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Success in soaring depends on the
efficient extraction of energy from the
atmosphere and on its efficient utilisa-
tion. The first part of this process in-
volves seeking regions of ascending air
and avoiding regions where it is de-
scending; the second part requires the
pilot to follow some sort of optimised
flight path, such as that indicated by the
MacCready construction.

Now the MacCready analysis, even in its
more sophisticated Calculus-of-Varia-
tions form, implicitly assumes that the
load factor on the sailplane (i.e. lift/
weight) is substantially unity (Refs. 1
and 2). In the course of the analysis, it
also emerges that vertical flight paths
with zero load factor are admissible. If
there are vertical motions in the air
traversed by the sailplane, then the pilot
will have to adjust his speed according-
ly, but the underlying assumption is that
the drag at any instant is the same as
the steady-state value at the instanta-
neous speed and hence it is possible to
derive the usual relation between opti-
mum speed and variometer readings by
a calculation based on the steady-flight
performance curve. In practice, if the
speed adjustments are neither too sud-
den nor to great, this assumption is very
reasonable and, in any case, the effects
of the changes of load factor will mostly
be self-cancelling. However, a pilot
wishing to pursue low-loss flying will
want to know how to deal with large
adjustments of speed, as when getting
out of or into a thermal. Since even the
more sophisticated analysis only recog-
nises load factors of unity and zero, it
offers only rather impracticable advice:
to indulge in vertical dives or climbs.
Trying to introduce the load factor as
another variable under the control of
the pilot is not very rewarding and it is
clear that no analytical solution will
emerge. It is also likely that the opti-
mum manoeuvre in any particular cir-
cumstances would require even great-
er-than-usual powers of prophecy by
the pilot and would, in any case, be too
difficult to apply in real life. Attempts
(Refs. 3 and 4) have been made to ana-
lyse dolphin-flying by computer calcula-
tions but, whilst they have been suc-
cessful, it is rather difficult to disentan-
gle the effects due to the manoeuvres of

the sailplane from those due to the
atmospheric motions.

It therefore seemed sensible to analyse
in detail a single pull-up/push-over
manoeuvre in an attempt to establish
some easily-defined technique for min-
imising the energy loss in such a man-
oeuvre. To simplify the calculations, the
pull-up was assumed to take place at a
constant load factor, starting from level
flight at 100 knots. When the sailplane
had slowed down to a certain speed, a
pushover was initiated — again at a
constant load factor — until the sailplane
regained level flight at about 40 knots.
(See Fig. 1). The machine was assumed
to have typical Standard Class perform-
ance: a maximum lift/drag ratio of 35 at
50 knots. c
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Diagram of the pull-up/push-over manoeuvre
showing the notation used in subsequent graphs.

The equations of motion in these cir-
cumstances are such that there is no
simple analytical solution relating, say,
speed and flight path slope for a given
load factor. However, they can be re-
duced to a first-order non-linear differ-
ential equation which can be solved
numerically by a step-by-step process.
It is clear that when the speed has fallen
to the chosen value at the end of the
pull-up (the «intermediate speed»),
there is only one possible push-over
load factor which will take the machine
from that particular combination of
speed and flight path slope to the de-
sired final conditions. It is therefore
necessary to find, by a trial-and-error
process, the load factor appropriate to
each such push-over. Fortunately, a
suitable value can be obtained from
quite approximate calculations, since
great accuracy in the final speed is not
necessary.

For a given initial load factor, several
speeds can be chosen at which to ter-
minate the pull-up, each leading to its
individual push-over. For each com-
plete manoeuvre, the load factor and

speed are known at all points, and
hence it is possible to calculate the rate
of loss of energy height at each instant
and thus to find the total loss of energy
height. The energy height represents
the sum of the potential and kinetic
energies per unit weight of the sailplane
and is defined by

h, = h + V2/2g.

In fact, the calculations did not involve
time explicitly but used flight path slope
as the independent variable, as ex-
plained in Appendix .

It will be inferred that there was no

gradation of load factor at the ends of

the manoeuvre, nor at the point of in-
flexion. Clearly, going instantaneously
from a load factor, of say, 2.0 to a value

of 0.2 is unrealistic, but inserting a

smooth gradation has a negligible ef-

fect on the overall energy situation.

One would not expect much variation of

total energy loss as the initial load fac-

tors and intermediate speeds of the
manoeuvres are changed because there
are two swings-and-roundabouts situa-
tions prevailing:

1. To some extent, the increase in
induced drag during the pull-up will
be cancelled by the decrease in the
push-over.

2. Alarge initial load factor will pro-
duce an appropriately large increase
in the induced drag but, for a given
intermediate speed, the larger the
load factor, the shorter the time for
which it is applied.

Figure 2(a) shows that, for a given initial

load factor, there is an intermediate

speed which minimises the total energy
loss for the whole manoeuvre. For ex-

ample, with an initial load factor of 2.0,

the optimum intermediate speed is

about 70 knots. As it happens, this is
just about the mean of the initial and

(a) Loss of energy height, (b) push-over load factor
and (c) flight path slope at point B, all plotted as
functions of the speed at point B for various pull-up
load factors.
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final speeds but it is clear from the
other curves that this is not generally
true: the higher the initial load factor,
the higher should be the intermediate
speed.

Figure 2(b) shows the push-over load
factor corresponding to various inter-
mediate speeds for each pull-up load
factor and Figure 2(c) shows the corre-
sponding flight path slopes. Figure 3
summarizes the conditions correspond-
ing to the minima of Figure 2(a).

