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Summary

Accounting for the scatter in the fatigue-
endurance of individual pieces may be
made in different ways, according to the
mode of certification and to other circum-
stances. For multi-piece test series we
have developed a numerical confidence
pand calculation procedure. For single-
piece tests a slightly modified form of
Freudenthal’s safety factor calculation
can be recommended. A novel coordinate
transformation formula is giving quite
close monitoring of the fatigue-crack pro-
pagation process.

1. Introduction

Safety should be the first, economy a very
strong second in sailplane fatigue design
and development. We must avoid cata-
strophic in-flight structural failures at all
costs but at the same time must strive
to utilize the full amount of safe flying
hours for every glider. The wide scatter of
individual fatigue lives makes achieving
this ideal a very hard task indeed. Not
long ago a prominent aircraft factory
advertised proudly, in an aeronautical
journal of international fame, having
achieved a best to worst fatigue life ratio
of about 3.2. So much for this.

The scatter problem is covered formally
by the introduction of the life safety factor
m. Different views - and interests -
regarding the seriousness of the possibi-
lity of an early service failure are mani-
festing themselves in the value of this
factor.

Let us take a closer look at this problem.
We can start at the assessment of a single
load level fatigue test series.

2. Confidence band calculation for multi-
piece test series

In view of the scatter problem, batch
testing and statistical assessment are to be
recommended in case of relatively cheap
specimens. Raw test results take the form
of a discrete series of load cycles to failure

N /i=1<j/

and corresponding service hours to
failure

t/i=1<j/

chosen according to increasing fatigue
lives

Statistical assessment is based on the pre-
sumption of a suitable type of life distri-
bution function P (N) and corresponding
P (t) giving the probability of failure as a
function of the fatigue life. From among
the functions in general use we prefer
the three-parameter Weibull-distribution.
Most authors are using it in the form
recommended e.g. by the ASTM Com-
mitee on Fatigue (17):

P(N)= W(N) = l—eXP[—( ; ) ]
(la)
rearranged for plotting as:
N —
= exp[( — ) ]
P(N) g - No
(1b)

Instead of the scale parameter  we pre-
fer to use the scatter parameter

*
p=8 —Ng @
so our variant of the Weibull formula
reads (5):
- N,
)"

P(N)= W(N) = 1 —CXP[—(B

0

=1 -expl - - 9"

B
(3a)
with the safe life ratio
No
£ = — )
B
For plotting the formula reads then:
1 N — N, 0, o
————=exp[(———
= AN pl 3 )]

= exp[(% ~ )"
(3b)

Eq. (3b) yields by double logarithmic
transformation

= aln(N — Ny) — alnf

®)

Inin

PAROBI O
1 — P(N)

i.e. a straight-line plot for the correct value
of the minimum fatigue life N,.

Test results do not follow perfectly the
theoretical distribution function P (N),
necessitating some form of smoothing
and/or parameter identification. By such
means we get a best fit representation for
the continuous type life distribution func-

tion P (N) (see e.g.: Fig. 1 relating to Ref.
Johnson (12) and Ref. (17)).
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Fig. 1. Fatigue test evaluation using the
Weibull distribution function .

(N, indicates the 90% confidence band
for N,)

In the case of distribution functions
giving positive safe fatigue lives N, in the
process of evaluation a correct choice
of an allowable service life seems to have
been solved, at least in principle. But, sad
to say, there is no guarantee for the best fit
value of N, as calculated from a couple of
specimen lives to be identical with the
physical safe life of the whole production
lot of J >> j pieces. We have to comple-
ment therefore the assessment with an
appropriate confidence band calculation
procedure.

There are some basic mathematical diffi-
culties relating to the correct analytical
calculation of confidence intervals for
three-parameter  Weibull-distributions.
Several authors try to circumvent these
by reducing the problem to an appro-
priate two-parameter case. So Johnson
(12) and others work with zero minimum
fatigue life. Amstadter (1) accepts the
value of N, as calculated for the best fit
representation to be right. Marialigeti (14)
uses the best fit value of a for confidence
calculations.

