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The Effect
0f Aeroelasticity
Upon Energy Retrieval
0f A Sailplane
Penetrating A Gust

By H. Ulv Mai

ABSTRACT

The paper, prepared for and presented at the XIX
OSTIV Congress, August 2-10, 1985, in Rieti, Italy,
discusses the altitude and energy altitude gains of a
sailplane penetrating a gust, taking into account the rigid-
body motions, and wing bending and twisting. The aero-
dynamic calculations were performed using quasi-steady

strip theory. Gust penetration characteristics of the 15 m
span PIK-20 and the 20 m span ALCOR sailplanes have
been simulated by means of computer programs and ef-
fects of various parameters on the altitude and energy
altitude gains are discussed. The simulations show that
aeroelasticity has an appreciable effect on the gust pene-
tration behavior of sailplanes, and that the main con-
tributing factors are wing bending in connection with
rigid-body pitching.




SYMBOLS
a lift-curve slope t time
A aspect ratio T thrust
c local chord i} dimensionless velocity
¢ mean aerodynamic chord \'A flight speed ;
C. lift coefficient VH tail volume ratio (see Eq. 13)
C,.  stability derivative w vertical speed
D drag W gust speed
D derivative operator Wen nominal gust speed
e Oswald factor w airplane weight = mg
f spring constant X horizontal distance
g acceleration due to gravity z vertical displacement
h c.g. location in parts of ¢ z, energy altitude change
h, stick-fixed neutral point, parts of ¢ a angle of attack
ig dimensionless moment of inertia about Y, flight path slope
spanwise axis 8, (see Fig. 9)
jy radius of gyration about spanwise axis 3, (see Fig. 9)
ki.i stiffness matrix element A( )  difference from the steady value
I tail arm length angle of pitch
L lift I mass ratio (see Eq. 6)
Lg,  nominal gust length p density of air
m airplane mass (); element i value
n number of wing elements (), tail value
q kinetic pressure (), steady-state value
S wing area
INTRODUCTION high altitude flight. The analysis was performed under

tion made by Robert Lamson at the end of the

1970’s. When flying his ALCOR sailplane in forma-
tion with a PIK-20 through gusty air he found himself gust
by gust higher than the PIK-20. This happened without
any conscious controlling with the stick. When penetrating
the gust he also felt a gentle forward push. These observa-
tions led to the assumption that a sailplane may, by aero-
elastic or other means, be able to absorb energy from gusts
without pilot interference, and that this ability might be
different for different airplanes and configurations.

This consequently led to a number of further questions,
such as (a) which are the determining factors in a sail-
plane’s ability to absorb energy from gusts and (b) how
could a sailplane be tailored so as to maximize this ability.

The present paper is an attempt to find answers to these
questions, and to describe the phenomenon and the govern-
ing factors therein. To this end the gust response of two
airplanes was analyzed. The first of these, the PIK-20, is a
15 m class sailplane; the other, the ALCOR, is a 20 m
span, 28:1 aspect ratio sailplane especially designed for

The origin of the present paper lies within an observa-

some simplifying assumptions described in detail below.

The point of view of the paper is, in a way, converse to
that of the theory of optimal dolphin-type flight. In the
latter the task is to find flight techniques so as to maximize
the average speed, without total energy loss, when flying
through gusty air. On the other hand, in the present invest-
igation the objective is to find ways of maximizing total
energy gain of a glider penetrating a gust, without any pilot
interference.

THE THRUST EFFECT

The effect of an upward gust upon a glider is twofold.
First, the lift is increased due to increase of the angle of
attack. Second, the lift vector is tilted forward. This is
based on the fact that the lift is, by definition, always
perpendicular to the instantaneous direction of the onset
flow. An upward gust causes a change in the direction of
the onset flow without an immediate change in the direc-
tion of motion of the vehicle; thus the lift vector has a
component in the direction of motion, which is felt as an
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Eo + AL =
the lift vector under
the influence of a gust

v =
o
the steady state flight speed

A% = the apparent thrust

>

o =
tge steady-state lift vector

-—_\

the qust

-V = the onset flow speed under
the influence of a gust

FIGURE 1: Effect of an upward gust on the lift vector

apparent thrust (see Figure 1). The phenomenon is des-
cribed by the force equilibrium in the instantaneous flight
direction

1) Tf - D+ L(wg/V) - mg siny - mv =0

where T is the thrust (zero for a sailplane), D is the drag, L
the lift, w, the gust velocity normal to the flight path, V the
flight speed, m airplane mass, g the acceleration due to
gravity, Y the inclination of the flight path (positive for
rising flight paths), and V the acceleration. As is seen, an
upward gust causes a force unbalance felt as apparent
thrust.

