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Success in soaring depends on the effi-
cient extraction of energy from the atmosphere
and on its efficient utilization. The first
part of this process involves seeking regiomns
of ascending air and avoiding regions where
it is descending; the second part requires
the pilot to follow some sort of optimized
flight path, such as that indicated by the
MacCready construction.

Now the MacCready analysis, even in its
more sophisticated Calculus-of-Variations
form, implicitly assumes that the load factor
on the sailplane (i.e. 1ift/weight) is sub-
stantially unity (Refs. 1 and 2). In the
course of the analysis, it also emerges that
vertical flight paths with zero load factor
are admissible. If there are vertical
motions in the air traversed by the sailplane,
then the pilot will have to adjust his speed
accordingly, but the underlying assumption is
that the drag at any instant is the same as
the steady-state value at the instantaneous
speed and hence it is possible to derive the
usual relation between optimum speed and
variometer readings by a calculation based on
the steady-flight performance curve. In
practice, if the speed adjustments are neither
too sudden nor too great, this assumption is
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very reasonable and, in any case, the effects
of the changes of load factor will mostly be
self-cancelling. However, a pilot wishing to
pursue low-loss flying will want to know how

to deal with large adjustments of speed, as
when getting out of or into a thermal. Since
even the more sophisticated analysis only
recognizes load factors of unity and zero, it
offers only rather impracticable advice: to
indulge in vertical dives or climbs. Trying to
introduce the load factor as another variable
under the control of the pilot is not very re-
warding and it is clear that no analytical
solution will emerge. It is also likely that
the optimum maneuver in any particular circum-
stances would require even greater-than-usual
powers of prophecy by the pilot and would, in
any case, be too difficult to apply in real life.
Attempts (Refs. 3 and 4) have been made to
analyze dolphin-flying by computer calculations
but, whilst they have been successful, it is
rather difficult to disentangle the effects due
to the maneuvers of the sailplane from those due
to the atmospheric motions.

It therefore seemed sensible to analyze in
detail a single pull-up/pushover maneuver in an
attempt to establish some easily-defined tech-
nique for minimizing the energy loss in such a
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mancuver. To simplify the calculations, the
pull-up was assumed to take place at a constant
load factor, starting from level flight at 100
knots. When the sailplanc had slowed down to

a certain speed, a pushover was initiated--again
at a constant load factor--until the sailplane
regained level flight at about 40 knots. (Sce
Fig. 1}. 7The machine was assumed to have
typical Standard Class performance: a maximum
lift/drag ratio of 35 at 50 knots.

The equations of motion in these circum-
stances are such that there is no simple
analytical solution relating, say, speed and
flight path slope for a given load factor.
However, they can be reduced to a first-order
non-linear differential equation which can be
solved numerically by a step-by-step process.
It is clear that when the speed has fallen to
the chosen valuec at the end of the pull-up (the
"intermediate speed'), there is only one
possible pushover load factor which will take
the wachine from that particular combination of
speed and flight path slope to the desired
final conditions. It is therefore necessary
to find, by a trial-and-error process, the
load factor appropriate to each such
pushover. Fortunately, a suitable value can
be obtained from quite approximate calculations,
since great accuracy in the final speed is not
necessary.

C

————

I-./C.: 40 knots
approx

Push-over load
factor= il

Pull-up load
factor= nng

A
=== 1 - 100knots
Figure 1. Diagram of the pull-up/pushover

maneuver showing the notation used
in subsequent graphs.

For a given initial load factor, several
speeds can be chosen at which to terminate
the pull-up, each leading to its individual
pushover. For each complete mancuver, the
load factor and speed are known at all points,
and hence it is possible to calculate the rate
of loss of energy height at cach instant and
thus to find the total loss of energy height.
The energy height represents the sum of the
potential and kinetic energies per unit weight
of the sailplane and is defined by
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hp =h + V2/2g.

[n fact, the calculations did not involve time
explicitly but used flight path slope as the
independent variable, as explained in Appendix I.

It will be inferred that there was no
gradation of load factor at the ends of the
maneuver, nor at the point of inflexion. Clearly,
going instantaneously from a load factor, of
say, 2.0 to a value of 0.2 i1s unrealistic, but
inserting a smooth gradation has a negligible
cffect on the overall energy situation.

One would not expect much variation of
total energy loss as the initial load factors
and intermediate speeds of the maneuvers are
changed because there are two swings-and-round-
abouts situations prevailing:

{1} To somec extent, the increase in induced
drag during the pull-up will be cancelled
by the decrecase in the pushover.

