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1. Introduction

In recent years several researchers ex-
amined the many various problems
connected with the optimization of the
flight strategy for a sailplane soaring
cross-country. Some of the most signi-
ficant works can be found in [1]-[10].
From the point of view of the theorist
in optimization, those problems have a
perfectly well defined objective. In-
deed, it is always the total time which
must be minimized, either because the
sailplane is involved in a contest or be-
cause, when lift arises only from ther-
mals, the useful time for distance flight
is limited to the day period during
which the sun produces thermals. On
the other hand, an aspect of the prob-
lem which does not seem to be com-
pletely solved at the present time is the
atmospheric model that should be
used. Some attempts [11]-[12] have
been made to model the shape of a
thermal. We shall not be concerned
with that difficult problem because we
shall assume concentrated lift. This as-
sumption is justified in the framework
of the problem that we are treating.
The problem that we are examining in
this paper is completely deterministic:
no stochastic aspects are considered.
We are essentially concerned with the
problem of determining, for a given
sailplane, the optimal flight strategy
which corresponds to travelling a giv-
en distance in minimum time with zero
net altitude loss. We assume that lifts
are concentrated at some given places
unequally spaced along the trajectory.
The locations of those lifts as well as
their characteristics are constant with
time; strengths of the various lifts are
not generally equal. We suppose that
the air mass in between lifts is still, i.e.
there is no sinking zone surrounding
the core of the thermal. Finally the
flight must stay within two given flight
levels: the lowest one corresponds to

safety with respect to ground and the
highest one means that no cloud flying
is allowed. Thus, the sailplane’s flight
is divided into steps, each of which
consist of an ascent in a thermal and a
glide at constant speed to the next
thermal. The flight starts and ends at
the given minimum flight level. We as-
sume that there is no wind. The projec-
tion of one glide on the ground is rectil-
inear, however the projections of the
glides of successive steps can be in-
clined to one another. The pilot must
take sequentially two kinds of deci-
sions: how much to climb in each lift
and what speed to adopt in between
two lifts.

By its very definition, the problem pro-
hibits soaring with so called «dolphin»
or «essing» mode. We are pretty well
aware, as was rightly pointed out in [2]
that ... «lt is generally recognized that
many of the very fast cross-country
flights achieved in recent years have
been made under conditions where
the latter two modes were utilized and

thermaling» ... However we still think
that the problem treated here is of in-
terest: first because the atmospheric
conditions do not always allow for the
«dolphin» or ¢essing» modes and sec-
ond because, to the best of our knowl-
edge, it is the first time that a problem
is solved which involves not just one
step but a whole flight taking also into
account altitude constraints.

One last remark is that although in
general the results cannot be used by a
pilot on an actual flight since he should
know the characteristics of all the ther-
mals that he will encounter later, one
still can used those results for many
purposes. We will just mention here
two applications: first, simulation
experiments can be conducted with
competition pilots to enable them to
compare their strategies with the opti-
mal one and second, performances of
sailplanes can be compared with re-
spect to a given standardized space-
distribution of lifts.

2. Statement of the Problem

As was said in the introduction, we di-
vide the sailplane’s flight into steps,
each of which consists of an ascent in
a thermal at minimum sinking rate fol-
lowed by a glide at constant speed to
the next thermal.

The situation is best illustrated in fig-
ure 1 which is a drawing in a vertical
plane: the positive direction of the y
axis indicates the travelling direction
of the sailplane and the vertical z axis is
positive upwards. Accordingly, all hor-
izontal speeds will be considered posi-
tive to the right and all vertical speeds
will be considered positive upwards.
For reference, the minimum altitude is
taken equal to zero and the maximum

relatively little time was spent in altitude is denoted by h.
AZ Figure 1: Space Distribution of Lifts
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The sailplane starts at point Ag corre-
sponding to y = 0 and to altitude hy =
0, then climbs into the first thermal at
an achieved rate of climb ag. It leaves
the first thermal at altitude hy and then
glides at constant forward speed vj
(corresponding to sinking rate wg) to
the second thermal which is reached
at altitude h,, having travelled the hor-
izontal distance ;. Generally, the sail-
plane reaches the i-th lift with a for-
ward speed v;_; and at an altitude hy;1
with an achieved rate of climb a; and
leaves the thermal with a forward
speed v;. Finally the sailplane must
reach the point A, of coordinatesy = 1
and z = 0. Of course, for the problem
to make sense, all distances |; must be
such that they can be achieved by the
sailplane flying at the speed of maxi-
mum Lift-to-Drag ratio with a loss of
altitude at most equal to h.

