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SUMMARY

It is proposed that most already-designed
symmetrical airfoil shapes, when taken in non
dimensional ordinates, related to their max-
imum thickness ordinates, can be represented
by very simple trigonometric functions.

Using inversely these functions with cho-
sen distinct values for upper and lower sur-
faces and the uniform load NACA a=1 mean line,
it is shown that airfoils for rather differ-
ent flying conditions can be easily generated.

Some criteria for this choice and exam-
ples of airfoils with Stratford-type turbu-
lent recoveries are also presented.

INTRODUCTION

When designing their marvelous flying ma-
chines, designers have normally to restrain
themselves to the use of published airfoil
data.

In this note we will try to normalize and
simplify some airfoil basic geometric parame-
ters in order to allow designers to personal-
ize their design by using their own designed
airfoils. In doing so, we hope to introduce
a mutant gene in the evolutionary selection
of the best airfoil for airplanes and gliders
provided by actual flying.

SOME BASIC PRINCTPLES

Streamlined shapes are designed to reduce
drag, to produce lift or both, as in the case
of the airfoil.

Even a flat plate may produce lift if an
angle of attack is given to the airstream,
but at the expense of high drag, and a curved
plate will do the same job with much less -
drag. The 1ift comes from the seldom-realized
fact that the air being viscous cannot follow
around the sharp trailing edge, creating
there the so-called Kutta-Joukowsky condition,
as viscosity is the origin of both drag and
1ift. (See Fig. 1.)

Since flying machines have to operate at
different speeds and consequently at varying
angles of attack, an airfoil nose cannot be
sharp as in the case of the leading edge of
a vane. Also, an airfoil is supposed to al-
low for internal structure, fuel tanks, land-
ing gear, controls, etc.

As a result, any subsonic airfoil has the
general curved drop shape and although very
similar one to another, great differences re-
sult from subtle and negligible shape changes.
The speed and consequently pressure (Bernoul-~
1i Law) variations along the flow over an
airfoil surface, are strongly associated with
the flow curvature, which near the surface



Figure 1.

coincides with the airfoil curvature itself.

The radius of curvature of any curve be-
ing a function of its second derivative (Note
1.) we can see why negligible shape varia-
tions may give so different flow results.

If now we add over that, the instability
and separation flow phenomena occurring in
the layers near the wall with all their para-
meters and complexities, we may think that
airfoil design is out of reach of designers,
especially of the homebuilder designers ha-
ving no PHD degree or computer facilities.

However, using all the work already done,
we can see that this may not be the case and
that with this note, tables, a pocket calcu-
lator and good judgement will suffice to ob-
tain a rather good airfoil shape.

DESIGNING SYMMETRICAL SHAPES

Beginning with conformal mapping and
going over to computerized prescribed pres-
sure inverse methods, a vast amount of work
has been developed and the interested reader
may try the reference literature.

Here, we will start dividing the airfoil
shape in two rather distinct regions that we
will call nose and tail, separated by the
maxlumun thickness point.

In the nose region for small angles of
attack the air is normally accelerating, pres-
sure is dropping and a laminar (smooth and
parallel) flow may be obtained if allowed by
flow Reynolds Number (flow scale) and rough-
ness (surface quality).

At the tail, the air is normally decele-

Note 1.:

c=1/p[d2y/dx?] / [1+(dy/dx)2] 3/2

rating, pressure is rising and the flow, if
not turbulent, will become so (not homogene-
ously parallel). .

Now, for each of these two regions, we
will develop eanonical ordinates, i.e. mon-
dimensional ordinates related to the maximum
thickness ordinates xp, yp (Note 2.)

Nose Shape

As an airfoil nose shape, even a simple
ellipse could be used and some successful old
German airfoils had elliptic nose shapes.

However, if we plot in canonical form,
rather different airfoils, with different
thicknesses and designed by rather different
methods arise, and it is amazing to see how
near they all fall in a rather close band. In-
deed, in a canonical plot it is very diffi-
cult to distinguish between an old Joukowsky
airfoil and a NACA four- or five-digit air-
foil.

