised Computer Program.
with prescribed constant normal acceleration n_{L} until θ_{H}. From this point constant attitude flight using procedure RUN DOWN is followed until speed is reduced to v_{H}. (In describing the program all speed values are given in lower-case letters, because the program is using $m \mathrm{sec}$ units, conversion of the cross-country speed to km h units being done only before print out.) After the following push-over with n_{G} minor differences to the desired gliding speed in the
central climbing section of the traverse (v_{e}) may still occur. Therefore, after the level-out, a control for speed difference is made and one or two speed correction sections are inserted if necessary. Speed correction sections are composed of twin short arcs of push over and pull up (in that order for speed gain and in the reverse for slowing down) using procedure DOLPHIN. A similar cycle of events takes place at the re-accelerate section end in correct sequence. Computing the glide distance S and the cross-country speed $V_{A T}$ are done as previously.

Using this method consistent smooth transitions are achieved. Profress in this domain may be judged by
comparing. Fig. 5 and 6 to Fig. 5 of Part I.

3. Circling Cross-Country Speed

Circling thermal cross-country flight calculations and tactics are theoretically well-founded and proven by many years of practical experience. It was, therefore, thought advisable to, make a short review of circling performance data calculated using the same ASW 15 polar against corresponding results of dolphin flight calculations. To facilitate the comparison, circling flight data will be presented in a somewhat unusual form.

FIGURE 5. Traverse of a $5 \mathrm{~m} / \mathrm{sec}$ Single-Cell Thermal Type 1.

FIGURE 6. Traverse of a $2 \mathrm{~m} / \mathrm{sec}$ FourCell Thermal Type 2.

If we are intending to begin our calculations in a completely idealized form, we can start from a very largesized "square" thermal in which the glider could do its circles practically without banking with a relative sink $w_{\min }$. In this case, for a given thermal strength, cross-country speeds would depend only on the glide speed between thermals $\left(V_{S}\right)$ and hence on the glide ratio $H / S=\epsilon_{S}$ as shown on Fig. 7. Optima of the curves correspond to the well-known MacCready speeds. Optimum rates of climb in circling are considerably below those underlying the results given in Fig. 7 due to increased relative sink in banked circling flight. Rate of climb ratios as function of the thermal number φ for a number of type 1 isolated thermals of different strength and nominal radius are to be seen on Fig. 8. There is no possibility for climbing below $\varphi=9$ to 10°, for good climb ratios a value of $\varphi \geqq 40^{8}$ being neces sary.

FIGURE 8. Rate of Climb in Type 1 Thermals.

The reduction in rate of climb due to banking and to the decrease of lift in the outer parts of the thermal is well suited to theoretical/ numerical treatment. There is much more uncertainty in accounting for another practical difficulty in optimal utilization of the thermal lift: the time spent in reduced climb while searching for the center of the thermal. This problem has been circumvented by assuming only $w_{e} / 2$ for the first 30 seconds of the climb.

Cross-country speeds calculated this way for type $1 \mathrm{c}_{0}=2 \mathrm{~m} \mathrm{sec}-1$ thermals are given in ${ }^{\circ}$ Fig. 9. To avoid confusion, only the curves for the lowest and greatest height of

TECHNICAL SOARING, VOL. III, NO. 3

FIGURE 9. Circling Cross-Country Speeds in Type 1 Thermals.
climb, $H=100 \mathrm{~m}$ and 2000 m respectively are shown. It is interesting to do some elementary slide rule work using Figs. 7 and 9. Let us take a thermal street of $c_{0}=2 \mathrm{~m}$ $\sec ^{-1}, R=200 \mathrm{~m}$ thermals placed $\mathrm{S}=25 \mathrm{~km}$ apart. In idealized conditions a best cross-country speed $\mathrm{V}_{\mathrm{AT}}^{*}=70.5 \mathrm{~km} \mathrm{~h}{ }^{-1}$ would be obtainable at $H / S=0.034$ by doing $H=850 \mathrm{~m}$ climbs in the thermals and gliding with the speed appropriate for this gliding ratio between them. Entering with the same values in Fig. 9 shows a cross-country speed of about $V_{A T}=46 \mathrm{~km} \mathrm{~h}^{-1}$ the ratio of real to idealized cross-country speeds being this time:

* When comparing results given by Tomczyk in (3) with those of the present paper, care should be taken not to overlook a difference in notation. Tomczyk is using the same sign L for the updraft section length but S is for the downdraft section length and not for the thermal spacing as here. Our S reads $\mathrm{S}+\mathrm{L}$ in paper (3).

$$
\frac{V_{A T}}{V_{A T}^{*}}=\frac{46}{70.5}=0.652
$$

Fig. 9 shows a possibility to improve slightly upon this situation by gliding between the thermals with V_{S} corresponding th $\epsilon_{\mathrm{S}}=0.029$ and reducing the height of climb to $\mathrm{H}=$ $0.029 \times 25000=725 \mathrm{~m} \cdot$ Cross-COuntry $^{\text {- }}$
speed will mount to $V_{A T}=47.5 \mathrm{~km} \mathrm{~h}^{-1}$ and the speed ratio will be:

$$
\frac{\mathrm{V}_{\mathrm{AT}}}{\mathrm{~V}_{\mathrm{AT}}^{* T}}=\frac{47.5}{70.5}=0.674
$$

Results as these may be compared later to corresponding dolphin flight values.

4. Idealized Dolphin Flight

There is no problem in interpreting quasi-stationary, idealized sustained dolphin flight speed formulae for a "square" thermal street; it was thought, therefore, not to be necessary to repeat them here. Those interested could refer e.g. to the paper of TOMCZYK (3)*. On the other hand, for greater values of L/S
results of the classical cloud-street flying theory (see e.g. the paper of FAVARGER (8)) may be considered. Cross-country speed depends on thermal strength $c=c_{0}$, on updraft mileage to total mileage ratio L / S, on the speed in climb V_{e} and on the glide speed between thermals V_{3}. For the sake of clarity, no single parameter trends but only best cross-country speeds for a given thermal strength and L/S ratio are represented on Fig. 10. In searching for optima by way of dynamic calculations, results may be set against these idealized values in order to get better insight into the influence of different parameters.

When making comparisons between circling and dolphin flight calculations, H / S values may be converted into corresponding L / S values by knowing and only by knowing - the value of L. E.g. the numerical example cited

FIGURE 10. Cross-Country Speeds in Idealized Dolphin Flight.
in commenting on Fig. 9 should mean a ratio of $\mathrm{L} / \mathrm{S}=2 \mathrm{R} / \mathrm{S}=400 / 25000=$ 0.016, a value obviously out of question even for idealized sustained dolphin cross-country flying.

5. Energy Gain and Flight Efficiency

When, after doing a dynamic dol-phin-style thermal traverse calculation, a single parameter is altered and then the calculation repeated, both main results of the calculation (cross-country speed and gliding distance to the next thermal) will change. Sad to say, there is no possibility of doing a sequence of oneparameter calculations, say for a fixed value of L / S, in order to get direct optima for speed. This state of affairs necessitated the introm duction of efficiency parameters by means of which improvements could be more directly assessed. The three parameters to be proposed in the following will be somewhat arbitrary by the very nature of the problem but they nevertheless fulfil their intended purposes satisfactorily.

Our first look at the development of flight tactics will be for maximum energy gain in crossing the thermal. An obvious measure for this would be the height gain H (or H_{D} in case of appreciable difference at that point) after crossing the thermal at $x=2.5 R$ and $x=5 R$, respec tively. Since calculations will have to be done for different glide speeds between thermals V_{S} and possibly for
different thermal diameters too, use of the following formulae for a gross energy gain coefficient may be recommended (see also Fig. 1l):

$$
\begin{align*}
\gamma & =\left(H_{2 \cdot 5 R}+5 R \epsilon_{S}\right) / 5 R \tag{3a}\\
\gamma & =\left(H_{5 R}+10 R \epsilon_{S}\right) / 10 R \tag{3b}
\end{align*}
$$

(3a) being for type 1 and (3b) for type 2 thermals, respectively.