Remember that we assumed that there
is no wind. Also we shall neglect the
transient dynamical effects occurring
when entering or leaving a thermal,
hence the only characteristic of the
sailplane that we shall need will be the
polar equation relating the forward
speed v to the sinking rate w.

One last thing we must discuss before
writing down the equations is the verti-
cal characterizations a;(z) of the ther-
mals. We shall examine two cases:

a) the strength of the thermal is con-
stant with the altitude (a; = a;(z) =
constant),

b) the strength of the thermal at first
increases with altitude up to a maxi-
mum and then decreases (a; =
ai(z)).

The pilot has two controls at his dispo-

sal:

a) Ah;: the gain of altitude in the i-th
thermal

b) v;: the speed to fly after leaving the
i-th thermal.

If we further denote by t,; the time to

climb in the i-th thermal and by ty;4

the time to travel the distance |;; 1, we
can write the following relations:

Finite difference equations for the alti-

tudes:

hgis1=hg = Oh;

(1)
hoiv2 = Doy =Wilv) o 4y
vi
where i=0,1,2,...,n-1 and

is given by the polar equation.

wi(vi)

Cost:

h2i + Ah
dz
ai(z) (2)

li+1

Yi

Lisg =

Control constraints:

Ah; >0, i=01,2..,n1 (3)
Initial and terminal constraints:
ho=0;hy, =0 (4)
Altitude constraints:

hgi+1£Lh; hyi>0 (5)

The problem is thus to find the optimal
strategy, i.e. the sequence(s) Ahg, vy,
Ahq, vy, ..., A_q, V-1, which among all
such sequences satisfying the rela-
tions (1) and (3), (4) and (5),
minimize(s) the total cost (i.e. the total
time): ha s A,

n-1 dz li+1
- iEO ai(z) = (6)

hyi

obtained by summing all the partial
costs (i.e. partial times given by (2).
There may be more than one minimiz-
ing sequence but the minimum cost ei-
theris unique or does not exist.
As such the problem is of course one
of mathematical programming with
equality and inequality constraints.
However, the way we have set it up, it
is in fact a «discrete optimal control
problempy.

3. Solutions
Application of the method of [13] leads
to the following solutions.

3.1. Thermals of Constant Strength
First of all, in the case of thermals of
constant strength, it is easy to show
that the hypothesis of directional con-
vexity is satisfied provided only that
the polar w(v) is a concave function.
Indeed, the time to climb in thermal g;
becomes:

Ah;
- = 7
No altitude constraints.
We can distribute at will the total ne-
cessary climb Ah into the different
thermals of maximum strength; we do
not climb at all in the other thermals.
The total time (6) is:

tai

T = & + - (B)
am VD
where am= "";" (381 81).

with of course:

Ah _ w(vg) (9)
| A (]
so that the cross country speed v, is:
| am
Vog ™ e "M 10
s (10)

dv
This quite obvious and trivial result is
of course of the Mac-Cready type so
that ayy and v, can be interpreted gra-
phically as shown in figure 2.
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Figure 2: Speed to fly

No constraint on maximum altitude.
One climbs in the first thermal to an al-
titude which allows reaching at the
minimum altitude - flying at a
«Mac-Cready speed» relative to that
first lift - the first of the next thermals
which is stronger than the first one.
One then climbs in that thermal and re-
peats the process to the next stronger
thermal ... and so on.

Where several thermals are of the
same strength we do not change the
total time by distributing at will the to-
tal necessary climb Ah to reach a
stronger thermal into the thermals of
same strength.

The situation is illustrated in figure 3.
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Figure 3: No maximum altitude constraint

Constraints on both minimum and
maximum altitudes.

The speed to fly after a climb is of the
Mac-Cready type relative to the last
thermal unless the maximum altitude
has been reached in that thermal. Two
successive speeds can only differ
when at least one of the boundary alti-
tudes has been reached in between. In
between two climbs, the speed to fly
does not change whatever the
strengths of the thermals encountered
in between.