Another class is represented by the 63
and 64 low drag airfoils that fall short
with Wortmann, Thwaites and other (Ref. 2.)
flat top airfoils designed to have maximum
low drag range.

Two canonical sets of values are given in
the CANONICAL TABLE I and Fig. 1.: One [JK]is
computed from the known Joukowsky equation
and the other [MR] from harmonic deviation of
it fitting a flat top [MR] shapes of Thwaites
work. (See Appendix 1.)

The use of trigonometric derived shapes
is an assurance that the first and second de-
rivatives and so curvatures, radius, pres-
sures and velocities, will have smooth chord-
wise variations.

It must be understood that the use of the
canonical thickness tables for different xp
and yp values will not result exactly in the
same type of pressure distribution and that
also the chosen tail shape will have an in-
fluence upon the nose pressure values.

Tail Shape

For the rear part of the airfoil the coin-
cidence in a canonical plot for different air-
foils is not as great as for the nose.

However, again, we see that differences
are small, with the Joukowsky function falling
close in between the NASA laminar 6 digits and
Thwaites tails.

Also a historical trend is depicted, start-

Note 2.: A correct canonical thickness base
should be the ordinates of the max-
imum velocity point, as in Ref. 12.



ing from the old four-digit convex airfoil
tails to more convex-concave (cusped) tails of
NASA 6 series. Picking up from Thwaites and
Wortmann airfoils to the up-to-date airfoils
designed to have Stratford recoveries, such as
Strand (Ref. 11) Liebeck (Ref. 12) and Lien
(Ref. 13) airfoils.

As Wortmann has already pointed out in his
B.S. thesis, pressure distributions afforded
by cusped tails are less separation sensitive
and result in lower drag. A fact that has been
later confirmed by Stratford (Refs. 9 and 3).
In his work Stratford established the upper
limits of drag reduction and separation avoid-
ance in turbulent pressure recovery, by putt-
ing into a differential equation the obvious
physical fact that the capability of a flow to
be decelerated without separation is propor-
tional to its speed or momentum. (Remember
Coanda effect).

Three types of tails are given in the ca-
nonical thickness Table 2 and Fig. 1.

One [JK] is again the known Joukowsky
function shape. Another [ST] was also obtain-
ed from a trigonometric modification of the
Joukowsky shape designed to result in a Strat-
ford type recovery canonical pressure distri-
bution for the limit values of xj/c and y,/c
of fig. 3.

In addition, for tails of simpler con-
struction, a third shape with straight trail-
ing edge [NA] is given computed from the ordi-
nates of a NACA A airfoil tail.

DESIGNING CAMBERED AIRFOILS

The nose and tail canonical thickness pre-
sented represent carefully chosen shapes to
give some desired pressure distribution char-
acteristics and so much care must be taken to
prevent camber from disturbing them.

One of the reasons why Joukowsky airfoils
have not been successful (other than the cusp-
ed tail construction problem at that time) was
that Joukowsky cambered airfoils used a mathe-
matically simple circular camber line that
changed adversely their pressure distribution
on the lower surface.

There are basically two methods (a third
one represents a combination of both) to cam-
ber without modifying the pressure distribu-
tion of a straight airfoil. First, we can sim-
ply camber the airfoil using the known NACA
a=1 mean line used in practically all 6 series
of laminar airfoils. This mean line besides
having the property of producing uniform velo-
city and pressure changes (of opposite sign)
in the upper and lower surface of the airfoil,
has also a very simple analytic expression for

its ordinates and declivities:

cl;

yo/e = —ar [(Ixc/e) log (1-xc/e) (1)
+ Xxc/c log xc/c]

arc tan o = gx'— = CIi M

dx - v 108 I-xc/c

Another simple way of obtaining non-sym-
metrical airfoil shapes, is to take different
thickness values (ym/c) for the upper and
lower surface. (Ref. 6 and 10).

When doing so, a large curvature disconti-
nuity is present in the leading edge and in
order to overcome it, it is necessary to in-
troduce a leading edge modification with an
osculatory circle resulting in the same lead-
ing edge radius for both surfaces. Third, to
reduce the inherent pitching moment increase
of the first method and the large thickness
differences of the second, a combination of
both methods seems to be the best compromise
to obtain cambered airfoils, this being the
method used in this work.