(ii) A large initial load factor will produce

an appropriately large increase in the

induced drag but, for a given intermediate

speed, the larger the load factor, the
shorter the time for which it is applied.

Figure 2(a) shows that, for a given
initial load factor, there is an intermediate
speed which minimizes the total energy loss
for the whole maneuver. For example, with an
initial load factor of 2.0, the optimum inter-
mediate speed is about 70 knots. As it happens,
this is just about the mean of the initial and
final speeds but it is clear from the other
curves that this is not generally true: the
higher the initial load factor, the higher
should be the intermediate speed.

Figure 2(b) shows the pushover load
factor corresponding to various intermediate
speeds for each pull-up load factor and
Figure 2(c) shows the corresponding flight
path slopes. Figure 3 summarizes the conditions
corresponding to the minima of Figure 2(a).

1t is clear from Figure 3 that the minimum
loss of energy height decreases as the initial
load factor increases--at any rate, up to any
value likely to be employed in real life.
Evidently, in situation (ii) above, the brevity
of the pull-up wins. More generally, the
optimum maneuver involves applying a large
load factor for a short time when the speed is
high and the induced drag is a small proportion
of the total drag. Much of the maneuver occurs
at a low load factor, thus keeping the induced
drag small even at low speeds. One can infer
that the optimum speed-increasing maneuver would
consist of a pushover at a low load factor
until quite a high speed had been attained,
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Figure 2. (a) Loss of energy height,

(b} pushover load factor and

(c) flight path slope at point B,
all plotted as functions of the
speed at point B for various pull-up
factors.
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followed by a sharp, short pull-out.

A surprising feature of the results 1s that
the optimum pushover load factor is almost con-
stant, at about 0.18, for all pull-ups. There
seems to be no analytical reason why this should
be so: it simply emerges from the computations.
in these examples, only one set of end-conditions
has been considered so that this figure, and
the various other features of Figures 2 and 3 are
obviously appropriate to these particular values.
However, we can reasonably infer that the
principles stated in the previous paragraph are
generally true: any high load factors should
involve short, sharp applications at high speeds,
with low load factors at the low-speed end of
the maneuver.

From the piloting point of view, Figure 3
indicates that a real flight with frequent
speed adjustments would be a vigorous--indeed
possibly emetic--experience. It is also clear
from Figure 2(a) that a poorly executed mancuver
with a high initial load factor may be less
efficient than a well-executed one at a lower
initial load factor. The actual differences
in minimum energy height loss are gquite small:
increasing the initial load factor from 1.5 to
3.0 saves about 9 feet in this case. 1In a wore
typical maneuver during a cross-country
flight, the figure might well be 2 or 3 feet,

If such maneuvers occurred frequently in the
course of a flight, the overall saving might
become significant, perhaps equivalent to a turn
or two in the last thermal. But these calcu-
lations take no account of the drag increments
due to control deflections and to the curvature
of the flight path (i.e. the fact that, relative
to the aircraft, the frec-stream streamlines

are curved. This is guite a scparate effect

from the changes of load factor). Again,

there are counter-balancing effects due to the
lift-coefficient/Reynolds number relationship
heing different from that prevailing in steady
flight. All things considered, it seems very
likely that the advantages of high initial

load factors will be less than Figure 3 suggests,
so the final message seems to be: suit yaurself--
therc may be a slight advantage in vigorous
mancuvers but is it worth the discomfort?

This analysis is formally limited to
maneuvers contained in a vertical plane. In
practice one often wants to do something else,
such as a c¢limbing turn into a thermal. Here
it would seem advantageous to indulpge in a
sharp pull-up and to initiate the turn whilst
pushing-over. 1t is, of course, more important
to get quickly into the best part of the thermal
than to fuss about the elegance of the entry
maneuver. A further consideration is the
structural strength: one needs to avoid super-
imposing a large maneuvering load factor on a
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gust load. On the other hand, sailplanes are
quite strong, maximum speeds in rough air are
now quite high and at lower speeds it is quite
difficult to cause damage.

Figure 4 shows height/distance plots of
typical maneuvers. The loss of energy height
is of the order of 10% of the initial value,
taking the initial true height to be zero.
is worth noting that if the sailplane simply

It

the minima of FPigure 2(a), plotted
as functions of the pull-up load
factor.

