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SUMMARY

It is proposed that most already-designed
symmetrical airfoil shapes, when taken in non
dimensional ordinates, related to their max-
imum thickness ordinates, can be represented
by very simple trigonometric functions.

Using inversely these functions with cho-
sen distinct values for upper and lower sur-
faces and the uniform load NACA a=1 mean line
it is shown that airfoils for rather differ-
ent flying conditions can be easily generated.

Some criteria for this choice and exam-
ples of airfoils with Stratford-type turbu-
lent recoveries are also presented.
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INTRODUCT1ON

When designing their marvelous flying ma-
chines, designers have normally to restrain
themselves to the use of published airfoil
data.

In this note we will try to normalize and
simplify some airfoil basic geometric parame-
ters in order to allow designers to personal-
ize their design by using their own designed
airfoils. In doing so, we hope to intreduce
a mutant gene in the evolutionary selection
of the best airfoil for airplanes and gliders
provided by actual flying.

SOME BASIC PRINCTPLES

Streamlined shapes are designed to reduce
drag, to produce 1ift or both, as in the case
of the airfoil.

Even a flat plate may produce lift if an
angle of attack is given to the airstream,
but at the expense of high drag, and a curved
plate will do the same job with much less
drag. The 1ift comes from the seldom-realized
fact that the air being viscous cannot follow
around the sharp trailing edge, creating
there the so-called Kutta-Joukowsky condition,
as viscosity is the origin of both drag and
1ift. (See Fig. 1.)

Since flying machines have to operate at
different speeds and consequently at varying
angles of attack, an airfoil nose cannot be
sharp as in the case of the leading edge of
a vane. Also, an airfoil is suppoesed to al-
low for internal structure, fuel tanks, land-
ing gear, controls, etc.

As a result, any subsonic airfoil has the
general curved drop shape and although very
similar one to another, great differences re-
sult from subtle and negligible shape changes.
The speed and consequently pressure (Bernoul-~
1i Law) variations along the flow over an
airfoil surface, are strongly associated with
the flow curvature, which near the surface




Figure 1.

coincides with
The radius
ing a function

the airfoil curvature itself.
of curvature of any curve be-
of its second derivative (Note
1.) we can sce why negligible shape varia-
tions may give so different flow results.

If now we add over that, the instability
and separation flow phenomena occurring in
the layers near the wall with all their para-
meters and complexities, we may think that
airfoil design is out of reach of designers,
especially of the homebuilder designers ha-
ving no PHD degree or computer facilities.

However, using all the work already done,
we can see that this may not be the case and
that with this note, tables, a pocket calcu-
Iator and good judgement will suffice to ob-
tain a rather good airfoil shape.

DESIGNING SYMMETRICAL SHAPES

Beginning with conformal mapping and
going over to computerized prescribed pres-
sure inverse methods, a vast amount of work
has been developed and the interested reader
may try the reference literature.

Here, we will start dividing the airfoil
shape in two rather distinct regions that we
will call wnose and Lail, separated by the
nermtiwen thicknegs point.

In the nose region for small angles of
attack the air is normally accelerating, pres-
sure is dropping and a laminar (smooth and
parallel) flow may be obtained if allowed by
flow Reynolds Number (flow scale) and rough-
ness (surface quality).

At the tail, the air is ncrmally decele-

Note 1.:

c=1/p [d2y/dx?] / [1+(dy/dx)?] 3/2
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rating, pressure is rising and the flow, if
not turbulent, will become so (not homogene-
ously parallel). _

Now, for each of these two reglons, we
will develop canonical ordinates, i.e. non-
dimensional ordinates related to the maximum
thickness ordinates xp, yp (Note 2.)

Nose Shape

As an airfoil nose shape, cven a simple
ellipse could be used and some successful old
German airfoils had elliptic nose shapes.

However, if we plot in canonical form,
rather different airfoils, with different
thicknesses and designed by rather different
methods arise, and it is amazing to see how
near they all fall in a rather close band. In-
deed, in a canonical plot it is very diffi-
cult to distinguish between an old Joukowsky
airfoil and a NACA four- or five-digit air-
foil.