The lift increase also causes the induced drag to increase
by the amount

2

() i (AL + Lo)z - L5 _ LG,

qsTAe TAe

where AL is the increase in lift, L the original equilibrium

lift equalling airplane weight W, q the kinetic pressure, S

the wing area, A the aspect ratio, e the Oswald factor and

Cy, the equilibrium lift coefficient. The acceleration caused

by the combined thrust and drag increase effects is then

@ c,f."’.@.-fii’s:g[l-z_a_}”_s
\ VTAe TAe J V

where a is the lift-curve slope.

As soon as the lift builds up the airplane begins to move
upward so as to cancel the gust effect. The phenomenon is
thus highly transient.

In a down gust the lift vector is tilted backward which
causes a “negative thrust”. However, the lift vector is also
decreased in magnitude; this means that the “negative
thrust” experienced in a down gust is smaller than the
corresponding “positive thrust” caused by the upward gust.
Thus an airplane flying through gusty air experiences a
small positive net thrust. This phenomenon, sometimes
called the Katzmayer effect, is usually considered to be
negligible from a performance point of view. However, the
calculations discussed in the next chapters show that, to

some extent, wing flexibility may strengthen this effect.
To gain more insight to the problem, let us first see how
the gust affects a rigid sailplane penetrating an upward

gust.
A RIGID SAILPLANE

PENETRATING A SINUSOIDAL GUST

According to Etkin? the basic equations describing the
symmetric motions of an airplane disturbed from equil-

" ibrium flight can be written in the form

1]
o

48) (2uD - 2 Cotany - cxu)ﬁ = Cg® t* 8
(4b) (2 Qo czu)ﬁ + (2uD - C,4D - C,u 0
- [t + c,q)D - g tany Jo

45 g . = . =2 ! - E
Ue) —c_ 0 - (c gD + Gygla + (150" - g D0 =0

0

where §§ =AV/V_ is the dimensionless velocity distur-
bance, a is the angle of attack disturbance, and § the pitch
angle disturbance, all assumed to be small; 7 is the initial
flight path slope. Further, ig is the dimensionless moment
of inertia,

c d
® ;.° <
2V dt
The dimensionless derivative operator,
6 2m
Ehoisonss 252
pSc

is aircraft mass ratio, and C subnotes are stability deriva-
tives. In Eq. (6) m is airplane mass, p is the density of the
air, S the wing area and c the mean aerodynamic chord.
Eq. (4a) represents the force equilibrium tangential to the
flight path, Eq. (4b) the force equilibrium normal to the
flight path and Eq. (4¢) the moment equilibrium about the
spanwise axis (pitch axis).

If the airplane is crossing a gust field with gust velocity




w, then the instantaneous angle of attack consists of three
parts as follows:
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where w is the upward velocity. It will be shown later on
that the relative changes in flight velocity are small; thus
the approximation shown in the latter part of Eq. (7) is
justified. For the same reason the kinetic pressure q can be
replaced by the equilibrium kinetic pressure q,.

For a high performance sailplane the glide is very shal-
low; then the terms containing tan Y can be neglected in
Egs. (4). Likewise, the stability derivatives C, , C,, and
Cnu are very small and can be neglected. For sailplanes
with a large aspect ratio and consequently a small down-
wash derivative the terms C,;D and C_;D can be ne-
glected in comparison with C,, and C_,,, respectively. For
the remainder the following approximations apply (see
Etkin?):

W g, s
TAe
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(12) Gy 1 iR a V(1 /)

where a, is the tail lift-curve slope,

13 Sele
Vv = e
H sc
the tail volume ratio and (h, — h) the static stability mar-
gin in parts of ¢: S, is the tail area and I, the tail moment
arm length from the c.g.