CHOICE OF AIRFOIL PARAMETERS

Now we have reached a critical point in
the airfoil design: the selection of the xp/c
and yp/c values for both airfoil surfaces and
the choice between the different canonical
shapes.

This choice calls for a good aerodynamic
background and a knowledge of the general
operating envelope the airfoil is being de-
signed for.

As very general rules, we may say:

-When good finish and accurate construction
is possible, the MR-type noses combines
with ST-type tails will provide the best
performance. ‘

Fig. 2 presents the computed approximate
thickness limit values to be used in
function of the "xo" (position which, as
already pointed out, is not coincident
with the xp) and camber €1j.

These limits represent the values for
which a separation-free Stratford pres-
sure distribution is attained over the
airfoil tail for a Reynolds Number of one
million, and may be used when designing
airfoils for high 1ift or for maximum
thickness minimum drag strut design.
(Note 3).



For airfoils operating outside the ideal
range of angles of attack, the designer
should allow a good margin from these li-
mits to allow for additional angle of at-
tack without separation.

-To avoid the excessively thin ST trailing
edges, a JK underside may provide extra
tail thickness; and for smaller yp/c
values, the NACA A tail will be useful to
obtain feasible trailing edges.

-Higher xp/c values lead to lower minimum
drag but lower ranges of operational
angles of attack.

-Whenever construction is not accurate and
finish unpolished, the overall JK nose and
tail shapes are recommended with corres-
ponding smaller xp/c values, since laminar
flow will not be maintained in the nose.

As an illustrative example of this method,
the ordinates, shapes and computed theoretical
velocity distribution, as well as drag polars,
are given in appendix 3. for six different air
foils designed for six different purposes:

A. -72MRST3616/JKNA 5206
A hang glider airfoil designed to have a
large ©lmax value with plenty of thickness
for low constructional weight and reason-
able drag, at low Reynolds Numbers.

B. -36MRST 4012/MRJK 4807
A glider airfoil intented to have a high
L/D with a large low drag range at high cj
values and reasonable €lmax without flaps.

C. -18MRST 4408/MRJK 4408
Subsonic airplane airfoil designed to have
small drag at low c] with low Cm.

D. -36JKNA4804/MRST 4408
High subsonic airplane airfoil designed to
have the smallest upper surface velocities
with 1ift sufficient for high speed flight
without separation at the lower surface.

E. -00JK3510/JKNA4004
Homebuilder airplane airfoil - designed to
have low construction sensitivity, reason-
able drag and maximum 1ift values, small
pressure center travel (low ©mg c.) and
simplicity of curves.

Note 3: As shown on appendix 2, RN effects on
Stratford flows are small (RNI/S) and so
one million is conservative.

F. -18JK3512/JKNA4004
Homebuilder glider airfoil - same as above
but for higher cj values.

USING THE TABLES

Once the desired values for camber €1j,
xm/c and ym/c have been chosen for both upper
and under surface, the airfoil ordinates may
be determined. The thickness airfoil ordinates
(x¢/c) and(y¢/c) are obtained from canonical
tables 1 and 2. For the nose:

xt/c = xm/c . X/Xp (qy 3)

yt/c = ym/c - ¥/¥Ym (1) (4)
and for the tail:

xe/c = xp/c + (1-xn/c) (C55) (5)

ye/c = ym/c - ¥/ym (3 (6)

Using equation (I) and (II) the camber or-
dinate and declivicy values y./c and 6 are ob-
tained for each x¢/c computed above. Now the
airfoil coordinates are obtained by the well-
known relations:

]

x/c = X¢/c *+ yt/c sin @ (7)

y/c = y./c * y¢/c cos 8 (8)

Using a programmable pocket calculator,
such as an HP-25, a new airfoil is born every
30 minutes. The osculatory nose radius is obtain-
ed as shown in Appendix 1.

REMARKS

The presented method being a simplified one
as it is, does not afford the possibilities of
the sophisticated computer step by step airfoil
methods. Notwithstanding, for xp/c and yp/c
values within 0.3to 0.5 and0.6to 0.15 respective-
ly, good airfoils may result, but they will
hardly outmatch a carefully designed airfoil,
unless by chance.