Another class is represented by the 63
and 64 low drag airfoils that fall short
with Wortmann, Thwaites and other (Ref. 2.)
flat top airfoils designed to have maximum
low drag range.

Two canonical sets of values are given in
the CANONICAL TABLE I and Fig. 1.: One [JK]is
computed from the known Joukowsky cquation
and the other [MRI from harmonic deviation of
it fitting a flat top [MR] shapes of Thwaites
work. (See Appendix 1.)

The use of trigonometric derived shapes
is an assurance that the first and second de-
rivatives and so curvatures, radius, pres-
sures and velocities, will have smooth chord-
wise variations.

It must be understood that the use of the
canonical thickness tables for different xy
and yp values will not result exactly in the
samc type of pressure distribution and that
also the chosen tail shape will have an in-
fluence upon the nose pressure values.

Tail Shape

For the rear part of the airfoil the coin-
cidence in a canonical plot for different air-
foils is not as great as for the nose.

However, again, we see that differences
are small, with the Joukowsky function falling
close in between the NASA laminar 6 digits and
Thwaites tails.

Also a historical trend is depicted, start-

Note 2.: A correct canonical thickness base
should be the ordinates of the max-
imum velocity point, as in Ref. 12.
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ing from the old four-digit convex airfoil
tails to more convex-cencave (cusped) tails of
NASA 6 series. Picking up from Thwaites and
Wortmann airfoils to the up-to-date airfoils
designed to have Stratford recoveries, such as
Strand (Ref. 11) Liebeck (Ref. 12) and Lien
{(Ref. 13) airfoils.

As Wortmann has already pointed out in his
B.S. thesis, pressure distributions afforded
by cusped tails are less scparation sensitive
and result in lower drag. A fact that has been
later confirmed by Stratford (Refs. 9 and 3).
In his work Stratford established the upper
limits of drag reduction and separation avoid-
ance in turbulent pressure recovery, by putt-
ing into a differential equation the obvious
physical fact that the capability of a flow to
be decelerated without scparation is propor-
tional to its speed or momentum. (Remember
Coanda cffect)}.

Three types of tails are given in the ca-
nonical thickness Table 2 and Fig. 1.

Onc [JK] is again the known Joukowsky
function shape. Another [ST] was also obtain-
ed from a trigonometric modification of the
Joukowsky shape designed to result in a Strat-
ford type recovery canonical pressure distri-
bution for the limit values of x;/c and y,/c
of fig. 3.

In addition, for tails of simpler con-
struction, a third shape with straight trail-
ing edpe [NA] is given computed from the ordi-
nates of a NACA A airfoil tail.

DESIGNING CAMBERED AIRFOILS

The nose and tail canonical thickness pre-
sented represent carefully chosen shapes to
give some desired pressure distribution char-
acteristics and so much care must be taken to
prevent camber from disturbing them.

One of the reasons why Joukowsky airfoils
have not been successful (other than the cusp-
ed tail construction problem at that time) was
that Joukowsky cambered airfoils used a mathe-
matically simple circular camber line that
changed adversely their pressure distribution
on the lower surface.

There are basically two methods (a third
one represents a combination of both) to cam-
ber without modifying the pressure distribu-
tion of a straight airfoil. First, we can sim-
ply camber the airfoil using the known NACA
a=1 mean line used in practically all 6 series
of laminar airfoils. This mean line besides
having the property of producing uniform velo-
city and pressure changes (of opposite sign)
in the upper and lower surface of the airfoil,
has also a very simple analytic expression for
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its ordinates and declivities:

Cli . )
yofc = —3F [(-xe/e) 1og (1-xc/c) (1)
+ xo/c log x./c)
T . wem
SEG BE PR G E g e o e

Another simple way of obtaining non-sym-
metrical airfoil shapes, is to take different
thickness values (ym/c) for the upper and
lower surface. [Ref. 6 and 10).

When doing so, a large curvature disconti-
nuity is present in the leading edge and in
order to overcome it, it is necessary to in-
troduce a leading edge modification with an
osculatory circle resulting in the same lead-
ing edge radius fer beth surfaces. Third, to
reduce the inherent pitching moment increase
of the first method and the large thickness
differences of the second, a combination of
both methods seems to be the best compromise
to obtain cambered airfecils, this being the
method used in this work.