Substituting these expressions in Egs. (4) and taking the
aforementioned simplifications into account we get the
following equations of motion:
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These equations can be integrated, by numerical or
other means, to obtain the motion of the airplane as a
function of time in response to a given gust field.
V =V, + AV and w can further be integrated to yield the
altitude increase z and distance x flown:

(15a) dz
—_—=w
dt
(15b) ax
— =V + W
dt

The total energy altitude increase z, can then be obtained
from

(16)
S | 1 1

e (- 24 IR R A
ze n (2 mv mgz A mvo) zg(v vo) + 2z
For the present report a computer program GUSTO doing
these calculations was written for the Hewlett-Packard
9816 ;:omputerl. This program uses a fourth order Runge-
Kutta scheme to find the response of a rigid sailplane to a
given gust.

In the present investigation a sinusoidally distributed up
gust was used as shown in Figure 2. The mathematical
expression of the gust is

an

w = .5 wgn[l + 51n(2nx/Lgn- w/Zﬂ H 0 < x < Lg

g n

where w
length.

A number of numerical experiments were undertaken
with program GUSTO to find the effect of various factors
to the gust response. It seems that the most important
single parameters, for given flight speed, are static stability
margin, and radius of gyration of the sailplane.

is the nominal gust speed and Lg,n the gust

IThe computer programs, including GUSTO, referred to in
this paper are available on request from the author.

y

FIGURE 2: The sinusoidal upward gust

The effect of the wing loading seems to be quite small.
Some calculations were made for the “rigid” PIK-20
(Figure 3) in a gust of form (17) of nominal strength 2 m/s
and length 50 m, with a nominal flight speed of 40 m/s.
Pertinent data of the sailplane are shown in Table | below.

TABLE I: Physical characteristics of the PIK-20 glider

2

Wing area S 10.00 m
Wwing span b 15.00 m
Aspect ratio A 22.50

Taper ratio 0.40

Mean aerodynamic chord c 0.7025 m
Oswald constant e 0.80
Overall lift-curve slope a 5.80
Tail lift-curve slope at 3.47
Tail volume ratio VH 0.51
Tail length ratio 1y /e 5.224
Total mass m 350 kg
Dimensionless radius of gyration iy/E 100 %
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FIGURE 3: Results of a sample calculation with
GUSTO for PIK-20. m = 350 kg,
c.g. margin = 20% of ¢, w,, = 2 m/s,
Lgn =50m, V, = 40 m/s;
calculated z, = 1.251 m

n

FIGURE 4: Effect of static stability margin on
the altitude, velocity and total energy gain
of the PIK-20. w,, = 2 m/s,

Lgn =50m, V, = 40 m/s

o

1.2 d ]
l40.15 \
Vv, /s 1.0 Ze
l-40.10 ﬁ
0.8
N
z m
|_40.05 ¢ o6 N 1.
- N~
z, m \ /
.
L-40.00 0.4 =¢
0.2
0.0
0 5 10 1S 20 25 30 35 a0

Figure 4 clearly shows that the altitude gain increases
with diminishing static stability margin (i.e. with center of
gravity moving backward). This depends on the dimin-
ishing weathercock effect. On the other hand, the thrust
effect simultaneously diminishes accordingly. Surprisingly
enough, for the sailplane investigated the c.g. location does
not seem to have any visible effect on the energy altitude
increase. It is not known whether or not this is a pure
coincidence or an indication of a general property.

The calculations also confirm the assumption of a small
velocity increase V. However, there can be quite large
differences in the altitude increase between various air-
planes, depending on the configuration and loading condi-
tion. In the case depicted in Figure 3 the apparent thrust
follows roughly the upward gust speed, the maximum value
being 99 N at 0.63 s from gust onset.

aerodynamic center

center of shear =
center of gravity

incaming
airstream

FIGURE 5: The rigidly twisting wing
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FIGURE 4:

THE RIGIDLY TWISTING WING

To move to aeroelastic effects let us first consider the
behavior of a glider having a rigid wing which is able to
twist with respect to the fuselage (see Figure 5). The wing is
assumed to be attached to the fuselage via a torsion spring
in such a manner that a lift L causes the wing to twist by an
amount § = fL.