Another point to be remarked is that at
the x, stations all airfoils designed by this
ethod will present curvature discontinuities
(excepting the JK airfoils with xp/c = 0.25).

In consequence, in all airfoils the lami-
nar to turbulent transition in the boundary
layer will tend not to go beyond that point,
irrespective of Reynolds Number and angle of
attack. With airfoils designed with the MR
nose and the strongly cusped Stratford tails,



if Reynolds Numbers and angle of attack are
such that could force transition behind the
Xp/c point, it is extremely likely that a lam-
inar separation will result with strong ad-
verse effects on 1ift and drag.

Since the method does not allow intro-
duction of corrections like the Wortmann in-
stability ranges to start the transition be-
fore the strong adverse Stratford pressure
gradient the use of less sophisticated but al-
so effective physical transition inducers is
recommended, such as a trip wire or a step ~5%
ahead of xp/c point, whenever the designer
feels or detects that laminar separation is
at stake.

Finally, a practical advice for laying-up
airfoil drawings, templates, jigs or also for
designing wing-structures, such as ribs and
skins.

We have seen that d2y/dx?, second deriva-
tives (or curvature) discontinuities have the
deleterious effects on airfoil pressure dis-
tribution and therefore on airfoil performan-
ce. Well, from strength of materials theory,
we know that an elastic beam deflection is de-
termined by:

d?y _
E§§ = M/EI

where M is the bending moment
on the beam

E "Young's modulus"
I beam inertia

So, elastic beams without bending moments
or inertia discontinuities have smooth curvatu-
res and those with discontinuities, generated
by concentrated loads on support and section
changes, have not.

With this fact in mind, a smart designer
can obtain much better results from a poorer
airfoil than a poor designer from an up-to-
date computer-generated airfoil, but traced
through the right points with poor French
curves.

A last remark is associated with the need
for using a single leading edge radius for
both upper and lower surfaces.

Wind tunnel tests with double thickness
method cambered airfoils (Ref. 6) have shown
that the double radius discontinuity at the
leading edge affects the stagnation point lo-
cation and has disastrous consequences on air-
foil drag due to distortions introduced in the
under surface pressure distribution and bound-
ary layer transition.

And so please.... never use French curves,
unless you are in Paris.

10.

11.
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APPENDIX I
Canonical shape computation:
The known Joukowsky airfoil shape is given by:
x= “g_ (1 + cos 8)

y= £ sin 8 (1 - cos 0)

where maximum thickness for 8 = 1200
where

0.25c

*m
Ym

1.29904 x £

Therefore, the canonical expression we have in
the nose

= =2 (1'+ cos 98)
m

Y1/Ym = 0.76980 sin 6 (1-cos 8)

To obtain the MR shape, the difference in the
canonical shapes of the Thwaites MR 45020 air-
foil and the Joukowsky airfoil was analyzed
harmonically and the following correction to
y/ym was obtained:
sin 6 6 sin 6 '(cos 6'-1
DL s B e 18 2

where
8' = arc cos (3+4 cos 6)

For the tail, the Joukowsky airfoil becomes in
canonical shape:

xXp _ 1 142 cos 0)
1-xp 3

and the same as for the nose
Y2/Ym = 0.769800 sin 6 (1-cos 0)

As for the nose, to obtain the correction
for Stratford tails a numerical harmonic ana-
lysis of difference was made, using this time
the differences in canonical shapes between
the Joukowsky and the mean line of the Pick &
Douglas airfoil, (Ref. 8) designed to have a
Stratford flow with the highest possible cam-
ber, obtaining:

Ay/ym= _% sin “e"-fg sin 8'" where

8" = arc cos 3 (4 cos 6-1) and

3

6 ' = %1 (1+2 cos 8)

A numerical evaluation of the limit when
X/Xm » 0 of the curvature

c=1/p= |d?y/dx¥ / [1+(dy/dx)?] %

of the canonical nose shapes, gives the following
numerical results:

1.3200 for JK noses
0.8056 for MR noses

p=Kym2/xp with K
and K

For different thicknesses cambered air-
foils we can write for the osculatory leading
edge radius:

p = 0.5 (Kyymy + Kiym)? / (Kuxmy + KiXmp)

where u and 1 subscripts refer to upper and
lower surfaces.