CHOICE OF AIRFOIL PARAMETERS

Now we have reached a critical point in
the airfoil design: the selection of the xp/c
and ygp/c values for both airfoil surfaces and
the choice between the different canonical
shapes.

This cheoice calls for a good aerodynamic
background and a knowledge of the general
operating envelope the airfeil is being de-
signed for.

As very general rules, we may say:

-When good finish and accurate construction
is possible, the MR-type noses combines
with ST-type tails will provide the best
performance.

Fig. 2 presents the computed approximate
thickness limit values to be used in
function of the ""xp" (position which, as
already pointed out, is not coincident
with the xp) and camber C€1j.

These limits represent the values for
which a separation-free Stratford pres-
sure distribution is attained over the
airfoil tail for a Reynolds Number of one
million, and may be used when designing
airfoils for high 1ift or for maximum
thickness minimum drag strut design.
{Note 3}.



For airfoils operating outside the ideal
range of angles of attack, the designer
should allow a good margin from these 1i-
mits to allow for additional angle of at-
tack without separation.

-To avoid the excessively thin ST trailing
edges, a JK underside may provide extra
tail thickness; and for smaller yy/c
values, the NACA A tail will be useful to
obtain feasible trailing edges.

-Higher xp/c values lead te lower minimum
drag but lower ranges of operational
angles of attack.

~Whenever construction i1s not accurate and
finish unpolished, the overall JK nose and
tail shapes are recommended with corres-
ponding smaller xp/c values, since laminar
flow will not be maintained in the nose.

As an illustrative example of this method,
the ordinates, shapes and computed theoretical
velocity distribution, as well as drag polars,
are given in appendix 3. for six different air
foils designed for six different purposes:

A, -72MRST3616/JKNA 5206
A hang glider airfoil designed to have a
large lmax value with plenty of thickness
for low constructional weight and reason-
able drag, at low Reynolds Numbers.

B. -36MRST 4012/MRJK 4807
A glider airfoil intented to have a high
L/D with a large low drag range at high ¢
values and rcasonable Clmayx without flaps.

C. -18MRST 4408/MRJK 4408
Subsonic airplane airfoil designed to have
small drag at low cj with low cm.

D. -36JKNA4804/MRST 4408
High subsonic airplane airfoil designed to
have the smallest upper surface velocities
with lift sufficient for high speed flight
without separation at the lower surface.

E. -00JK3510/JKNA4004
Homebuilder airplane airfoil - designed to
have low construction sensitivity, reason-
able drag and maximum 1ift values, small
pressure center travel (low Cmg . ) and
simplicity of curves.

Note 3: As shown on appendix 2, RN effects on
Stratford flows are small [RNl/b] and so
one million is conservative.
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F. -18JK3512/JKNA40Q04
Homebuilder glider airfoil - same as above
but for higher ¢y wvalues.

USING THE TABLES

Once the desired values for camber €15,
xp/c and yp/c have been chosen for both upper
and under surface, the airfoil ordinates may
be determined. The thickness airfoil ordinates
(xt/c) and(y¢/c) are obtained from canonical
tables 1 and 2. For the nose:

xe/e = xn/e . x/x (g )
ye/e = yple . ¥y (1) (4)
and for the tail:
xe/e = xp/e + (1-xn/€) G (5)
ye/e = yw/c - Y/¥n (4 (6)

Using equation (I) and (IT) the camber or-
dinate and declivicy values y./c and @ are ob-
tained for each xy/c computed above. Now the
airfoil coordinates are obtained by the well-
known relations:

x/c = x¢fc + ye/fc sin @ (7)

¥ie = ysle

| +

yi/c cos O (8)

Using a programmable pocket calculator,
such as an HP-25, a new airfoll is born cvery
30 minutes. The osculatory nose radius is ohtain-
ed as shown in Appendix 1.