50
Minimum |loss of
energy| height
©
2 J\
15 45
E
o
®
e )\\
. 0.3
& Optimum | push-over|load factor
00-2 5 . - — - :
m
e o.1
O
60
Max siope| of flight
path ____,_..._————-—“‘1l’
o ]
£ 50— 7
O m
40
%0 /
= Optimum |speed at
g start of
we push-over
’ro
o
=
Fig 3
60
1.0 2.0 3.0
Pull-up load factor ITAB
Figure 3. Optimum conditions, corresponding to

42

400

h=334 1t h=333 1t
V=40 8 knols| V=39.8kis
hc-AUEH i:‘:=404ﬂ‘
| ojB
|
200 1 ]
=
0
‘001231}% Fig4
o 200 400 GO0 :lalu}
Distance X fcet
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starting with pull-ups at load
factors of 2.0 and 3.0. The
difference between the final energy
heights is only about four feet.
The initial energy height, corres-
ponding to 100 knots at zero true
height, is 443.5 feet.

ascended vertically from an initial 100 knots
to a final 40 knots, the loss of energy height
would be only about 12 feet. All of the cal-
culations relate to conditions near sea level.
The solutions of the equation of motion were
performed on a Hewlett-Packard HP-25 pro-
grammable calculator by the method of Ref. 5,
as explained in the Appendices. Suitable
programs were also devised to find the changes
of energy height and the shape of the flight
paths.

SUMMARY OF CONCLUSTONS
{a) For a simple pull-up/pushover maneuver
with a given initial load factor, there
is a value of the intermediate speed (with
a corresponding flight path slope and
pushover load factor) which minimizes the
total loss of energy height.

as the initial load factor is increased.
The optimum pushover load factor is sub-
stantially independent of the pull-up load
factor.

It may be inferred that, in any pitching
maneuver, it will pay to keep the load
factor low at low speeds and to apply a
high load factor for a short time at high
speeds.

The minimum loss of energy height diminishes

(e)

A poorly-executed maneuver involving a high
load factor may dissipate more energy than
a well-executed maneuver with a lower load

factor.

If the drag increments due to control
deflections and flight path curvature are
introduced, the advantage of high load

factor maneuvers may largely vanish. 1In




any case, the differences in loss of energy
height are small.

REFERENCES

1 Irving, F. G., "Cloud Street Flying,"
Motorless Flight Research 1972, NASA CR

A

2315, page 274 (and Technical Soaring,

Vol. I1I, No. 1).

Z: Arho, R., "Optimal Dolphin Soaring as a
Variational Problem," Technical Soaring,
Vol. LI1, No. 1.

3 Gedeon, J., "Dynamic Analysis of Dolphin-

style Thermal Cross-country Flight,"

OSTIV Publication XIT {and Technical
Soaring, Vol. 111, No. 1).

4. Gedeon, J., '"Dynamic Analysis of Dolphin-
style Thermal Cross-country Flight,"

Technical Soaring, Vol. 111, No. 3.

5. Hewlett-Packard HP-25 Applications
Programs (page 83]).

6. Miele, A., "Flight Mechanics, Vol. T:

Theory of Flight Paths," Adison-Wesley/
Pergamon, 1962.

APPENDIX |
EQUATION OF MOTION AND

LOSS OF LNERGY HEIGHT

A slight modification of the expressions
of Ref. 6 shows that for a sailplane moving in
a vertical plane as in Figure 5:
de/dt - V cos y = 0 (1)
dh/dt - V sin v = ¢ (2)
D+ mig sin y + dV/dt) = 0 (3)
L - m(g cos vy + V dy/dt) = 0. (4)

If the significant portion
is parabolic,

D/mg = [1/2E*1[7? + (n2/V2)] (5)
where F* = (L/U)max, n = L/mg,
Vo=V,
i
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Figure 5. Diagram to illustrate the equations

of motion.

and V? = speed for max (/D).
(ALl speeds are "true").

It is convenient to define the following di-

mensionless quantities:

Distance, X = Xg/V% ;

=
l

height, = hg/vi ;

time, t = tgll,, -

Equations (3) and (4) may then be written:

AV/dE = —[1/2B*]1[V2 + (n2/72)] - sin vy, (6)
and ¥V dy/dt = n - cos ¥. (7
Dividing (6) by (7) leads to
5 2 2 .
di (2 +n_)/£*+23 sin y (8)
dy cos y-n
where Y = T
The energy height 1is
: 2
h =TV /2g+h.
e
This cxpression may also be rendered
dimensionless by dividing by g/LH, giving
ho=V/2+h (9)
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Hence, from Equations (9), (2), (7) and
(8)

ih 2 2
P (10)
dy ~ 2E*(cos y-n)

from (1) and (7)
4T _ 2 cos ¥ aw
dy  wn - cos vy’

from (1) and (2)
dh _ dx ) . (12)
::3?'-)"_ = ar; tan vy

lrom (7)
dt _ v ; (13)
dy 1 - cos ¥

To summarize, the equations of motion lead
to (8), which relates V and y. Lquation (10)
gives the changes of energy height, (11) and (12)
describe the geometry of the mancuver and (13)
enables time to be introduced. All of these
equations have been rendered dimensionless.