3.2. Thermals of Variable Strength
with Altitude

We now examine the case where the
thermal at first increases with altitude
up to a maximum and then decreases:
aj= ai(z).

We shall not consider altitude con-
straints for this case because we shall
assume that below a minimum altitude
and above a maximum altitude the
strength of the thermal is equal to zero
so that the altitude constraints are im-
plicit.

We shall consider as boundary condi-
tions that we start from a given altitude
to reach a given altitude which can be
different than the starting one. We
shall also assume that we start from a
rather low altitude so that we must
climbin the first thermal ag(z).

We find that we must adopt as
Mac-Cready setting for the speed to fly
between two thermals the strength of
the thermal at the altitude at which we
are leaving that thermal. That
Mac-Cready setting must also be equal
to the strength of the next thermal in
which we climb at the altitude at which
we are entering that thermal. We do
not climb in thermals which would lead
to the situation where we would have
to go down in one thermal. When
crossing a neglected thermal, the
speed to fly does not change. In the
last thermal in which we climb, we ac-

Figure 4: Optimum Flight Strategy

Distances (km)

tually climb to an altitude such that by
adopting a Mac-Cready setting equal
to the strength of the thermal at that
altitude, we reach the desired final alti-
tude.

4. Examples

As a simple example, we have taken
the 300 km flight schematized in figure
4. The lifts are equidistant (10 km) for
simplicity although it is by no means
implied in the preceeding rules for opt-
imality. The lift strengths are indicated
in m/sec along the y axis. They in-
crease progressively during the flight,
then decrease but are in general un-
equal. The altitude limits are 0 and
1000 m. We consider a sailplane having
a polar equation given by

w = -0.0016409 v? + 0.061637 v -
1.02557

The optimal strategy for that lift dis-
tribution is illustrated in figure 4 where
the Mac-Cready setting for each glide
is indicated. It follows as a simple and
systematic application of rules for opt-
imality established above. Note that
the flight strategy consists in hitting
systematically the altitude constraints,
but at the km 110 and at km 170 where
we gain, in a lift equal to the present
Mac-Cready setting, the altitude just
necessary for reaching at zero altitude
the next best lift. Note also that the
Mac-Cready setting is not always

Mac Cready setting
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Figure 5: Non Optimal Flight Strategy Lifts (m/sec)

equal to the strength of the next lift
used. Note finally that this example
clearly justify the practical rule of fly-
ing «low» where the lifts are improving
and flying «high» when they are deteri-
orating. The total time required for the
flightis T = 13331 sec corresponding to
a cruising speed of 81.01 km/h.

To illustrate and quantify on the same
example the importance of the global
flight strategy, we have compared the
result obtained by a pilot flying accord-
ing to the following rules.

Decision to use a lift:

from h = 0 to h = 300 m take any lift
ai >0
from h = 300 m to h = 600 m take a
liftonlyifa;>~1m
from h = 600 m to h = 1000 m take a
liftonly ifa;>2m
Altitude gained
climb up to 600 m if the lift is a; <2
climb up to 1000 m if the lift is a;
>2m.
Speed to fly
Adopt a Mac-Cready setting corre-
sponding to the moving average of the
last 3 lifts encountered (even if they
are not used).

The result is illustrated in figure 5 and
leads to a total time of ( = 14401 sec
(cruising speed of 74.9 km/h).

5. Conclusions

Simple rules have been given for find-
ing the global optimal flight strategy in
the case of unequally spaced lifts of
variable strength taking into account
altitude constraints. The assumption
that the locations and strengths of the
lifts are known in advance evidently
makes the results of questionable
in-flight practical usefulness. However
it is now possible to determine optimal
flight strategies in a set of given situa-
tions that are often encountered dur-
ing a flight. The importance of giving
due consideration to the altitude con-
straints is evident. From various tests
achieved by the authors in a communi-
ty of experienced competition pilots it
appears that the rules given here are,
at best, intuitively approximated.
Improvements to the theory should
take into account the size and struc-
ture of the thermals in order to allow
for dophin flight segments. This seems
possible only if a numerical model is
set up. It implies that no simple rules
for optimality will be obtained in that
case but that a catalogue of optimal
strategies in a given set of situations
could be derived.
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