REMARKS

The presented method being a simplified one
as it is, does not afford the possibilities of
the sophisticated computer step by step airfoil
methods. Notwithstanding, for xy/c and yp/c
values within 0.3to (.5 and0.6to 0.15 respective-
1y, good airfoils may result, but they will
hardly outmatch a carefully designed airfoil,
unless by chancc.

Another point to be remarked is that at
the x, stations all airfoils designed by this
ethod will present curvature discontinuities
(excepting the JK airfoils with xp/c = 0.25).

In consequence, in all airfoils the lami-
nar to turbulent transition in the boundary
layer will tend not to go beyond that point,
irrespective of Reynolds Number and angle of
attack. With airfoils designed with the MR
nose and the strongly cusped Stratford tails,
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if Reynolds Numbers and angle of attack are
such that could force transition behind the
Xp/c point, it is extremely likely that a lam-
inar separation will result with strong ad-
verse effects on lift and drag.

Since the method does not allow intro-
duction of corrections like the Wortmann in-
stability ranges to start the transition be-
fore the strong adverse Stratford pressure
gradient the use of less sophisticated but al-
so effective physical transition inducers is
recommended, such as a trip wire or a step -5%
ahead of xp/c point, whenever the designer
feels or detects that laminar separation is
at stake.

Finally, a practical advice for laying-up
airfoil drawings, templates, jigs or also for
designing wing-structures, such as ribs and
skins.

We have seen that d?y/dx?, second deriva-
tives (or curvature) discontinuities have the
deleterious effects on airfoil pressure dis-
tribution and therefore on airfoil performan-
ce. Well, from strength of materials theory,
we know that an elastic beam deflection is de-
termined by:

a2y _

dx?

M/ET where M is the bending mcment

on the beam
E "Young's modulus"
I beam inertia

So, elastic beams without bending moments
or inertia discontinuities have smooth curvatu-
res and those with discontinuities, generated
by concentrated loads on support and section
changes, have not.

With this fact in mind, a smart designer
can obtain much better results from a poorer
airfoil than a poor designer from an up-to-
date computer-generated airfoil, but traced
through the right points with poor French
curves.

A last remark is associated with the need
for using a single leading edge radius for
both upper and lower surfaces.

Wind tunnel tests with double thickness
method cambered airfoils (Ref. 6) have shown
that the double radius discontinuity at the
leading edge affects the stagnation point lo-
cation and has disastrous consequences on air-
foil drag due to distortions introduced in the
under surface pressure distribution and bound-
ary layer transition.

And so please.... never use French curves,
unless you are in Paris,.
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APPENDIX 1

Canonical shape computation:

The known Joukowsky airfoil shape is given by:

x= - (1 + cos 8)

Nlﬁ

y= £ sin 6 (1 - cos 8)

=]

where maximum thickness for 0 = 1200
where

Hig = 0.25¢

Y = 1.29904 x £
Therefore, the canonical expression we have in
the nose

X 22 (1 + cos &)

*m

yl/ym = (.76980 sin ¢ (l-cos B)

To obtain the MR shape, the difference in the
canonical shapes of the Thwaites MR 45020 air-
foil and the Joukowsky airfoil was analyzed
harmonically and the following correction to
y/yp was obtained:

_sin 6 0 sin 8 '(cos 0'-1)
Ay/Ym = 48 18
where
' = arc cos (3+4 cos 8)

For the tail, the Joukowsky airfoil becomes in
canonical shape:

X-Xm !

= ?'(1+2 cos 8)

and the same as for the nose

yz/ym = (0.769800 sin & (l-cos 0)

As for the nose, to obtain the correction
for Stratford tails a numerical harmonic ana-
lysis of difference was made, using this time
the differences in canonical shapes between
the Joukowsky and the mean line of the Pick &
Douglas airfoil, (Ref. 8) designed to have a
Stratford flow with the highest possible cam-
ber, obtaining:

1 .
Ay/ Ym= _%—sin “B'H-Zé sin 68'"" where

and

| =

g'" = arc cos (4 cos 6-1)

g 1 =-%1 (1+2 cos 8)
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A numerical evaluation of the limit when
X/%p 5 0 of the curvature

c=Vo= | d?y/dx?] / [1+(dy/dx)?] "

of the canonical nose shapes, gives the following
numerical results:

p=Kym2/xm with K =
and K

1.3200 for JK noses
0.8056 for MR noses

For different thicknesses cambered air-
foils we can write for the osculatory leading

edge radius:

p = 0.5 (Kyymy + Klymlj? / (Kyxmy + K1Xmyp)

where u and 1 subscripts refer to upper and
lower surfaces.