We accept none of these because none of
the three Weibull parameters as given by
the parameter identification calculation
can be taken to the exactly right. Moreo-
ver, analytical confidence band calcula-
tions can be only reliable if the life proba-
bility distributions as determined from j
specimens P; (N) may be regarded as
members of a convergence process, i.e.:
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lim P;(N) = W(N)
i ©

Sad to say, there are strong indications
against the correctness of this postulation.
A statistical evaluation of test series
extension simulations done on 38 test
series has given essentially negative
results for the logarithmic-normal, for the
arcus-tangens and for the Weibull type
distribution functions also. In view of this,
we use a numerical error-margin calcula-
tion for our Weibull assessments, details
of which are to be found in Ref. (5).

3. Safety factors for single-piece tests

We cannot afford a series of airworthy
new sailplanes for fatigue testing, so type
certification can rely at best on but a sin-
gle-piece full-scale experiment. Then the
scatter problem is covered formally by the
life safety factor

m= N’" and correspondingly
N t,
S

The suffix m stands for “measured experi-
mentally”, suffix s is for “allowable in ser-
vice”. Much has been said and written
about the correct choice of the value of m
but - to say the truth - the usual values
for m from 3 to about 5 originate more
from tradition or personal preference
than from a strict calculation procedure.
A few years ago Freudenthal (4) strongly
criticized the tendency for m to be de-
creased. He based his demonstration on
the Weibull-distribution using the nota-
tion of Eq. (Ib), the safe life ratio being

Py (4a)

B

A short summary of his results reads as
follows. If we have calculated the allow-
able service life from the median life
value of j test specimens for a fleet size of
J pieces with a safety factor m then the
reliability level of this calculation is:

R = 1 J

1 +i. _l_*__"“:: @
J \m(l—¢)

(8a)

In our notation this transposes to:

& = L ]

Solving this for m gives

I +¢

s 1. 1o
|:J (.41’”" 1)] e )

Values of m giving R = 0.99 reliability for
a single-piece test and for a fleet size of J=
100 and 1000 are to be seen on Fig. 2 and
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Fig. 2. Safety factors by the Freudenthal
method for single-piece tests
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Fig. 3. Safety factors by the Freudenthal
method for single-piece tests

(R =0.99, J = 1000)

According to both graphs the dominant
parameter determining the acceptable
safety factor values is the safe life ratio &
of the respective Weibull-distribution.
In the case of limited information we can
stay on the safe side by taking

m<1+ -1 (10)
Another practical conclusion from our
calculations may be that safety factors

below say 4 are rarely if ever justified.

Covering against unexpected catastro.
phic service failures means giving up 65 t
80 per cent of actually safe service lif
of the fleet.

The ultimate goal of every fatigue desigy
and development should be therefore th,
realization of a so-called safe-by-inspec
tion mode certification without an absg.
lute service life limitation for the type
This school of thought, under the namg
of fail-safe structures, has a long but ng
particularly victorious history in aeronay
tical engineering. For want of a propg
crack-propagation theory based on solj
laws of physics and lacking the necess.
non-destructive inspection technique j
was restricted practically to multiple load:
path structures.

4. Statistical assessment of fatigue-crackL
propagation

Safety and costs of the safety-by-inspec
tion method depend in addition th ‘
reliable crack detection on the knowledg:
of the crack propagation rate da/dN
According to fracture mechanics pioneer
ed by Corten (2), Griffith (7), Irwing (9,
and (10) and others, crack stability in
metals depends on the stress-intensiy

factor
K = ovna (7] (H]

According to the same philosophy, fati
gue-crack growth rate should be a func
tion of the stress-intensity factor range

AK=vl 0 Filinin (V)

In a corrosion-free environment the usu
appearance of the crack propagatio

graph da
4aa — (A
A

is as shown on Fig. 4.
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log AK

Fig. 4. Standard fatigue-crack diagram?
a logarithmic scale
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The middle part of this curve, section I, is
a straight line on a log-log plot indication
a power-law type relation. According
to the Paris-Erdogan equation (15) this
reads:

da _

dN
Fracture occurs at the attainment of the
critical stress-intensity factor K, i.e. in the
fracture cycle:

CpAK" (14)

=K s)

Km ax

Our notation is based on the stress-inten-
sity range A K. Introduction of the stress
ratio

R —_ amin o

o

Kmin

max

16)

max

and combination of Egs. (12) and (15)

leads to
AK, = (1 — R)K, an

For description of sections II and III of
the crack propagation curve Forman (3)
proposed the formula

da _ AK"

da _ (18)
dN F(1-RK,— AK

For description of section I of the diagram
we have to know the treshold value AK,
and the character of this regime. Treshold
calculation is always by extrapolation.
Several authors have proposed four-para-
meter curve fitting formulae as listed e.g.
by Kocanda (13, Section 4.3) but none of
them has been universally accepted as on
international standard as yet.