In this case the instantaneous angle of attack is

w w W, w
(Is' C!=G°+-s-—+8= G°+—g--—+fl'..
v v Va Vo

where a is the steady, unelastic equilibrium angle of
attack prior to entering the gust.
Thus the instantaneous lift is

(19) 1 W w
L = -=pV Saa -= an(a°+—g-—+fL)

2 Vo *i¥e
_ gsa(ag+ wg/V - w/V) . qOSa(uo + wg/vo' w/vo)

1 - gsaf 1 - ggsaf

The latter form of Eq. 19 follows from the fact that velocity
increases are very small compared to V.
It is worthy of noticing that for the condition

IZIIl gsaf =1

the lift becomes singular, indicating aeroelastic divergence.

The steady angle of attack a, can be solved from the
condition that prior to entering the gust the lift must equal
the weight W. Thus

lz“ T d,Sa a,

1= qosaf

Solving Eq. (21) for a, and substituting the result in Eq.
(19) gives the following equation for L.:

(zzl 4 e qoSa(w -

w)
= + W
V0 ( l-qOSaf)

Note that the lift increase over W can be very large if the
speed is close to the divergence speed.




In the present case the thrust due to forward tilting of the
lift vector is
w - W

23 a7 =p L—

v
o

and the increase in the induced drag
(24) (12 - w?)
oD = —8 —

qOSnAe

Thus the net thrust is
95 W -W (L2 - wz)
@5 o -ar-ap=1r -2 -

Vo qOSﬂ Ae

It is now possible to formulate the equations of motion
in the vertical direction as follows:

(26g) 9w L - W

dt m
(26) v T
dt m

where L and T are given by Eqgs. (22) and (25), respectively.
Eqgs. (26) can be integrated numerically to give w and V, as
well as z and x as functions of time.

These calculations were again performed by a computer
program named GUST1 with the HP 9816 computer.
Some of the results are shown in Figures 6a and 6b. They
show w, W, V and z as functions of time for a sailplane
penetrating a sinusoidal gust of magnitude 2 m/s and length
50 m, with an initial speed 40 m/s. Other data were as
given in Table | except that the lift-curve slope was assumed
to be 6.283.

FIGURE 6: Effect of f on the hypothetical rigidly-
twisting-wing sailplane penetrating a gust
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(b): £ = 0.00085 deg/N in the nose-up sense;
z, = L.L1I9m

Figure 6a shows the case when f = 0, i.e. the wing does
not twist at all due to lift, and Figure 6b the case
f = 0.00085 deg/N (that is, a common nose-up twist due
to lift increase). It is seen that the velocity change is small
in both cases. However, even if numerically small, the
velocity change accounts for almost all of the difference in
total energy gain, since the geometric altitude increase is
practically the same in both cases. _

The inferior energy gain of the case depicted in Figure 6b
appears to be caused by the following phenomena: As the
airplane enters the gust the lift increases very rapidly due
to aeroelastic twisting of the wing. This lift buildup causes
the plane to hump upward very rapidly, thus virtually
eliminating the angle of attack increase due to the gust and
the accompanying forward tilt of the lift vector. Simul-
taneously the high lift causes a large increase in the
induced drag. These effects together cause the net thrust to
vanish altogether (and even to change sign), and a drop in
velocity follows.

Figure 7 shows the energy altitude increase as a function
of the spring constant f for the same glider. It is seen that
for typical values of f the wing twist due to lift has a small
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spring constant £ ( x 1073

FIGURE 7: Energy altitude increase as a function
of the spring constant f

but clear effect on the altitude gain. The latter has a
maximum at a moderate negative value of f. Near the
divergence value (corresponding to the case where the
initial velocity V is the divergence speed for the given
spring constant f) the energy gain begins to drop off very
rapidly.

The lesson learned from this is that if the wing twist due
to lift can be controlled by structural means, then positive
values of f should be avoided, optimum being a small
negative value. Physically this means that an increase in
lift should cause a nose-down twist of the wing. This again
implies that the center of shear should be in front of the
aerodynamic center axis of the profile—a condition which
is quite difficult to attain by conventional materials and
construction principles. However, with aeroelastic tailoring
this condition can be fulfilled.
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element 0 ﬁﬁ

number

locus of centers of gravity (c.g. axis)

locus of shear centers (elastic axis)

locus of aerodynamic centers (a.c. axis)

n-1
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) fuselage d straight-tapered wing

0.25 c

aerodynamic center

FIGURE 8: The model used in the analysis of the elastic sailplane
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THE SAILPLANE WITH AN ELASTIC WING

The gust response of the sailplane with an elastic wing
was computed by means of an element method developed
especially for the present paper. To this end the wing was
divided into a number of spanwise elements numbered
consecutively from 1 to n from root to tip (see Figure 8). In
the calculations discussed later, nine wing elements were
used. The fuselage was represented by an element having
the mass, the moment of inertia and roughly the aero-
dynamic properties of the fuselage-tail combination (see
Figure 8). This element was given the number 0.