TABLE I - Nose Canonical Ordinates

X/ % (W) 1
JK MR
.007611 .133930 .104348
.030384 .265318 .210929
.068148 . 391689 .318672
.120615 .510696 .429010
. 187384 .620182 .539299
.267949 718233 .646185
. 361696 .803227 . 745488
.467911 873870 .832913
585786 .929231 .904723
.714415 . 968754 .958131
. 852847 .992271 .991103

TABLE 2 - Tail Canonical Ordinates

| Y2/ym NACA A
X-*m . O k-Xm
8 R (JK) (ST) Ejia{NA ¥2/¥Ym(NA)
115 |. 051588 |.992526 |.979508| . 08333 |.9956
110 (. 105320 [.970784 |.934305| .16667 |.9692
105 1. 160787 |. 936020 |.869822| .25000 |.9204
100 |.217568 |.889749 |. 792069 .33333|.8524
90 |.333333 |. 769800 |.620071] .41667 |.7696
80 |.449099 |.626461 |.456682] .50000(.6751
701.561347 |.475966 |.322113| .58333|.5709
60 |.666667 |.333333 |.219688] .66667| 4601
501.761858 |.210649 |.143646[ .75000} 3464
40(.844030|.115765 |.086854| .83333|.2324
30].910684 |.051567 |.045011| .91667|.1183
| 20].959795 |.015878 |.017114]1.00000].0043
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APPENDIX 11

Determination of approximate limits of
Stratford pressure recoveries in airfoil
tails.

According to Ref. 3 § 12, the Stratford
flow, in which the margin of separation is
zero everywhere, has the pressure distribu-
tion:

Cp=0.645 {0.435 R 2 [(x/x5)0 ?-1]} 1/3

for Eﬁ

< 0.5714 (for Tp=1-(V/V,)?) and
Ef=1~a/[£xfx0] + b]1/2f0r Eb > 0.5714

the point for which Cp=0.5714 is:

: 5
x*/xg = (1 + %;%ggg where
o+ ) ;
dCp* - 0.0430 {0.435 R,0-2}1/3

dx/xg (X*/XO]G'8[fx*/xolu'2'1]2/3

thus,

b=[0.2143 ]I/Z—X*/Xo

(dCp*/dx/xo)
and

2=0.4286 [b+x*/x,]/?
For an airfoil with "rooftop" nose and

Stratford pressure recovery in the tail we
can write that at the trailing edge we have

= i Ute 2
C[)te min = 1 [,,_,_] -
Uo
2
1. Ute/Um 3
Ug/Us =
Ugo = trailing edge velocity and
Up = "roof top" nose constant velocity
From various rooftop airfoils with maxi-
mum thickness around 40% chord we can estimate
the rooftop velocity as: (see Fig. 2)
Yo 221+ 23 (t/e)
$ ap

and trailing edge velocity as:




and for a = 1 mean line cambered airfoils:

for €1i = .4 (Ute/U,) = 1.020

for €15 =.8 (Ute/Us) = 1.120

With the above estimated values and pre-
vious analytical expressions, we can estimate
for each Reynolds Number, and for each roof
top position x,/c, the maximum thickness with
separation free flow for angles of attack
within the rooftop or laminar bucket of the
airfoil.

In table 3 and Fig. 3 these values are
presented for a chord line Reynolds Number
of one million.