For inspection schedule planning we
have first to convert the function

_da_ into 94
N (AK) into —d—N—(a)

using Eq. (11). Let us suppose that we can
safely detect any incipient crack of (half-)
length a,. Then the nominal number of
load cycles from crack detection until fai-
lure would be for side cracks:

Lo ffecida -1
AN, = J-al [W(a)] da 19)

The same formula holds for central cracks
but we have to remember that for those a
denotes half the crack length. In the

. case of corner cracks and other non-

standard fractures mechanical modelling
problems reference should be made to
the appropriate literature.

This nominal interval between inspec-
Fions being based on statistical averages
Incorporation of a safety factor m be-
comes mandatory here too. This gives for
the planned inspection interval

1 _
AU = —-AN,, (20)

Crack propagation life safety factors are
not subject to international or legal stan-
dards but it is customary to work with
about m = 2. Let us see if it is sufficient
and if it can be improved upon.

For proper and efficient averaging an
exact determination of the parameters K,
Cp, n, AK,;, and a realistic four-parameter
crack propagation formula is necessary.
We can start with the Forman equation.
There is a well-proven standard for the
determination of the critical stress-
intensity factor in tension Ky, on compact
specimens. But thin-gauge metal sheets
do not fail in this mode so the effective K
has to be calculated by extrapolation
from fatigue test data. Forman’s original
concept for proving his formula is not par-
ticularly effective in this case. The author
has proposed therefore the following
coordinate transformation (6).

Let us expand the right side of Eq. (18) by
AK, and rearrange it giving
da _ CF AKc

= AK"
dN  AK, AK, — AK

We can write this also as

l@.: CF |_AK AKc 1/n |n
dN AKCL AK, — AK

Introducing the coordinate transforma-

tion
AK, In
= Paps ooConnly 21
x AK(AKC—AK) (21

gives then a power-law type equation:

da _ Cr
dN  AK,

22)

On a logarithmic coordinate scale this
yields a straight-line fit because

C
log-92_ = nlogx + log—&-  (23)

dN AK,

as shown on Fig. 5.

Q.
j=]

log

K\
log FK (AKE—AK) ]

Fig. 5. Forman transformation proposed
in Ref. (6)

Error-margin calculations for formula
(22) and for all other smoothing functions
can be based on the value of the relative
error standard deviation A. Let us have
for the crack propagation curve j measur-
ed points AK; - da; remembering thati=
1~ j and let us denote the corresponding
crack propagation values as given by say
Eq. (22) as da;. The formula giving the
relative error standard deviation would be
then:

J
i) 1 dag — da; \,
A= [AN[ZE TR o4
Ly (ot

i |

Eq. (22) gives also the relationship be-
tween the constants Cp and Cg as

& = I=CHRNG
G = = 2 25)

Following this line of thought we are pre-
sently experimenting with two variants of
a four-parameter crack propagation func-
tion. The first one of them reads:

da _ (AK — AKy)"

A (26)
dN (1 - RK, — AK

Regression is being done after the trans-
formation

x = (AK - AK,,,)(

AKC >I In
AK, — AK
27
Our second formula is:
da AK — AKy,
dN (1 - RK,— AK

where r = n — 1

AK"

(28)

and the corresponding regression trans-
formation reads:

x=AK<AK—AK,,, AK

Ci I/n
AK, — AK

29)

AK

Both variants have given promising
results in the first trials. As reported in
Ref. (6) relative error standard deviations
A =0.0925 = 0.1138 have been obtained
for multi-piece test series. After a pro-
longed testing period we shall select the
more exact of the two variants. If the first
indications prove to be correct then safety
factors of say m = 1.5 might be acceptable
using this formula.