TABLE I - Nose Canonical Ordinates

x/Xq 674 MR}
JK MR
.007611 .133930 .104348
.030384 .265318 .210929
.068148 .391689 .318672
.120615 .510696 .429010
.187384 .620182 .539299
.267949 .718233 .646185
.361696 .803227 .745488
.467911 .873870 .832913
.585786 .929231 .904723
.714415 .968754 .958131
.852847 .992271 .991103

TABLE 2 - Tail Canonical Ordinates

Y2/¥m
(JK) (5T)

NACA A
-Xm
— (NAYY2/Ym (NA)

X-Xm
c-Xm

115 |.051588
110 |.105320
105 {.160787
100 |.217568
90 |.333333
80 [.449099
701.561347
60 |.666667
50(.761858
40|.844030
30).910684
20|.959795

.992526 |.979508| . 08333 |.9956
.970784 |.934305| .16667 |.9692
.936020 |.869822| .25000|.9204
.889749 [.792069| .33333|.8524
.769800 |.620071| .41667 |.7696
.626461 (.456682| .50000|.6751
.475966 |.322113| .58333].5709
.333333|.219688| .66667|.4601
.210649 |.143646( .75000] . 3464
.115765 |.086854| .83333|.2324
.051567|.045011| .91667|.1183
.015878(.017114]1.00000| .0043




Y S I’ i [ APPENDIX II
' ! =
o ‘ | —] Determination of approximate limits of
Stratford pressure recoveries in airfoil
| tails.
[ 7 According to Ref. 3 § 12, the Stratford
. 7 i i : flow, in which the margin of separation is
| el e zero everywhere, has the pressure distribu-
| Cononical |Thicknesses tion:
Tp=0.645 {0.435 Ro0*2 [(x/x0)02-1]} 1/3
| — —
H T for C, < 0.5714 (for Cp=1-(V/V,)?) and
Ye/vm ‘\ !

\\\L Gyt (/30 + B]1/260r T, 2 0.571

the point for which Cp=0.5714 is:

5
x*/xo = (1 + %nggéj where
(o]

//
/

. 4Cp” - 0.0430 {0.435 R,0-2}1/3

dx/xo (X*/xo)O'BE(X*/XO)O.Z-I]Zla

N
X

N S———

thus,
be [222143 12 g /xg
(de*/dx/xo)
and
a=0.4286 [b+x*/x0]1/2
For an airfoil with "rooftop'" nose and
Stratford pressure recovery in the tail we
can write that at the trailing edge we have
=1 . v Ute
(pquf Cpte Mmin = 1 ( . )
Lo (¢}
. 2
: - 1 el
1 1 g Uo/Us
e —g—1 § H ,:
g ’;,// Ute = trailing edge velocity and
_I/ ‘l g _
‘ ! Uo = "roof top' nose constant velocity
L lL % © e i
o 10 s © e From various rooftop airfoils with maxi-
mum thickness around 40% chord we can estimate
Bie -2 the rooftop velocity as: (see Fig. 2)
(vm/ve)® “Roof top" valocities for u
diferent thicknesses. ( _O_ ) 221+ 23 (t/c)
e Uﬂ)
v/iVm ~ [I +22678 tucl']
and trailing edge velocity as:
Utn -
D) © -9
Us




and for a = 1 mean line cambered airfoils:

for €li = .4 (Uge/U,) = 1.020

for €1;

.8 (Ute/Us) = 1.120

With the above estimated values and pre-
vious analytical expressions, we can estimate
for each Reynolds Number, and for each roof
top position xp/c, the maximum thickness with
separation free flow for angles of attack
within the rooftop or laminar bucket of the
airfoil.

In table 3 and Fig. 3 these values are
presented for a chord line Reynolds Number
of one million.

When using these data it must be kept in
mind that for MR and ST canonical thickness
the rooftop length, as already shown, is not
coincident with xp, but is approximately

Xo ~ Xp + 0.50 yp.