When using these data it must be kept in
mind that for MR and ST canonical thickness
the rooftop length, as already shown, is not
coincident with xp, but is approximatcly
Xg -~ Xp + 0.50 yp-

i_.
}
i

- e —
o

Xo/¢| Cpg in ¢y4=0 c1-=0.4 ] ¢1,;=0.8
[Uofu] ()’m/CJ (Up/U)|(ym/c) Uo/“ Ymic
max max | max | max | max max
S5 .7614 |1.8836 166 5.0882 91 222929 245
« 5D L7097 [1.70761 .144 |1.8933 .167 2.0789|.1%0
.45 L6597 |1.5772| .127 |1.7486 .150 [1.9201] .171
55 6067 11.4669 112 1.6264 .134 1.7858| .154

Table 3 - Limit values of trailing edge r‘P’Co,
roof top velocities and yp/c¢ Stratford turbu-
lent recoveries and Reynolds Number=1,000,000.
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APPENDIX ITT

Airfoil nomenclature, ordinated and character-
istics.

Using the canonical tables 1 and 2 of Appen-
dix I, the ordinates of the six airfoils were
calculated from their main geometrical parame-
ters shown by their nomenclature, which com-
pletely defines cach airfoil as follows:

BR KK AABBNNMM / CCDDXXYY where
BR - Indicative of the family (Braziljan).

KK - Design ¢;x100 of the NACA a=l camber
line used (it is not a mean line, unless

MM=YY) .

AN - Upper surface nose type indicative let-
ters.

BB - Upper surface tail type indicative let-
ters.

NN - Upper surface xp/c x 100.

MM - Upper surface yp/c x 100.

CC - Under surface nose type indicative let-
ters.

DD - Under surface tail type indicative let-
ters.

XX - Under surface xp/c x 100,

YY - Under surface yp/c x 100.

The chosen six airfoils ordinates were
then fed to a FORTRAN computer program using
the Riegels numerical methods (Ref. 4) to ob-
tain the velocity distributions and ¢y, cg co-
efficients for various angles of attack. Also
theoretical values for deci/da, oc1=0, Cmycs
and €1j were computed.

It is important teo remark that drag coef-
ficients were computed without quadrature
Schlichting expressions, supposing the tran-
sition to occur on computing station after
maximum velocity point, on both surfaces for
normal case and at x/c = 0.0169 for the turbu-
lent case.

Also fully attached flow was assumed and
so drag values outside low drag range or for
c1 values far from €15 should be cautiously
regarded.
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TECIINICAL SOARING, VOIL, V, NO. 4

-A-

thq glider ateforl
BR 72 MRST 3616 7/ JKNA 350086

S
- ,/
Y/ve cL /
!
!
ompufed ]
Velocity :’ cTw“"d
; Drag Polars
1.8 :
1
!
NR 15x10° " NR 60 x10°
! turb.
]
/
I
)
- 1.0 i
!
I
I
)
t
|
I Co
.0080 0loo . 0180

A = AMIRFOLL JIMESTIGLGSIRNASDOA
FOR HAMNG CLINERS

UPFER SURFACE UNDER SURFANT
-0, 264 1.690

0.26h KNI 1,892 1,094

1,393 5.0 ¥.RG54 -1.450
3,136 7.78%9 6,510 -1.712
5,447 §.557 9,857 -1.895
RLa7: 12,085 13 . Bsy -2.011
11,721 14, 0RY 15,501 -2.,073
15.622 15,887 21,754 -2.001
19.9849 17407 29,573 ST L0TE
24,783 18592 15,918 -2.047
29.958 19,400 ai i -2,015
15,4649 19,767 50,000 -1.999
35,909 14,535 S4.10u -1.,901
4l 458 18, 88h a# 281 -1.794
46,171 14.490t 02,147 -1.702
EX P 16, A7L B 462 ~1.437
57.402 L. 658 0,507 -1.128
64,9849 11,04R Ta_Takh -n. 797
72.206 A,571 TR,903 BT ¥l
TR.931 [ H3L07H -N,14R
4. 905 L, 7al A7.26R b 100
0,193 3.251 L, 474 #1275
6,395 1.975 45,707 +0, 301
97,483 0,958 1p0.0n0 {1, 7R

Caculatory leading edee radins = 2.2
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TECHNICAL SOARING, VOL. V, NO. 4

-B -
ql\.dtf airfo‘\.t

BR 36 MRST 4212 / MRJK 4807

7
i——//
V/ Ve cL /
Computed Velocity f/
Distribution f
!
- 1.0 - )t - i
/
f
| Computed
! Draog Polor
|
I
NR s I HNR s
| 4 15x10 30 x10
furb.
i
1
|
1
|
|
1
Co
- 0080 . 0lg0 0180
Bo— ATRFOIL MAMRETAILZ/MITIEAHOT
FOR CLIDERS
NPPER SURTFACE UNDER SUORFACE

L.ELAL

1
El
a

w
Il

Gaculacary leadlne edee ra
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TECHNICAL SOARING, VOL. V, NO.