For simplicity the wing planform was approximated by a
straight-tapered trapezoid. Each wing element was char-
acterized by the center of shear, the center of gravity and
the aerodynamic center, the latter being located at the 25%
point of the local chord. The loci of centers of shear (the
elastic axis), the centers of gravity (the center of gravity
axis) and the aerodynamic centers (the aerodynamic axis)
were assumed to be straight lines. Each wing element was
assumed to have a given mass concentrated at the local
c.g., and a given radius of gyration, the latter being a given
percentage of the local chord.

The position of each element (including wing elements
and the “fuselage”) was determined by two parameters,
viz., (a) the vertical displacement z; of the element c.g.

from the original, equilibrium position and (b) the angular

displacement 6; with respect to the local c.g. (see Figure 9).

Aerodynamic forces and inertia forces were assumed to
be acting on the aerodynamic center and the center of

gravity, respectively. Twisting was assumed to occur about
the elastic axis (that is, a pure torque was assumed not to
cause any vertical displacement of the elastic axis). The
downwash control point was assumed to be the 75% point
of the local chord.

Under these assumptions the equations of motion of the
element system can be written as follows:

(273) n 2n+1

(27c)
2n+l

n
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where m, is the mass of the element, i, k; jj are elements of
the free-body stiffness matrix, z; is the vertical displace-
ment of element i, §; the angular dlsplacement of element i,
and j,; the radius of gyration of element i. The dots above
a symbol denote differentiation with respect to time. Fur-
ther, d.; and d,; are the distances of the local c.g. axis
behind the 75% point of the chord and distance of the local
elastic axis behind the local aerodynamic center, respec-
tively (see Figure 9). L is the total lift which is computed
according to Eq. (31).

Egs. (27) give the vertical force and pitching moment
equilibrium for elements O...n. In addition to these the
horizontal force equilibrium is needed. This is simply,

[270] mX =T

where m is the total mass of the airplane, X the horizontal
acceleration and T the net thrust. The latter can, in turn, be
calculated from

(28)

where
29 r; = a;S;a (day+ o, + 8y)
is the lift acting on element i,
(30) wo- Zi+ 836y
Aa, = g - - ci
N v

e}
is the angle of attack disturbance due to the gust and due to
wing motions, '

@31 2
L.=ZZ:.i

is the total lift and
(32) & {1

a
qoSa

[o]

is the equilibrium angle of attack.

Eqgs. (27) deserve a couple of comments and explana-
tions. The first two terms in the right-hand sides of Eqgs.
(273) and (27b) represent the elastic restraint force acting on
element i. The third term represents the lift due to element
motions and displacements. The lift is computed using the
strip theory (that is, with no assumed aerodynamic inter-
action between elements) and assuming an instantaneous
lift buildup after a change in the angle of attack. Using the
strip-theory in aerodynamic calculations tremendously

n
ra 2W (L - W) simplifies the aerodynamic calculations and is well justified
Ll Z L% - T in large aspect ratio wings such as sailplane wings.
i=1 C Likewise, the first two terms in the right-hand side of
FIGURE 9:

Displacements of
elements of the
elastic airplane

dowrwash
control point

center of gravity
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Eq. (27¢) represent the elastic restraint moment acting on
element i. The fourth term represents the aerodynamic
pitching moment due to element motions and displace-
ments.

The third term on the right-hand side of Eq. (27¢) is a
fictitious damping term. Without this term the elements
would experience very lightly damped limit-cycle pitching
oscillations every time the sign of the external moment is
changed. In a real wing these oscillations would be rapidly
attenuated by material damping; in the present calculations
this damping term is merely to simulate the material damp-
ing effect. A suitable value for the damping factor d has
been found to be 0.0001.