:;I: ' !
\ CI-IL Line
207 —_— -Cui
\N<\\r\\\f Upper sce
28,
NN =
N

Fis. 3

Approximate limits for Ym/c
for o Stradford flow with
turbulent rooftop up to X:=Xo

o= 1 510"

Xo/ ¢ Cptemin C1i=0 Cli=0-4 c1;=0.8
(Ug/U) | (ym/c)|(Uo/U)|(ym/c)| Up/U | ym/c
max max | max | max | max max

.25 .7614 [1.8836| .166 [2.0882 .191 P.2929|.215

.35 .7097 |1.7076| .144 |1.8933 .167 R2.0789|.190

.45 .6597 (1.5772| .127 [1.7486 .150 [1.9201|.171

.55 .6067 |1.4669| .112 [1.6264] .134 1.7858| .154

Table 3 - Limit values of trailing edge Cpte,
roof top velocities and yp/c Stratford turbu-
lent recoveries and Reynolds Number=1,000,000.

Yig

FIG-4

|
|
Osculatory circle for airfoil !

36 MRST 4212/ MRJK 4807 |
1

R




APPENDIX II1

Airfoil nomenclature, ordinated and character-
istics.

Using the canonical tables 1 and 2 of Appen-
dix I, the ordinates of the six airfoils were
calculated from their main geometrical parame-
ters shown by their nomenclature, which com-
pletely defines each airfoil as follows:

BR KK AABBNNMM / CCDDXXYY where
BR - Indicative of the family (Brazilian).

KK - Design c)x100 of the NACA a=1 camber
line used (it is not a mean line, unless

MM=YY) .

AA - Upper surface nose type indicative let-
ters.

BB - Upper surface tail type indicative let-
ters.

NN - Upper surface xp/c x 100.

MM - Upper surface yp/c x 100.

CC - Under surface nose type indicative let-
ters.

DD - Under surface tail type indicative let-
ters.

XX - Under surface xp/c x 100.

YY - Under surface yp/c x 100.

The chosen six airfoils ordinates were
then fed to a FORTRAN computer program using
the Riegels numerical methods (Ref. 4) to ob-
tain the velocity distributions and cj, cq co-
efficients for various angles of attack. Also
theoretical values for dcj/da, acy=0, Cmac»
and €1j were computed.

It is important to remark that drag coef-
ficients were computed without quadrature
Schlichting expressions, supposing the tran-
sition to occur on computing station after
maximum velocity point, on both surfaces for
normal case and at x/c = 0.0169 for the turbu-
lent case.

Also fully attached flow was assumed and
so drag values outside low drag range or for
c1 values far from €1 should be cautiously
regarded.
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FOR HANG CLIDFRS

UPPER SURFACE

-0.264
0.266
1.393
3.136
5.453
8,322

11:721

15.622

19.989

24,783

29.958

35.469
38.909

42.488

46.171

49.922

57.502
64,989
72.206
78,931
B84 .985
90.193
94.399
97.483

Osculatory

UNDER SURFACFE

1.690
3.609 1.892
5.652 3.R54
7.789 6.510
9.957 9.852
12,085 13.R59
14.089 18.503
15.887 23,754
17 .407 29.573
18.592 35.918
19.400 42,744
19.763 50,000
19.535 54,109
18,886 58,221
17.901 62,337
16,674 66 .462
13,858 70.597
11,048 T4.744
8.573 7R.903
6.497 83.078
4.751 B7.26R
3.253 91.474
1.975 95,707
0.958 100,000
leading edge radius -

-1.094
-1.450
-1.712
=1.R95
-2.011
-2.073
-2.091
-2.078
=-2.047
-2.015
-1.999
-1.993
-1.R94
-1.702
-1.437
-1.128
=0.797
-0.462
=0N.148
+0.109
+0.275
+0.301
+0.026




BR 36 MRST 4212 / MRJK 4807

-B-

q\idof a’\r(ol[

V/veo

Distribution

o

Computed Velocity

Cu

~1.0

NR
| 5 15x10

—

NR

turb.