-C-
General Aviation
Air foil

BR 18 MRST4510/ MRJK 5006

[ [
V/Volo CL /
Computed . / /
Velocity /
Distribution V Computed
Drag Polar
18— P g — |
/f‘——-h‘““‘=-- 49 —1 ,
L g0 — NR I NR
0° -5 3.0x10—t6.0x10°
I furb.
|
...‘-.oﬂ_--' I
|o/ _‘z‘#/ |
o
T2 457 4 |
L o | Co
/. dCL/dd = 121 .030 |.oj00 .0180
“CL=0 = 2.39° |
Cmca = -, 045 \
CLi = .484 |
1 |

C = ATRFOIL IH¥RETASID

FOR CPNERAL AVIATION

UEPER SERFACT UNDER SURFACE

1,5%050 =1 . 1659

1. 4996 -1,E£853

6. 1327 -2.2431

5 M. 4751 -2.,7851

. fi 29019 11.5018 -3.1074
Th, 1002 fonnig 1R, 1803 1.7R98
N, w972 H.NENd 23,4ART 1 -4,7118
n_ BN ., 158 -4 ,.5%5%3

1N LARD 15,7700 h.RORL

10,806 A2.hHTIR =4, 9621

1N, ag91n A0 0000 “h,uuga

Y. 7579 52 3R =4, %564

16,3470 53,2487 -4 ,8325

LR L E S 58 0111 4.6746

8, 9067 EOLRAAT -4 ,1726

foraad Gh hE05 =1.7001

5.653)6k F2.4025 =2.50%1

75,92 4. a17n FR.0)50 1.0963
R1.T140 2,580 A3 2RE0 =1,3491
Eh.%a14 19961 HE DGh4 U.736&
9L.4513 1.2901% 22.170R =0,29%0
B, J(ER Do¥3zs 94 5205 =01, L5H
97,1981 U.324) ST.9R4L 0, NERD
Osculatory Jeadiog edpe radlus = 1.0R854




TECHNICAL SOARING, VOL. V, NO. 4

_.D_
Hial\ subsowic
airplave aicfoil

BR 36 JKNA 5404/ MRST 4509

V/voo

(o]
-

Computed Valocity Computed Drag

Distribution Polar

1/

f
NR § I |[NR & \-10‘
3 0x08 I turb.
|
X/c :
% i. €o
.0050 1.0100 0150

N - ATEFOIL FEJTENASLDASHMRSTASDHY

FOR NIGH SURSONIC ATRFLANE

UTPER SURFALE UNDER SURFACE
a.53272 HL.ROA]T
1.5162 1.2895 1.50%2 -1l . A6%R
3.5230 2.0148 3.3511 -2 0504
h.35606 2.731% 5.7650 -3.2193
H.0627 1.6a21% 8.T65R -4, 0076
14.3221 4, 0A2I1 12,3906 4,7430
19,4004 4.6354 16,5931 -5.41494
25.17749 5.1250 2103417 -6, 054
31,5498 5.5170 26,6017 ~BLATAA
38,5209 5,79490 32.3350 -6 .8087
46,0356 5.9004 3B, 5000 -6, 9974
94,0185 5.99140 55,0521 -7.0140
GT.BAYS 5.9470 S0.7RAR -6, 4088
61.7200 5.7975 S56,90R5 -5.1562
65,5681 5.5603 61,2457 ~3.6R35
69, 4136 5.1875 L9, 6017 ~2.3388
73,2559 4. 7553 75,7743 -1.302%
EQ.9278 I.A%1E 21,5815 -0.6005
84,7573 J.0746 2R, E31T -0.1705
ER.GALS 2,6130 SL.3E37 +0.0637
92,3999 1.7080 95,0531 +0_1618
90,2106 09404 a1.7720 0, 1532
100 . 4000 0.0172 100.40000 0. Goan