Egs. (27) have been formulated so that they reduce to
the rigid-body equations of motion (Egs. (14)) as the num-
ber of wing elements is zero. The fuselage/tail combination
is assumed to have no lift as is seen from Eq. (27b). On the
other hand, the overall rigid-body pitching moment equil-
ibrium is satisfied by the body element pitching moment
equilibrium represented by Eq. (27d).

The stiffness matrix k;; from given wing stiffness data
was calculated using the program GUST3STIF. This pro-
gram defines the wing elements, calculates the masses and
moments of inertia of each element and computes the
stiffness matrix for an airplane with a rigidly fixed fuselage.
These data points are then stored on a file. The mass and

stiffness data were taken from Ref. 3 for the PIK-20 and
from Ref. 4 for the ALCOR.

Eqgs. (27) through (32) were solved with the program
GUST3 using a fourth order Runge-Kutta scheme and the
file generated by GUST3STIF as input. The program
GUST3 transforms the fixed-body stiffness matrix com-
puted by program GUST3STIF to the corresponding free-
body stiffness matrix. GUST3 also modifies total mass
and wing mass, if necessary.

Some of the results are shown in Figure 10 for the PIK-20
in the same flight condition and for the same gust config-
uration as in Figure 3, and for the ALCOR in Figure 11. A
run for one gust penetration took about 7.5 hours with a
time step 0.0001 (this seemed to be about the maximum at
which the computation converges).

A comparison between the rigid-body responses and the
elastic airplane responses shows that the altitude gain is
much larger for the elastic airplane than for the rigid
airplane. The velocity increase, on the other hand, is
smaller for the elastic airplane. The energy altitude in-
crease seems to be about 15 to 20 percent larger for the
elastic airplane. It can thus be concluded that elasticity has
a significant effect on the energy gain of a sailplane in a
gust.

Another difference is that for the elastic airplane the
pitching angle (not shown in Figures 10 and 11) is very small

2= 2.4 s
FIGURE 10: Results of a sample o _,}.//'—-"“"
calculation with GUST3 for e ’m“'y'/a'\ v0.50
PIK-20; m = 350 kg, static /'/- D B
stability margin = 20% of ¢, | s o i tip
Wen = 2m/s, L, = 50 m, BT WING 2 ,// - 40.15
V = 40 m/s. Aerodynamic osb T 12L A At v, ws
center at 25% of chord, elastic Mo, 5 v/ // Mgt i o 1
axis and c.g. axis at 40% of o . /// g > 4ssrit
chord; wing mass = 50 kg; // // Se——
z, = 1452 m o-ilEnbegeil- ///-.'/ - 40.05
s
0.0 L 0.0 4/;1 1 1 1 1 1 1 Lw.oo
0.0 0.2 04 0.6 08 1.0 1.2 1.4 1.6 1.8
t, s
Tyt 2540
FIGURE 11: Results of a sample Tiror T T —
calculation with GUSTS3 for Laj|-32 <oz R o 020
ALCOR; m = 350 kg, static L, L
stability margin = 20% of ¢, 0.8 lL.6L - vy / .15
w,, =2m/s,L,, = 50m, L wg /s / \
V = 40 m/s. Aerodynamic R e )| s Ve /s
center at 25% of chord, elastic ] / s Vo -40.10
axis and c.g. axis at 40% of SR 0. 0.8 /7 i A PR
chord; wing mass = 83.36 kg; ////  c0.05
z, = 1419 m 0528 = rin 04 / . :
.~/
PO Ry et £ 1 ] 1 ] J L4o.00
0.0 0.2 0.4 06 08 2 1.2 1.4 1.6 1.8
t, s




in comparison to the rigid airplane pitching angle; in these
particular cases it was only about 0.02 to 0.15 degrees.

Even for the elastic airplane the development of the
apparent thrust roughly follows the gust speed. The max-
imum values were 103.5 N and 78.3 N, respectively, for
the PIK-20 and the ALCOR in the cases shown in Figures
10 and 11; these could well account for the “gentle push”
referred to in the introduction. For higher wing loadings the
thrust becomes even higher. E.g. for the PIK-20 with 70 kg
water ballast in each wing the maximum thrust was
163.1 N.

