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SUMMARY

General soaring flight optimization
techniques are briefly reviewed. The
straight dolphin mode is examined and an
optimal flight policy on course of succes-
sive dolphin mode elements is suggested.
Also significant recent references in the
field are given,

NOTATION
d differential operator
w sailplane’s vertical velocity

with respect to ambient air

v sailplane's airspeed

x distance along the element

A Langrange - multiplier

clx) vertical velocity of the air as

function of x

altitude change in traversing the
element (= terminal altitude -
initial altitude)

Upward direction is considered positive,
downward negative in transitions as well as
in gil velocities,
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INTRODUCTION

In recent years there has been a sub-
stantial increase of interest and research in
the field of socaring flight optimization.

The problems of achieving maximum cross-
country speeds and maximum distances are fas-
cinating and challenging. Even the very
first step, i.e. problem formulation in a
rcal case, calls for theoretical as well as
practical intuition,

On an actual soaring racing course the
ultimate goal of the pilot would be to follow
a flight policy that brings him from the
starting to the finishing line in minimum
time. On a given day there might exist one
or more flight policies that yield the ahso-
lute optimum. At this point it is logical to
ask: Does the pilet have any means intention-
ally to pick up the policy or a policy that
yields the absolute optimum? The answer is a
solid no, The answer may depress a "scientist
pilot", but it surcly cheers up the "natural
pilot", who has perhaps already become anxious
about the increasing talk of the application
of scientific methods and technical instru-
ments within soaring.

And really — the problem of finding the
flight policy that minimizes the flight time
through a general course contains too many
independent variables, constraints and
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stochastic aspects combined with the exis-
tence of several different available flight
modes to allow a feasible rigorous mathemati-
cal approach in practice. Consequently, al-
though the global (absolute) optimum at least
in a certain sense exists, it is out of the
ability of any pilot intenticnally to perform
the correct series of dolphin motions, cir-
clings (thermalling), essings and deviations.
from the straight course that perhaps are
needed to produce the optimum. However, it
is recasonable to speak about optimizing an
element of the course, i.e., a clear-cut,
short part of the course. Also some elements
may be combined and at least a relative op-
timum of the combination can be found.
Accordingly it seems to the author that as to
a soaring flight optimum it is perspicuous to
speak about a "kind of optimum' a term that
was used by the author already in Reference 1.

For the optimization of the circling mode
we have the well-known result of MacCready.
As for the straight dolphin mode References 2,
3, 4, and 5 should be consulted. Furthermore
the mode of essing (alternate right-and left-
hand turns, no complete circles) is introduced
by Metzger and Hedrick in Reference 3. It is
evident that the circling mode is optimal
when strong thermals are clearly localized.
1f the lifting regions are not extremely lo-
calized, but occur over some significant per-
centage of the course, it usually is optimal
to utilize the straight dolphin mode. Under
less favorable 1ifting conditions than those
necessary for straight dolphining the essing
mode may prove toc be profitable.

In this paper we will be examining the
straight dolphin mode and suggest an optimal
flight policy on course of successive dolphin
mode elements. To obtain the optimal solu-
tion for the dolphin element we have to know
the atmospheric lift-sink distribution along
the element, However, as Irving in Reference
5 quite correctly states, '"the pilot has no
powers of prophecy.'" But in order to be able
to utilize the developed theory in practice we
have to cope with this "prophecy' affair. We
shall outline here a method that will compen-
sate the estimation errors in successive
steps.

DOLPHIN ELEMENT ESTIMATE

By Reference 2 we assume that any polar
equation can be approximated by the poly-

nomial
W= AvZ + Bv + C (1)
where A, B and C are constants. Then further

by Reference 2 we obtain for the optimal dol-
phin speed (neglecting winds) the expression

Ve v (G0 = Vl/:\ + i fe(x) (2)

A<0, C=<0, A<
Finally, the altitude constraint is given by

%2
s [Av + B+ E-L-‘Eii‘)—] dx = Kh (3)
)(1 v

where the integration is executed over the

element. Substitution of v from Eq. 2 to Eq.
3 and prescribing Ah allow the determination
of parameter x by Eq. 3. For details the in-
terested reader should consult Reference 2,

It is convenient to note that, after substi-
tution of v from Eq. 2, Eq. 3 takes the form

2

ro” £ [eto, 2] ax = an (4)
X

1

Accordingly in order to determine X we
have to know c(x) in [x P xz] , i.e., the
lift-sink distribution along the elcment,
Although the pileot has '"no powers of pro-
phecy", he however has the abhility to esti-
mate. Wedenote the estimate of the lift-
sink function in the interval by @(x). This
estimate could be based for instance on the
isolated thermal model or on the four-cell,
blended-core thermal structure, hoth of which
are introduced by Gedeon in Parts [ and II of
Reference 4 respectively. Also other kinds
of updraft profiles could be utilized. As a
matter of fact, thermal conditions might
spometimes appcar to be hazy cnough to justify
the application of constant & (mean value)
across the element as a first approximation.
The author wants to usec the opportunity to
remark that the sinusoidal updraft-downdraft
profile, used by the author in Reference 2,
does not reflect the author's view of a prac-
tical thermal model, but is utilized to show
clearly the behavior of pulling up in lift
and diving through down.

As to the element, it can of course con-
sist of one or more thermals. A longer ele-




ment produces more inaccuracies
but on the other hand it allows
better to concentrate on actual

into ®(x),
the pilot
flying.