Obsculatory leadlng edge radiucs = D.7301
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TECHNTCAL SOARING, VOL. V, NO. 4

i =
Howe - built aicplave
airfeil

BR JTKO0OO3510 /JKNA 4004

v/ Vo cL

1O

i
|
Computed

Computed

Velocity Distribution

Drag Polars
_f{'_ﬁ?x\i s
-
\\q-\ [II
-\1_\‘\\ |
R 3
- "'.5"‘_"' T
0 —_] & |
o NR 3.0x10 | 6
NR 6.0x10
: ! tuch.
-——-0.______________“_ 1
1> P I
Lo T ] ]
i 2 -p/—‘
¢ 5 :
7| de/dgs . co
ole =g = :
.0050 [ellele] 0150
Oﬂtu:‘ " .003 1
i = .8633 |
E - AIRFOIL 0CJKIS10/IKNA4QDA
FOR WOME-DUILD ATRPLANE
UPPER SURFACE UNDER SURFACE
0.26A 1.33%
1.063 2,653 1.215 -1.061
2,385 3.017 2.726 -1.367
4,222 5,107 4 625 -2,047%
6,538 6.207 7.495 -2.481
F.378 7.182 10,718 -2.873
12,659 R.037 14,468 -3.713
16,377 8,739 18.716 -3.495
20.503 90202 23,411 -3.717
25,003 9. kB8 28.577 -1.875
29,850 9.921 14,114 -3.969
i5.000 10,000 a0, 000 —4.000
38,1353 9.925 45,000 -1.982
41.846 9.708 50,000 -1.877
65,651 9.360 55,000 -3.682
49,142 5,897 &0.000 -1.410
56,667 7.698 65,000 ~3.07R
64.191 6.265 70.000 -2.700
71,488 4. 78D 75.000 -2.284
78.333 1.133 a0.000 -1.840
86.521 2.106 85,000 -1.384
89, R61 1.158 40,000 -0.930
94,194 0.516 a5, 0an 0,473
97,1387 0.159 ign,0an -0.017
faculatary leading edge radius = 1.7248
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TECHNICAL SOARING, VOL. V, NO. 4

F. Howme- bolt _
S‘LEAQ(‘ a’u‘{lo-L

BR - O0JK 3512/JKNA4506

T
V/ Vo CL
i dCL/det = 1249
| dCL=0 = —-.T720 - 1,0 1| B e —
i X/Cca = 26.45 i
|
i i’
| /
it
S e
NR .= A5 .
«1g% NR 6.0.40
Torbulgnt
|
| Co
}
. 0050 L0100 L0150
|
1 ]
i \

T - AIRFOLL 1RJK3ISL? [TENALOOG
FOE AMATEUR BUTLT CLIGER

UPPER SURTALE

“129 1.628
.Bib 3.2AR2
2.194 4,856
3.946 6,375
6,273 7,786
9.096 9.06Y
12.3491 1,183
16,130 11.127
20,285 11.R81
24,821 12,415
29.703 12.7R6
34,893 12.934
35 E72 12,871
41.7490 12,630
45,422 12,226
4%,137 11,677
56,702 10,225
64,255 8,458
T1.563 L5746
78,408 G.T5Y
B4 5889 3,149
89,4900 1.862
FE.218 0,738
G7.397 0,365

Osculatory
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UKNER SURFACE

1.2R3 -0.964

2,807 -1.384

44912 -1.762

7,985 -2.095
Le, 806 -2.380
14,550 -2.615
18,790 -2.79%9
23,4895 -2.931
IR B28 -31.011
34,152 -3.043
40.023 =3.02%9
45,011 -2.9R89
50,000 =2.877
54,989 -2,6R%
58,980 -2.438
64,073 =2.144
A9 L96T -1.819
T4, 964 -1.472
79.6860 =1.1148
B4 955 -0.775
49,970 ~0.460
EETh -0.161
o, oan -0.017

2,2528

leading edge radius =




