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Summary

A method of flutter analysis of gliders is
presented. The analysis is performed in
two steps. The first one involves determi-
pation of the free vibration of the glider.
The vibrations are computed or deter-
mined experimentally by ground vibra-
tion tests. The second involves determi-
nation of the critical flutter conditions
(critical flutter speed, flutter frequency
and flutter mode) and is based on the
results obtained in the first step.

As an example of the analysis, the flutter
calculations for a glassfibre glider are
presented. Some relations between the
results of calculation and experimental
investigation are established.

1. Introduction

Flutter is a dynamic instability of an
elastic aircraft in flight. The classic type of
this aeroelastic instability is associated
with non-stationary aerodynamic forces
in a potential flow and depends on coupl-
ing between many elastomechanical
degrees of freedom of the structure (1),
(2). In designing a modern sailplane, the
flutter analysis is very important and
should start at early stage, as it affects the
choice of the optimal glider configuration.
In this step of the design process there
exists only technical documentation on
which to base the design of a computing
model of the glider. The theoretical
model can be represented physically by
the flutter model which makes possible
the verification of the aerodynamic
theory being used in calculations. Flutter
models are investigated for non-typical
configurations only. When the glider pro-
totypes are constructed then the static
and dynamic tests can be applied to verify
and/or to correct the theoretical model
and the results of calculations. Flight tests
yield the final verification and confirma-
tion of the computed results. Correlation
between calculations and tests is made as
shown in Fig. 1.

The calculations on which the flutter ana-
lysis is based are performed in two steps
(3). The first one involves determination
of the natural vibrations of the structure
(4). The calculation model in this case has
about two hundred degrees of freedom.
Natural vibration modes create the possi-
bility of reducing the number of degrees
of freedom to about twenty, and are used
in the second step which is the determina-
tion of the critical flutter conditions.
These conditions are defined as appear-
ing at the lowest possible speed at which
the damping ratio of any dynamic aero-
elastic mode crosses zero. Critical flutter
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Fig. 1. Flutter analysis flow diagram.

conditions (critical flutter speed, flutter
frequency and flutter mode) depend on
many design parameters of the glider.
The influence of some parameters on
flutter speed is usually investigated by
computing. In this way the required flut-
ter properties of the glider can be deter-
mined.

2. Natural vibrations calculation

By means of physical considerations or
mathematical simplifications, the real
structure, with an infinite number of
degrees of freedom, was replaced by an
approximate one with J degrees of free-
dom. The position of this structure with
respect to an inertial reference frame can
be described by a J-dimensional vector
ful, coordinates of which are independent
and express the displacements of selected
points of the structure and the rotations
of elements in their vicinity (see Fig. 2).
Owing to the symmetry of mass and stiff-
ness distribution, the symmetric and anti-
symmetric vibrations can be calculated
separately. The slenderness of the ele-
ments allows the structure to be replaced
by an approximate model consisting of
beams as shown in Fig. 2. Inertia proper-
ties of the structure may be described by a
mass matrix [M;] of J degree. Direct repla-
cement of the structure by isolated

Antisymmetric modes

Fig. 2. Calculation model of a glider.

masses is not convenient. Better accuracy
can be achieved by taking into account
the continous mass and inertia distribu-
tions and using numerical integration
methods to determine the equivalent iso-
lated masses. The elastic properties of the
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structure may be described by a flexibility
influence coefficients matrix [C] of J
degree for the structure, in which rigid
degrees of freedom have been eliminated
by means of additional statically determi-
nated constraints. The elements of the
matrix [C] express the change of the i-th
coordinate of the vector ful produced by
the generalized force appropriate to the j-
th coordinate. The influence coefficients
matrix may be obtained easily, if the
beams have straight elastic axes. In order
to make the problem of natural vibration
unique, a number of additional relations
between the coordinates are needed
equal to the number of rigid degrees of
freedom. It is convenient to assume that
the generalized moments for the rigid
degrees of freedom are equal zero. The
method of determination of the natural
vibrations of an elastic glider taking into
account all the rigid body degrees of free-
dom and additional degrees of freedom,
covering e.g. free-controls, has been pre-
sented in detail in (4). The determination
of vibration frequencies and modes, in
this method, includes the following oper-
ations:

- selection of the set of coordinates
(degrees of freedom) to describe the
displacements [ul of the structure,

- determination of the mass matric [M;]
and the flexibility coefficients matrix
[C],

- definition of the N possible rigid dis-
placements of the structure and deter-
mination of the “rigid body degrees of
freedom” matrix [R],

- Banachiewicz-Cholesky
tion of the mass matrix

(M1 =Ll

- computation of the products

[R]1= L1 [R]

and

[E)="pLi" [€irL]

- determination of the J X (J-N) dimensi-
onal matrix [E] defined by the condi-
tion in which its columns create an
orthonormal basis of the J-N dimensio-
nal subspace of elastic deformations E
and are orthogonal to the columns of
the [R] matrix,

- computation of the eigenvalues A and
eigenvectors | @p | at the symmetric
matrix of degree J-N

[Dp] = [E1" [CIE]
- normalisation of the eigenvectors
@ {®p}=1

- computation of the frequencies f and
natural modes | @ | from the relations

decomposi-

w = 2nf= ——\/IAT
(@)} = (L1 HE](@p)

The data for the particular structure are
involved in the first, second and third
operations only. All the remaining opera-
tions can be performed by universal,
stable numerical methods (5). As a result
of the computations the frequencies and
modes of natural vibrations defining dis-
placements of the isolated masses are
obtained. For future applications, the dis-
placements are interpolated.

3. Flutter calculation

If the displacements of the glider are de-
scribed by the superposition of N “rigid
modes” and n-N natural vibration modes

then the sinusoidal motion of the glider
may be described by the linear equation:

(- o’ [M] + [K] +i[G]{q) =
p 0 [4(k)] {4}

where:

{4} - generalized coordinates
vector,

[M] - generalized inertia matrix,

[K] - generalized stiffness
matrix,

[G] - generalized damping
matrix,

[A(K)] - generalized aerodynamic
matrix, elements of which
are functions of the redu-
ced frequency,

w - circular frequency,

b - characteristic length,

U - free-stream velocity,

p - free-stream density,

i = A/ —] - imaginary unit.

The generalized mass matrix (of order n)
has the form:

=[]

where: [MR] - inertia matrix (of order M)
of the rigid aircraft,

(1] - unit matrix.

The generalized stiffness matrix (of order
n) has the form:

atali0nn0
[K] = [0 wz]
where: [ w ] - diagonal matrix (of order
n-M) of circular frequencies correspond-
ing to particular natural modes.
The generalized damping matrix defines

the energy dissipation in the motion. It is
usually assumed that [C] is diagonal

1[5 5]

where: [ gs ] is the diagonal matrix (of
order n-N) of structural damping corre-
sponding to particular natural modes and
can be determined experimentally.

If natural modes are determined by calcu-
lation then one global structural damping
coefficient g for all modes is usually

assumed. Elements of the generalized
aerodynamic matrix [A(k)] of degree n are
the complex numbers. In practice the
aerodynamic matrix can only be deter-
mined for the pre-assumed values of the
reduced frequency k which may be consi-
dered as a parameter in calculations. The
calculation of the critical flutter condi-
tions is equivalent to the determination of
the pair of parameters w and k for which
the solution | q | of the flutter equation
does exist. The solution which yields the
lowest speed U = w b/k, defines the criti-
cal flutter speed U = U, the flutter frequ-
ency wp and the flutter mode | qg |,
Elements of the vector | dr | are usually
complex numbers which implies that a
phase-shift between generalized coordi-
nates (normal modes) exists. After trans-
formation of the flutter equation to the
form:

(D] {q) = 2 {q}
where:
[D(k)] = ([M] + p [AD) ' ([KT [G)