5. Anomalies in fatigue-crack propaga-
tion

Environmental conditions, especially cor-
rosion, can have an adverse influence on
crack propagation rate. Corrosion-fatigue
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crack diagrams may be made up of several
seemingly different sections (see e.g.:
Vosilovsky (18)). Most authors - if indeed
they care for fitting such graphs - assess
such test data by local Paris equations.
This piecemeal treatment makes a uni-
fied evaluation of the process as a whole
most difficult if not impossible (see also
Speidel (16)).

We have tried to improve upon this situa-
tion by reference to a statistical correla-
tion between the Paris constant Cp and
the exponent n. Several authors (listed
e.g. in Ref. (6)) found a close relationship
as shown on Fig. 6 to be
log Cp=1logp -nlogq 30)
p and q being constants. Eq. (30) can be
put in the form:

Cp=p-L &)
q

log C;

Fig. 6. Statistical correlation between the
Paris constants

Egs. (30) and (31) imply that for a given
material Paris straights for different (non-
corrosion) conditions pass through the
pole point

og

* da
K = 5 —
A v
(see Fig. 7),
 da.
logf iy
ke Eoles Nen Bt v
dN !
1 |
| }
. !
| |
) X J5
MKy, AK AK,
log AK

Fig. 7. Geometrical interpretation of the
correlation

In corrosion fatigue anomalies in crack
propagation rate are to be expected in sec-
tion II, as shown of Fig. 8a-b, accompa-
nied sometimes also by a decrease of
AKy, (see e.g. Refs. (16) and (18)). The
critical value AK, and section III of the
graph remain essentially unchanged. We
can exploit this the following way.

da

log N

a) b og At
Fig. 8. Typical shapes of corrosion-fatigue
graphs

After assessment of AK from section III
of the graph using the Forman formula,
regression of the remaining parts can be
made with the same AK_ using the For-
man formula by means of Egs. (26) and
(27) or Egs. (28) and (29). Now anomalies
can be defined in terms of a growth in da*
and /or a lowering of AK* resulting in a
much more coherent picture of the proc-
ess.

Allied with this we also refer to an obser-
vation reported by Gurevich and his co-
workers (8) and by Ivanova and her co-
workers (11). Some metals display even
without a corrosion influence a break-
point in section II as shown in Fig. 9. The
increase in crack growth rate from AK, is
connected with and may be explained by
a change in the character of the micro-
graphs of the fracture. We also have
observed this phenomenon. The possibil-
ity of the identy of AK with AK, cannot
be fully excluded at this stage although
speaking of a definite probability would
be premature.
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Fig. 9. Crack-growth anomaly as reported
by Gurevich (8) and Ivanova (11)

6. Conclusions

Because of the scatter problem incorpora-

tion of an appropriate life safety factor m
in every fatigue test evaluation is essen-

tial. For multi-piece test series this can b
done in the form of an individual conf
dence band calculation. A realistic an
safe life factor for a single-piece test ca
be calculated only from the scatts
distribution, i.e. in the knowledge of th
respective  Weibull parameters. Fro

among these the safe life ratio ¢ is th
dominant one.

The most safe and economical way g
covering fatigue problems is by safety-by.
inspection mode certification and opera
tion. Fracture mechanical methods OH
crack propagation rate evalution can giy

us realistic data for an inspection schedul
calculation.

Corrosion fatigue results in a manifold
increase of the crack propagation rate
Our four-parameter crack propagatioy
formula and regression method is adapt
able to these conditions, too.
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Appendix notation:

—

oo pg

half crack length, mm

number of test pieces, number of
data points

life safety factor

exponent

constant, mm/c

constant, N/mm?>"?

exponent

transformed AK coordinate,
N/mm3"2

AU

service life, h

fleet size

stress-intensity factor, N/mm?>/?
stress-intensity range, N/mm?>’?
number of load cycles, number of
cycles to failure

nominal inspection interval
failure probability

stress ratio

reliability level

inspection interval

W () Weibull function

a

B
B*
€
o*
@

‘Weibull shape parameter, Weibull
exponent

‘Weibull scatter parameter
Weibull scale parameter

safe life ratio

Freudenthal safe life ratio

stress concentration factor

g far-field normal stress, MPa

A relative error standard deviation
Subscripts:

c critical value

i rank order of specimen

f as given by the function f ()

j as determined from j specimens
m measured experimentally

max maximum

min minimum

S allowable in service

th treshold value

F Forman formula

P Paris-Erdogan formula

o for zero failure probability
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