U U — G —

. 0100

[ Computed

L
3.0x10

Drag Polar

Co

.0180

B - AIRFOIL 36MRST&212/MRIK4BO7

FOR GLIDERS

UPPER SURFACE

UNDER SURFACE

0.1149 1.2975

0.9619 2.7011 1.6361 -1.2416
2.4753 4,1794 3.4881 =1.8044
4.6320 5.70R3 6.030S -2.3552
7.4118 7.2506 9.2460 =2.R940
10.7926 8.7557 13,113 =3.4089
14,7478 10,1643 17.5961 -3.R811
19.2464 11,4168 22.66R1 -4.2895
24.2523 12,4611 28.2192 -4 6164
29,7249 13.2571 34,4182 -4 . R503
35.6194 13.7742 41,0100 -4 ,9R47
41.8882 13.9627 48,0162 -5.0020
44,9238 13,7397 50.6771 -4 ,8476
48,0841 13.2099 53.4493 -4.802]
51.3416 12,4372 56.3126 -4.5751
54.669K 11,4927 59.245% -4.2779
61.4324 9.3657 65,2348 -3,5253
68.1673 7.2869 71.2377 -2.6552
74.6780 5.5002 77.0729 -1.780
£0.7751 4&.0510 R2.5616 -1.0002
86.2787 2,8801 87.5335 -0.3915
91.0230 1.9161 91.8329 +0,0039
94 .BE64B 1.1264 95,3242 +0,1827
97.6901 0.5236 97.R971 +0.1826
Osculatory leading edese radius = 1.6157




General Aviation
Air foil

BR 18 MRSTA4510/ MRJK 5006

V/Vo CL | /
Computed (- salimuil
Velocity /
Distribution / Computed
Drag Polar

1.5

7 —- ‘ N
NR | NR
- s 3.0x10—4—6.0x10"
U4 s
|
|
/ |
1.0 . ' .
]
|
0080 |.0j00 .0180

C - ATRFOIL 18MRST45)10
FOR CENERAL AVIATION

UPPER SURFACE UNDFR SURFACE

0.2574 1.07130

1.2317 2,2032 1.5950 -1.1459
2.908) 3.380% 1.4996 -1.6953
5.2509 4,590R 6.1327 =2.2433
B.2468 5.8071 9.4751 -2,7853
11,R725 6.9901 11.501R -3.3074
16,1002 2.09138 1R, 1R23 -3.7898
20.R972 9.n703 23,4811 -4.2118
26.2263 9.8785 29,35R3 -4.5553
32.0459 10 ,4R69 35.7700 -4 ,8081
38 13104 10,8716 42.667R -4,9621
44,9710 10,9929 50.0000 -4 .999R
47.8251 10,7939 52,5851 -4.9569
50.7969 10,3430 55,2482 -4 .8325
53.8626 9.A941 58,0131 -4 .,6346
56,9983 8.9067 60.R4LD -4.3726
63.3822 7.1487 66,6205 -3.,7001
69.7553 5.4516 72.4025 -2.9091
75.9273 4.0179 78,0150 -2.0963
81.7140 2,.88138 83.2869 -1.3493
86,9414 1.9961 R8.0564 -0.7366
91.4513 1,2903 92.176R -0.2990
95.1068 0.7324 95.5205 -0.0458
97.7981 0.3241 97.9844 +0.0469

Osculatory leading edge radius = 1.0854




..D =
High subsowice
airplave aicfoil

BR 36 JKNA 5404/ MRST 4509

V/Veo CL

Computed Velocity Computed Drag

Distribution Polar

-+

.5 1
‘\ |° Q\ r/ ’ ! '
. \ / !
a 307 T3 MR I |NR 6.10°
/!a//\ S 0xl0 [l turb.
L1 o ﬁf7//b/-\ N, |
4’|z/ T \! X/c !
O |
€% 4cL/dd = 0.1159 » I
C
«CL=0 = -2.655° g 0
Cmae =-0.095 .0050 iouoo 0150
CLi = 0.0838