A possible explanation for the differences between elas-
tic and rigid-body response could be as follows: The elastic
wing bends due to the gust, thus delaying the overall lift
build-up; this in turn delays the weathercock effect, dim-
inishing the pitch angle. Here the wing acts like a rapidly
responding “energy storage”. Later on the energy stored in
the bending wing begins to lift the fuselage. However, this
occurs relatively late and at this time the gust speed is
already diminishing. This in turn causes a negative thrust
and consequently a decrease in the flight speed.
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FIGURE 12: Effect of static stability margin on the
altitude, velocity and total energy gain of the
PIK-20; W S 2 m/s, B = 50 m,

n
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Figure 12 shows the effect of the static stability margin on
the altitude gain and the energy altitude gain of the elastic
PIK-20. The corresponding data for the rigid airplane have
been copied from Figure 4, for comparison.

It is seen that the altitude gain increases as the center of
gravity moves backward toward smaller static stability
margins. The same holds true for energy altitude gain,
although to a lesser extent. Both altitude and energy alti-
tude gains increase as the elastic axis together with the
center of gravity axis are moved backward from the leading
edge, although for the energy altitude gain the effect is

quite small. It is interesting to notice that this is opposite to
the results obtained in Chapter 4 for the rigidly twisting
wing. On the other hand, the present results are in accor-
dance with the well-known beneficial effect of forward
elastic axis locations to gust alleviation. Anyway, the wing
twisting seems to have a much smaller effect than wing
bending to the energy retrieval of a sailplane penetrating a
gust.

Calculations also were attempted where the elastic axis
was moved forward of the center of gravity axis, but in
these cases the calculations did not converge. It is not
known whether this is just a property of the computation
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FIGURE 13: Effect of static stability margin on the
altitude, velocity and total energy gain of the
ALCOR; w,, = 2 m/s, Lgn = 50 m,
V, = 40 m/s

algorithm or an indication of true aeroelastic instability.
Anyway, it seems that moving the elastic axis forward by
means of aeroelastic tailoring without a corresponding
modification of the profile center of gravity should be made
very cautiously.

A picture corresponding to Figure 12 for the ALCOR is
shown in Figure 13. The same general conclusions can be
drawn from this picture as from Figure 12. The effect of the
static stability margin upon altitude gain is much stronger
in this case than for the PIK-20; this is probably due to the
larger span and a consequently greater wing bending effect
at small stability margins.

In addition to a listing of the motions, the program
GUST3 also produces a motion data file. This can be used
to produce an animation of the motions of the airplane,
using the program GUST3PLOT which plots the front
view of the airplane and some other data on the screen or
on paper with a plotter. A typical output of program
GUST3PLOT is seen in Figure 14.
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CONCLUSIONS true for the energy altitude gain of the flexible airplane,

On the basis of the results obtained, the following
conclusions can be made:

—Aeroelasticity has an appreciable effect on the altitude
and energy altitude gains of a sailplane penetrating a
gust. E.g., for the PIK-20 the energy altitude gain was
about 15 to 20 percent higher for the flexible airplane
than for the rigid airplane, depending on the center of
gravity location. The geometric altitude increase due to
aeroelasticity seems to be even higher.

—Most of the altitude and energy altitude gain increase
caused by aeroelasticity seems to be due to wing bending
coupled with rigid-body pitching: wing flexibility dimin-
ishes the weathercock effect, thus allowing a greater lift
increase.

—Within certain limits the altitude gain increases as the
wing c.g. axis and elastic axis are moved backward with
respect to the aerodynamic axis. A similar, although
much weaker effect is seen in the energy altitude gain.
This suggests that the altitude changes of a sailplane in
gusts may be controlled to some extent by aeroelastic
tailoring of the wing structure made of composite mater-
ials. However, this should be approached very cautiously
if the elastic axis is moved forward of the center of
gravity axis.

—Both for the rigid airplane and the flexible airplane, the
altitude gain increases as the c.g. moves backward
toward smaller static stability margins. The same holds

although in this case the effect is less pronounced.

The numeric results obtained in the present treatment
should be taken “cum grano salis” because, in order to
keep the computational effort at a reasonable level, a
number of simplifications were necessary in the mathe-
matical model used. However, the author feels that the
general conclusions given above are, in principle, correct.
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