FIGURE 11. Definition of the Energy Gain Coefficient.

Our next concern will be to achieve the greatest possible glide distance to the next thermal and/or the greatest cross-country speed. On this behalf, let us draw the idealized cross-country speed curve of Fig. 10 (e.g. that belonging to thermal strength $c_{0}=2 \mathrm{~m} \mathrm{sec}^{-1}$) not against L/S but against the reciprocal value S/L as shown on FiE. 12 . Should the point P, corresponding to the glide distance S / L and to the cross-country speed V_{AT} obtained in a dynamic calculation, be plotted on this graph, the results will be seen to las below the idealized values both in glide distance and in crosscountry speed due to dynamic losses. By projecting P for constant speed, we get to point A giving the idealized glide distance for the same speed S^{*} / L (point A_{1}). Doing the same for constant glide distance point B on the idealized curve giving $V_{A T}^{*}$ (point B_{1}) may be obtained. It is obvious that we have herewith a possibility of defining a glide coefficient as

$$
\begin{equation*}
\eta_{S}=\frac{S / L}{S^{*} / L} \tag{4}
\end{equation*}
$$

and a speed coefficient as

$$
\begin{equation*}
\eta_{\mathrm{V}}=\frac{\mathrm{V}_{\mathrm{AT}}}{\mathrm{~V}_{\mathrm{AT}}^{*}} \tag{5}
\end{equation*}
$$

For the example given on Fip. l2 $S / L=1.94$ and $V_{A T}=107.3 \mathrm{~km} \mathrm{~h}-\mathrm{I}^{\circ}$ hac been computed projections on the idealized curve giving $S^{*} / L=2.65$ and $\mathrm{V}_{\mathrm{AT}}^{*}=124.4 \mathrm{~km} \mathrm{~h}{ }^{-1}$ respectively. The value of the glide coefficient is, therefore,

$$
\eta_{S}=\frac{1.94}{2.65}=0.731
$$

and the speed coefficient is

$$
\eta_{V}=\frac{107.3}{124.4}=0.863
$$

FIGURE 12. Definition of the Glide Coefficient and of the Speed Coefficient.

6. Single-Cell Thermal Crossings

Calculations have been done first on type 1 single-cell thermals as opposed to thermal streets. Parameters and results obtained are given in Table 1 for the 11 runs computed. Values of the energy gain coefficient γ are plotted - using symbols given in Fig. 13 - over the pull-up lead coefficient β on Fig. 14 for all runs. When comparing the results, the following comments may be made:

- no definite maxima for load factors and for climb angle can be claimed from these few runs but moderate values seem to be a fair compromise;
- there is a clear advantage in energy gain for early pull-up;
- the relative density of strong single-cell thermals indicated to be necessary for sustained flight seems to be disproportinately high when compared with meteorological observations.

It was this latter fact which strongly suggested the development of the type 2 four-cell thermal model for which all subsequent calculations have been made.

7. Four-Cell Thermal Crossings

Due to limitations of computer time and man-power, standard values of $c_{o}=2 \mathrm{~m} \mathrm{sec}-1$ and $R=100 \mathrm{~m}$ were adopted for all type 2 thermal calculations. Parameters and results of the 54 runs done so far are compiled in Table 2. In order to find out some trends, let us take a closer look at a few systematic sequences. For marking of the parameters n_{L}, m_{G} and θ_{H} in subsequent figures the symbols as given Fig. 15 are used.