D - AIRFOIL 36JKNA5404/MRST4509

FOR HIGH SUBSONIC AIRPLANE

UPPER SURFACE UNDER SURFACE
0.3272 0.6061
1.5162 1.2995 1.5992 -1.6698
3.5330 2.0148 3.3511 -2.4584
6.3566 2.7319 5.7450 -3.2393
9.9627 3.4215 8.7656 -4.0076
14,3221 4,0621 12,3906 -4,7439
19.4004 4.6354 16,5931 -5.4199
25,1719 5.1250 21.3417 -6.,0054
31.5498 5.5170 26,6017 -6.4744
38.5269 5.7990 32.3350 -6.8089
46.0356 5.9604 38 .5000 -6.9974
54.0185 5.9910 45.0521 =7.0140
57.8695 5.9470 50.7849 -6,4088
61.7200 5.7975 56.9085 -5.1562
65.5681 5.5403 63,2453 =-3.6R35
69.4136 5.1875 69.6017 -2.3388
73.2559 4.7555 75,7783 -1.3029
80.9279 3.6918 81,5815 -0.6005
84.7575 3.0746 86.8317 -0.1705
88.5815 2,4130 91.3832 +0.0637
92,3999 1.7080 95.0531 +0.1618
96.2106 0.9404 97.7720 +0.1532
100.0000 0.0172 100.0000 0.0000

Obsculatory leading edge radius = 0.7301




BR

JK 003510 /JKNA 4004

= =
Howe - built airplane
airfoil

—

Osculatory leading edge radius = 1.7248

V/Veo cL
L 1.0
Computed | i
| l Computed
Velocity Distribution - |
g Drag Polars
-I.S\\
L5 :
o |
NR3OXI0/ .
NR 6.0x10
! {ufb»
[
1
I
| Cco
|
.00%0 |.0100 .0150
Coac=|-.003 |
Ce; = | .633 \
E - AIRFOIL OOJK3510/JKNALOO&
FOR HOME-BUILD AIRPLANE
UPPER SURFACE UNDER SURFACE
0.266 1.339
1.063 2.653 1218 -1.061
2,385 3.917 2.726 -1.567
4,222 5.107 4,825 -2.043
6.558 6.202 7.495 -2.481
9.378 7.182 10.718 -2.873
12,659 8.032 14,468 -3.213
16.377 8.739 1R.716 -3.495
20.503 9.292 23,431 -3.717
25.005 9.688 28.577 -3.875
29.850 9.923 34,114 -3.969
35.000 10.000 40.000 -4.000
38.353 9.925 45,000 -3.982
41.846 9.708 50.000 -3.877
45,451 9.360 55.000 -3.682
49.142 8.897 60,000 -3.410
56,667 7.698 65.000 -3.078
64.191 6.265 70.000 -2.700
71.488 4.760 75.000 -2.284
78.333 3.333 80 .000 -1.840
84,521 2,106 85.000 -1.386
89.861 1.158 90.000 -0:.930
94.194 0.516 95.000 -0.473
97.387 0.159 100.000 -0.017




F. H e= barlt
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BR - O0JUK 3512/JKNA4506

ViV

a

o
|

~
£
n

'
©

NR 6.0x40
Torbulgnt

Ao
0050 .0130
F - AIRFOIL 18JK3512/JKNA4OO4
FOR AMATEUR BUILT GLIDER
UPPER SURFACE UNDER SURFACE
.129 1.628

.856 3.262 1.283 -0.964
2,194 4.856 2,807 -1.384
3.946 6.375 4.912 -1.762
6.273 7.786 7.585 -2.095
9.096 9.069 10,806 -2.380
12,391 10.183 14,550 -2.615
16.130 11.127 18.790 -2.799
20,285 11.881 23,495 -2.931
24.821 12,435 28.628 -3.011
29.703 12.786 34.152 -3.043
34.893 12,934 40.023 -3.029
38.272 12,871 45.011 -2.989
41.790 12,630 50.000 -2.877
45,422 12,226 54,989 -2.689
49.137 11.677 59.980 -2.438
56.702 10.225 64,973 =-2.144
64,255 B.458 69.967 -1.819
71.563 6.574 74,964 =1.472
78,408 4.759 79.860 -1.118
84,589 3.149 84,965 -0.775
89,906 1.862 89.970 -0.460
94,219 0.938 94,381 -0.161
97.397 0.365 100.000 -0.017

Osculatory leading edge radius = 2,2528