It is possible to use standard numerical
methods (5) to solve the eigenvalue prob-
lem of the complex matrix [D(k)].
If each eigenvalue is interpreted as

w2
1+ ig
then it is possible to calculate the parame-
ters:

1Al

(,)z‘_.g=_1mj.'.
~Red it Reld 7

= wb

Y k

where g = artificial damping coefficient.
From the plot of g as a function of U, the
critical flutter speed can be defined as the
lowest speed Ug, at which g is equal zero.
The flutter mode is defined by the eigen-
vector | g | corresponding to the critical
flutter eigenvalue. If normal modes used
in calculation are normalized with respect
to generalized masses equal to unity, then
moduli of the eigenvector elements
define the influence of particular modes
on flutter. It creates the possibility of
selecting the modes important in flutter
calculations.

The calculation can be made in practice
for simple linear-elastic models of air-
plane structure only. If calculation does
incorporate the experimentally deter-
mined structural damping then it is pos-
sible to find the critical flutter conditions
for small amplitudes of vibrations in flight
with satisfactory accuracy.
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4. Example

An example of practical application of the
method described is the flutter analysis
for glassfibre-epoxy KROKUS sailplane.
Typical T-tail glider flutter mode which
must be eliminated is a coupling between
rudder deflection and a tail bending-and-
torsion. The critical flutter speed in this
case depends generally on the rudder
mass balance and control system stiff-
ness. The required rudder mass balance
for free control was investigated in
designing the glider. Three “rigid modes”
and nineteen computing natural vibra-
tion modes were used in the flutter analy-
sis. Results of the tested KROKUS glider
prototype are presented at Fig. 3.

For illustration, U-g plot is shown at Fig.
4.

The line g=0.02 represents the structural
damping assumed in the analysis. For
examined value of rudder mass balance
0.5 kg a typical “rudder flutter” mode
(marked S) exists in a limited flight speed
range and another flutter mode (marked
Q) exists at higher speeds. Flutter modes
Sand Q are presented on complex planes
at Fig. 5.

The vectors indicate the participation of
particular natural modes in the flutter
mode. The relative location of the vectors
on the complex plane defines the phase-
shift of the natural modes.

Natural modes dominating in the flutter
mode S are shown at Fig. 6, 7, 8.

Fig. 9 and 10 show the deformations of
sailplane (flutter mode S) at times (wt of
0 and II/2) in critical flutter conditions.
For the rudder mass balance installed on
the prototype (1.5 kg) the flutter does not
exist up to the maximum diving speed
of glider. It is calculated that flutter
(marked K), exists only above the
required speed range, the mode of which
is shown at Fig. 11.

Ground vibration tests on the prototype
KROKUS glider were performed. Agree-
ment between the calculated natural
modes and the measured vibration
modes was quite good. On the basis of the
modes determined by vibration tests criti-
cal flutter conditions were computed.
Agreement between these results and the
theoretical ones is good (flutter mode K)
and is presented at Fig. 3. In agreement
with the numerical analysis, no flutter was
found in flight tests up to the maximum
dive speed of the glider.

5. Concluding remarks

The method of flutter analysis presented
is applied practically in the design process
of gliders and aeroplanes. The computing
system based on it permits carrying out
preliminary and certification flutter calcu-
lations. Calculated or measured vibration
modes may be used for flutter computing.
The modes measured in ground vibration
tests are usually non-orthogonal. The
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Fig. 6. Natural vibration mode Al.
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orthogonalization procedure (6) can be
applied prior to using the modes in calcu-
lating critical flutter conditions. The com-
putations are not timeconsuming. For
example, computation of symmetric and
antisymmetric natural modes of about
150 degrees of freedom model of the
KROKUS glider require 20 min. CPU
time on IBM 360 computer. Computa-
tion of critical flutter conditions, in which
3 “rigid modes” and 19 natural modes are
used, require 25 min. CPU time for 30
assumed values of reduced frequency.
Application of the above method of flut-
ter analysis is useful in the early design
stage and permits optimization of the
sailplane structure from the flutter point
of view.
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