Losses in cross-country performance as compared to idealized conditions are primarily attributable to the distance covered while slowingdown and re-accelerating and to the drag incpements due to increased

TECHNICAL SOARING, VOL. III, NO. 3

TABLE 1. RESULTS OF SINGLE-CELJ THERMAL TRAVERSE COMPUTATIONS

	Thermal to			Flight bata						Remuits							
R.m	M sec^{-1}	2 =	\%	V_{s} in n^{-1}	Veexy a^{-2}	${ }^{\prime}$	${ }^{3}$	θ_{H}°	3	S_{1} / R	$5_{6} / \mathrm{R}$	$S_{2 /} / 2=$	${ }_{5}{ }_{c} / \mu$	$\times 10^{-2}$	\$/1.	$v_{\text {AT }} \mathrm{kos} \mathrm{h}^{-1}$	2enaris
1	3.0	200	25.757	139.880	280.33	1.50	0.80	15	1.77	1.150	2.038	6.260	10.92	1.491			$3<52$
2	3.6	220	25.75:	139.880	104.58	1.45	0.75	15	2.85	1.243	2.078	6.142	11.14	1.387			$A<5 R$
3	3.0	202	25. 757	139. 2×0	101.09	1.05	C. 75	15	4.23	2.134	2.011	6.085	10.78	2.224			$\mathrm{S}<\mathrm{SR}$
4	5.0	300	33.636	139.908	30. 53	$\therefore 30$	0.75	18	4.22	$1.23 n$	2.7Ei	10.42	22.35	3.139			$s<3 k$
5	5.0	200	51.515	139.540	72.292	1.40	D. 70	22	2. ¢ะ	0.937	1.15	5.025	5.195	5.631	3.947	112.343	
6	6.0	202	51.515	139.830	72.092	1.70	4.70	22	2.56	0.936	1.122	5.028	5.915	5.593	4.125	113.565	
7	6.0	200	S2. 5215	105.296	72.032	2. 30	0.70	15	0	0.484	0.607	2.295	3.253	3.253	4. 710	36. 357	
\%	6.:	220	S1.515	303.296	72.052	1.82	0.0	15	1.072	0.493	0.295	2.641	3.106	5.217	4.1428	95.302	
9	6.0	200	51.515	103.296	72.092	1.30	0.70	15	2.357	0.512	0.583	2.74 \%	3.122	1. 343	4.939	93.561	
10	3.5	200	42.929	153.296	72.052	1.30	0.70	15	0	0. 296	6.749	3.191	4.015	4.760	3.632	95. 501	
11	5.0	20%	42.329	103.295	22.052	1.00	c. 72	15	1.0	C. 293	0.718	8.174	3.853	4.317	3.389	94.0.43	

load factors in pull-ups. It would, therefore, presumably pay to make the distances $S_{L}=x_{B}-x_{A}$ and $S_{G}=x_{D}$ - X_{C} as short as possible using, of course, reasonable load factors. In order to get specific values, transition distances may be compared either to the half of the updraft section length $\mathrm{L} / 2$ or to the theoretical minimal radius of turn of the sailplane R_{∞}. In the former case some measure of the proportions of the thermal utilized imperfectly is shown while the latter can be used in comparing results obtained on different types.

Specific values of transition distance are plotted against glide speed between thermals V_{S} on Figs. 16-17. For every glide speed, the lowest values are invariably those for the combination $n_{L}=1.8, n_{G}=$ 0.56 and $\Theta_{\mathrm{H}}=21^{\circ}$. This is, of
course, not an absolute statement but transition distances being interesting only in their aftereffects, this will be enough to start with.

In the search for optimal conditions, let us pay attention first to energy gain coefficients. It has been concluded from previous investigations that best choices would be medium values of load factors (e.g. around $1.8 / 0.56$) but the role of the climb angle θ_{H} has not yet been as clear. On Fig. 18γ is plotted against θ_{H} using identical load factors and for different lead coefficients β. Values obtained this way seem to indicate a mild optimum somewhere around $\theta_{\mathrm{H}}=21^{\circ}$. For increasing climb angles the straight portions of the transition sections become steadily shorter so there is no point in extending the search to still higher values of θ_{H}.