For a given valuc of n, (8) is of the form
y' = F(x,y) and may be solved for given initial
conditions by the method of Ref. 5 using a
Hewlett-Packard HP-25 Programmable Calculator.
At first sight, there seem to be insufficient
available steps to insert f(y,2), but there are

several redundant steps elsewhere in the published

program. The present program is given 1n
Appendix I1.

Suitable intervals of y for the pull-ups
are 0.02 or 0.04 radians. Vlor each pull-up, a
few convenient values of Z corresponding to
various values of ¥V were taken. It was then
necessary, for each 7, to find the load factor
npc which made ¥ about 0.064 when ys was zero.
This was done by trial-and-error, using the
same program, initially with quite coarse
intervals of y. GCreat accuracy is not necessary
at this stage since the final energy height is
not particularly sensitive to errors in V..

Using the values of npe a more accurate
calculation of the flight path was then carried
out using smaller intervals of y. Further pro-
grams were then devised to find the change of
energy height from Equation (10) and the
distance-height relationship from (11} and (12).
The accuracy of these calculations seems good:
the total change of energy height calculated
from the total changes of height and speed agrees
within about one foot with that derived from the
step-by-step integration.
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The flight-path program given in Appendix
[T can obviously be applied to maneuvers other
than those described here, which is why it scemed
useful to display it in detail. If many such
calculations are to be done, the limitations of
a small programmable calculator become rather
obtrusive and it would pay to use a full-sized
computer.



DISPLAY ]

KEY

LINE | CODE f'”f“’
00 i it v
o1 Ja | ELoA |
02 |23 Q4 |STO 4

03 |24 02|RCL 2
o4 [24 01|RCL 1
o5 |13 18[GT0 1§
o6 | 22| R¥
o7 |23 03}ST0 3
(08 124 QO |RCL O |

09 61| X
10 [24 02|RCL 2
i 51 + |
12 124 01|RCL 1
13 |24 OO0|RCL O
14 51 +
i5 01y 1 |
16 123 04|STO 4
w ] 23] m¥
8 [23  05|STO 5
19 14 04| f sin |
20 02} 2
21 Gl X
| 22 21|xZ2 ¥
23 61 X |
_24 |14 731f last x
Comments Line 16:
18:
[
48:
49:
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Flight Paths for Sailplanes

[ DISPLAY ey 3
CUNE | coDE ENTRY } REGISTERS
25 [15 02 g x™ |
26 [24 07| RCL 7| o Y ]
27 [15 02| g x* (Radians,
28 0 | e I
28 194 0o RCL 6] h,_ Y |
30 =
3 51_+
32 |24 05 RCL 5} ST —
| 33 114 03 £ cos ety
34 124 QF RCL 7
(a5 | 41 - Ry A2/
36 70 3 L
37 [ 24 04 RCL 4| -
[ 38 [15 71l g x=0 hthal |
35 |13 0F GTO 06
a0 | 234 R+ | | ]
a1 |24 01 RCL 3 Y OR
42 50 + Y+8y |
33 |24 0d RCL O ]
44 |'235101] STO+1 R L
45 6l X
a6 | T 03 2
a7 7L = Ry
_48 | 235103 STO+2,
4g | 24 04 RCL 2
Flag in

Y or y+§Y in Rg
Updated ¥ in Ry
Updated Z in Ry
Displays Z

Lines 18-36 inclusive represent the routine for f(y,Z).
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STEP INSTRUCTIONS ATk TS REYXS DATA/UITS
1 [Key in program | || I ” l_
_2_“ gtore intervals of ¥ 4y rads | STO IL 0 “ ” I N
3 [Store initial Yo rads | S10 ][ x ” ” |_ ]
conditions Zo | STO “ 2 “ ” }_
4 I[Store other data E* LSTO ]r 6 ” J[ | -
5 fmsert chosenn | lso M7 Q0L ]
-6 -Set to radians - -__l g “ RAD J[ ” l o
7 lnitialize o [£ J[erax || I[ |
"8 olve first step Bl I I |
| .
20 | R |
9 Repeat as often 1'R/3 lr ” ” ]_
is desired [RCl “ 1 ” ” | Yy etc
“‘“'W{RCL “ 7 “ ][ | Zg, cte
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