After having fixed ¢(x) we insert it in
the altitude constraint, i.e. Eq. 4, and have

X
e
X

Ah

&, A] dx = (5)

where Ah is prescribed. Solving Eq. 5 for
the Lagrange-multiplier yields us X, an esti-
mate of the correct A. Consequently we have
coped with the "prophecy affair." It is how-
ever left to establish a procedure that com-
pensates the inherent errors of this method.
Now flying through the element the pilot is
able to find at every point the actual up-

or downdraft (at least in theory). With X
and the actual atmospheric vertical velocity
distribution ¢(x) he has the following air-
speed function to obey:

v(x) =‘/1/?‘ $ f\ + c(x)

(6)

Obeying the airspeed function given by Eq. ©
he actually comes out of the element with an
altitude change ;X2 f[;(x), X]dx. This

i
change generally is not equal to the pres-
cribed change Ah., Let us denote this change
by AR. Accordingly

AR (in general AR # #h)

(7)
Here X is the fixed estimate just found (thus
Eq. 7 is not supposed to be solved for ).

IXTZ £ [e(x), X] dx =

It should be noted at this point that
the solution given by X and ¥ (x) (and flown
by the pilot) is also an optimum solution,

It is the solution by which the actual dis-
tribution c¢(x) of the element is traversed in
minimum time, when the change of altitude is
AR, 1f AR = Ah, the pilot has virtually
succeeded in solving the problem he had in-
tended to solve. Even if the differcnces do
not match, he has the possibility later to
compensate the error. In the above treatment
no attention has been paid to other sources
of error except the use of €(x) in the deter-
mination of the Lagrange-multiplier.
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SEQUENCE OF OPTIMAL DOLPHIN ELEMENTS

Irving in Reference 5 chooses for his
constraint the demand for zero total change
of energy height in traversing the element,
Metzger and Hedrick, Reference 3, apply the
condition Ah = 0. Although any feasible &h
can be applied according to the purpose of
the element involved in the flight strategy,
it might in general be beneficial to maintain
a constant base level in a cloudstreet. Con-
sequently we consider a sequence of consecu-
tive dolphin elements. For each element the
pilot can prescribe Ah; before starting to
traverse the element. We suggest that his
prescriptions would look like the following

i -
i1y

- U, &h = i I

[&hi feasible)

! SR (1 |

(8)

E

ﬂhl

Here n = number of elements in the sequence.
0f courscjgi ahj is simply the actual devia-

tion from the initial base level at the end
of the i:th step.

Accordingly, every step of the sequence
is optimized separately with individual ¢;(x)
and (x, - x,).. Naturally the same thermal
model could bd applied throughout varying
only the model parameters. By prescribing
&hi by Eq. 8 the pilot clearly tries to main-

tain the initial base level. The relatively
strong correction procedure represented by
Eq. 8 should remain the only intended correc-
tive element of the method. That is, a pos-
sible deviation from the initial base level
at the end of a step shall definitely not
atfect the selection of the model parameters
of the thermal estimate of the subsequent
step. Double correction could easily result
in nonoptimal level oscillation.

The above scheme to try to maintain a
constant base level in a sequence of optimal
dolphin elements can not be claimed to be the
solution that absolutely minimizes the flight
time through the sequence. The scheme posses-
ses also another drawback, i.e. the approxi-
mate optimal airspeed is discontinuous on the

boundary of two successive elements. From
Eq. 6 we have
1% .
di = = _:_“TZ (9)
2AVA
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where dX = X, - X,
i+l i
different and accordingly the approximate
optimal airspeed has somewhat different
values at the end of step i and at the begin-
ning of step 1 = 1. A small correction ma-
neuver by the stick is acceptable, but should
dV on the boundary appear really remarkable,
the - determined by Egs. 8 and 5 should

not be utilized.

ought to apply simply a §
1o+ 10

+] and with which the differ-

el would not enforce dv

(given by Eq. 9) too large. With this dis-
continuity in mind we also note that it might
be advantageous to select elements with boun-
daries at maximum down current locations
since there ¥, which occurs in the denomina-
tor of the right hand side of Eq. 9, assures
its largest values thus cutting down dv.

In general the A's are

In this casc the pilot
which is bet-

ween A. and Ki
i :

ence di = & - li

CONCLUSIONS

In this survey we have represented mainly
general ideas of dolphin mode soaring. Also
the effects and compensation of the estima-
tion error of c(x) have been discussed. We
have not paid any attention to the effects of
other error sources. And, however, in prac-
tice the pilot would encounter the difficulty
of obeying his airspeed function (Eq. 6),
coping with the discontinuity of this approxi-
mate optimal airspeed on the element boundary,
etc. It is also clear that the method fea-
tured here would necessitate a tiny computer
on bhoard, if applied literally, The pres-
cribed ahj and the model parameters of Ei(x)
as input quantities the computer would yield
%. by solving Eq. 5 by iteration. Further
the computer would calculate the airspeed
function ¥. (x) (Eq. 6) by mcans of the polar
constants lA, C, the just fixed . and the
actual ¢ (x) at points along the “element. In
addition’to proper flying the pilot's main
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task would be in estimating the model para-
meters of the thermal distribution of the
element ahead. It should be noted also that
we have not included in this discussion any
of the various constraints which may affect
dolphin soaring tactics, too. Nevertheless,
although the theoretical ideas put forth in
this treatment are not very easy to follow in
practice in the present phase of soaring art,
they provide the pilot at least with qualita-
tive know-how on sustained dolphin techniques.
The other benefit comes in the form of provok-
ing further research along the paths outlined
here. A closer look might be thrown at the
stability of the correction procedure repre-
sented by Eq. 8. Also smoothing down the air-
speed discontinuity on the clement boundary
would be worth a specific study.
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