Thermal type:

N_{L}	N_{S}	θ_{H}		
15°	18°	22°		
1.50	0.80	\diamond		
1.80	0.75	\diamond	\square	
1.80	0.70	\diamond		∇

FIGURE 13. Symbols Used on Type 1 Thermal Crossing Charts

FIGURE 14. Energy Gain Coefficients Calculated for Traverses Through Type 1 Thermals. (Numbers are for c_{0} / R)

Thermal type: \sim^{\sim}

FIGURE 15. Symbols Used on Type 2 Thermal Crossing Charts.

FIGURE 17. Length of Re-Accelerating in Type $22 \mathrm{~m} / \mathrm{sec}$ Thermal.

FIGURE 18. Influence of Climb Angle on the Energy Gain in Type 2 $2 \mathrm{~m} / \mathrm{sec}$ Thermal.

The best place to initiate pullup for the greatest energy gain may be examined on Fig. 19. As concluded from Fig. 13 for single-cell thermals, an early pull-up, before entering the updraft area, is to be recommended. If the glide speed between thermals is $V_{S}=103 \mathrm{~km} \mathrm{~h}^{-1}$ (i.e. at $\epsilon_{\text {opt }}$), then the best value is around $\beta \cong 2.5$ to 3.0 and in this case not much harm is done by disregarding this value. There is even a second, local optimum in the core being, however, without practical significance.

FIGURE 19. Influence of the Pull-Up Point on the Energy Gain in Type $22 \mathrm{~m} / \mathrm{sec}$ Thermals.

For higher glide speeds, the place for optimum pull-up shifts outwards to $\beta=5.0$ and greater values and performance differences are accentuated. It pays, therefore, to have an eye on this but more of it later.

A general view of all results in $V_{A T}$ - S/L co-ordinates is given on FIE. 20. As correctly anticipated on Fig. 12, the best gliding distance Qbtainable decreases from the idealized $\left(S^{*} / \mathrm{L}\right)_{\text {max }} \cong 3.16$ to $(S / L)_{\max } \cong$ 2.59 and for a given value of S / L a fall of 17 to $20 \mathrm{~km} \mathrm{~h}^{-1}$ in cross country speed V_{AT} as against $\mathrm{V}_{\mathrm{AT}}^{\mathrm{H}}$ has

TECHNICAL SOARING, VOL. III, NO. 3
been registered. While accepting the general validity of the best load factor and climb angle values obtained for energy gain for all purposes, the influence of the pull-up lead on the glide coefficient and on the speed coefficient may be worth further investigation.

FIGURE 20. General View of Type 2 $2 \mathrm{~m} / \mathrm{sec}$ Thermal Traverse Results.

Fig. 21 shows glide coefficient values as function of the lead coefficient for three different glide speeds V_{s}. β values for best glide distance ${ }^{\text {s. }}$ are in fairly close agreement with those for optimum energy gain, consequently no need is apparent for modifying maximum energy gain flight technique.

A different story is seen in

Fig. 22. Speed coefficient against β curves may show dual optima, but best conditions are to be found here in the thermal core somewhere between $\beta=-1.0$ and $\beta=-1.5$. Allowing for pilot reaction time, for neuromuscular lag and for the lag time of the sailplane longitudinal short period motion, the best moment to initiate
the pull-up would be about when entering the thermal lift or a little later, depending on the glide speed.

8. Practical Consequences

When comparing Figs. 9 and 20, a clear speed advantage of the sustained dolphin flight over circling tactics for equal thermal strength is apparent - provided, of course, there is a high enough thermal density L/S to make it possible. In case the thermal strength/density combination is strong enough to sustain higher glide speeds between thermals, flight tactics for optimum speed coefficient are to be recommended. A possible basis for planning the glide could be the net height gain in the thermal we are about to leave. For steady cross-country flight, the height loss to the next thermal must not be above this value. Charts and instruments to facilitate this calculation would be of great help for advanced glider pilots.

Speed coefficient technique can be employed up to the S/L value bridgeable with the best glide ratio/ retarded pull-up flying mode. In our numerical example this point may be assumed to be near to run No. 52 at about $S / L=2.433$. Still higher values of S/L can be achieved by advancing the pull-up point up to the lead coefficient for best glide at this speed. In our case run, No. 6 is showing the greatest thermal spacing with $S / L=2.588$. The gap between the greatest glide distances obtainable using different techniques is, therefore, not significant - in the afore-mentioned case 151 m - being well within the probable error in estimating the distance between thermals.

In the case of a pilot approaching in a high speed glide a thermal he wishes to traverse without circling, and he estimates the glide distance to the next one to be critical for further pure dolphin-style flying, he has to reduce speed immediately. At first he has to change to the optimum glide speed and in the second step, some 100 m before entering the lift, pull-up has to be initiated.

FIGURE 21. Influence of Pull-Up Point on Glide Coefficient. (Numbers are for glide speed between thermals)

For $140 \mathrm{~km} \mathrm{~h}^{-1}$ glide speed, the difference between the glide distance in the best speed and best glide modes amounts to some 370 m , so the technique is well worth the trouble.

Between the greatest S/L for pure dolphin flight and the S/L value corresponding to the H/S value for optimum MacCready glide speed there is usually a fairly wide gap, the domain of mixed flight tactics. Investigations have not been extended to cover this flying mode too so far, but perhaps some of our results may, in a remodelled form, be of some use here too.

SUMMARY

Single and four-cell thermal traverses in dolphin flight have been

FIGURE 22. Influence of Pull-Up Point on Speed Coefficient. (Numbers are for glide speed between thermals)
calculated. Dynamic treatment of the problem was made possible by the use of a finite element method employing three types of path elements. Results have been analysed by calculating the value of the energy gain coefficient and by making comparisons with idealized "square" thermal crossings in glide and speed performances. Results obtained so far seem to recommend the following flight technique:
a. A medium level of load factors and climb/dive angles (e.g.: $n_{L}=1.8, n_{G}=0.56, \theta_{H}=21^{\circ}$) should be chosen.
b. For optimum energy gain and for best glide distance, the pull-up should be started some $3 \mathrm{R}_{\infty}$ to $5 \mathrm{R}_{\infty}$ before entering the up-draft. For best cross-country speed, the best pull-up point is in the thermal core, at a distance $1.0 \mathrm{R}_{\infty}$ to $1.5 \mathrm{R}_{\infty}$ from the nominal radius.

ACKNOWLEDGMENT

The author wishes to thank Prof. Dr. Pal Michelberger for making possible the research and to Prof. Dr. Elemer Racz for consultation and for his valuable suggestions.

Acknowledgement is due also to Mr. Attila Agoston, Mr. Laszlo Harcz, Miss Ilona Gaspar and Miss Krisztina Huszti of the Computing Center and to Miss Magdolna Petranyi for neat drawing of the figures.

REFERENCES

1. Gedeon, J.: Dynamic Analysis of Dolphin-Style Thermal Cross-Country Flight. Part I, TECHNICAL SOARING, OSTIV Publication XII.
2. Bohli, H. : Optimale Delphinfluggeschwindigkeit auf Streckenflugen. Aero Revue 197l. Nr. 8, August, pp. 391-393.
3. Tomczyk, A.: Przelot bezkrazienia. Skrzydlata Polska, 1972. Nr. 18, 30 Apr .
4. Antweiler, P.: Zur Theorie des Delphinstils. Luftsport, Jahrgang 7. Nr. 6, Juni 1972, pp. 13.
5. Woodward, B.: A Theory of Thermal Soaring. Aero Revue 1958. Nn. 6, June.
6. Konovalov, D. A.: On the Structure of Thermals. OSTIV Publication XI.
7. Milford, J.: Some Thermal Sections Shown by an Instrumented Glider. OSTIV Publication XII.
8. Favanger, D.: Vitesse de croisiere d'un planeur utilisant des rues de nuages. Aero Revue 1968. Nr. 12, December, pp. 645646, 1969. Nr. l, January, pp. 27-28.