Itis clear from Figure 3 that the mini-
mum loss of energy height decreases as
the initial load factor increases — at any
rate, up to any value likely to be em-
ployed in real life. Evidently, in situation
(ii) above, the brevity of the pull-up
wins. More generally, the optimum
manoeuvre involves applying a large
load factor for a short time when the
speed is high and the induced drag is a
small proportion of the total drag. Much
of the manoeuvre occurs at a low load
factor, thus keeping the induced drag
small even at low speeds. One can infer
that the optimum speed-increasing
manoeuvre would consist of a push-
over at a low load factor until quite a
high speed had been attained, followed
by a sharp, short pull-out.

A surprising feature of the results is that
the optimum push-over load factor is
almost constant, at about 0.18, for all
pull-ups. There seems to be no analyti-
cal reason why this should be so: it
simply emerges from the computations.
In these examples, only one set of end-
conditions has been considered so that
this figure, and the various other fea-
tures of Figures 2 and 3 are obviously
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of Fig. 2(a), plotted as functions of the pull-up load
factor.

appropriate to these particular values.
However, we can reasonably infer that
the principles stated in the previous
paragraph are generally true: any high
load factors should involve short, sharp
applications at high speeds, with low
load factors at the low-speed end of the
manoeuvre.

From the piloting point of view, Figure 3
indicates that a real flight with frequent

speed adjustments would be a vigorous
- indeed possibly emetic — experience.
It is also clear from Figure 2(a) that a
poorly executed manoeuvre with a high
initial load factor may be less efficient
than a well-executed one at a lower
initial load factor. The actual differ-
ences in minimum energy height loss
are quite small: increasing the initial
load factor from 1.5 to 3.0 saves about
9 ft in this case. In a more typical man-
oeuvre during a cross-country flight,
the figure might well be 2 or 3 feet. If
such manoeuvres occurred frequently
in the course of a flight, the overall
saving might become significant, per-
haps equivalent to a turn or two in the
last thermal. But these calculations take
no account of the drag increments due
to control deflections and to the curva-
ture of the flight path (i.e. the fact that,
relative to the aircraft, the free-stream
streamlines are curved. This is quite a
separate effect from the changes of
load factor). Again, there are counter-
balancing effects due to the lift-coeffi-
cient/Reynolds number relationship
being different from that prevailing in
steady flight. All things considered, it
seems very likely that the advantages of
high initial load factors will be less than
Figure 3 suggests, so the final message
seems to be: suit yourself — there may
be a slight advantage in vigorous man-
oeuvres but is it worth the discomfort?
This analysis is formally limited to man-
oeuvres contained in a vertical plane. In
practice one often wants to do some-
thing else, such as a climbing turn into
a thermal. Here it would seem advanta-
geous to indulge in a sharp pull-up and
to initiate the turn whilst pushing-over.

The geometry of optimum manoeuvres starting with
pull-ups at load factors of 2.0 and 3.0. The differ-
ence between the final energy heights is only about
four feet. The initial energy height, corresponding
to 100 knots at zero true height, is 443.5 ft.
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It is, of course, more important to get
quickly into the best part of the thermal
than to fuss about the elegance of the
entry manoeuvre. A further considera-
tion is the structural strength: one
needs to avoid superimposing a large
manoeuvring load factor on a gust load.
On the other hand, sailplanes are quite
strong, maximum speeds in rough air
are now quite high and at lower speeds
it is quite difficult to cause damage.
Figure 4 shows height/distance plots of
typical manoeuvres. The loss of energy
height is of the order of 10% of the
initial value, taking the initial true height
to be zero. It is worth noting that if the
sailplane simply ascended vertically
from an initial 100 knots to a final

40 knots, the loss of energy height
would be only about 12 feet. All of the
calculations relate to conditions near
sea level. The solutions of the equation
of motion were performed on a Hewlett-
Packard HP-25 programmable calcula-
tor by the method of Ref. 5, as ex-
plained in the Appendices. Suitable
programs were also devised to find the
changes of energy height and the shape
of the flight paths.

Summary of Conclusions

(a) For asimple pull-up/push-over manoeuvre with
a given initial load factor, there is a value of the
intermediate speed (with a corresponding flight
path slope and push-over load factor) which
minimises the total loss of energy height.

(b) The minimum loss of energy height diminishes
as the initial load factor is increased.

(¢) The optimum push-over load factor is substan-
tially independent of the pull-up load factor.

(d) It may be inferred that, in any pitching man-

oeuvre, it will pay to keep the load factor low at

low speeds and to apply a high load factor for a

short time at high speeds.

A poorly-executed manoeuvre involving a high

load factor may dissipate more energy than a

well-executed manoeuvre with a lower load

factor.

(f) If the drag increments due to control deflec-
tions and flight path curvature are introduced,
the advantage of high load factor manoeuvres
may largely vanish. In any case, the differences
in loss of energy height are small.

(e

—
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Appendix I: Equation of Motion and
Loss of Energy Height

A slight modification of the expressions
of Ref. 6 shows that for a sailplane
moving in a vertical plane as in

Figures 5:

dx/dt -~ V cosy =0 (1)
dh/dt - V siny =0 (2)
D#m (g cinj + dv/at)= 0 (3)
L-m (g cos[ +Vdy/dt)= 0. (4)
1 h
)

L — e

Fig.5 _x

Diagram to illustrate the equations of motion.

If the significant portion of the drag
polar is parabolic,

D/mg=[1/2E%| |VZ+(n2/32)] , (5)
where E*=(L/D),.-, n=L/mg,

V = V/Vg,
and VR speed for max (L/D)

(A1l speeds are ptrue").

It is convenient to define the following
dimensionless quantities:

Distance X = Xg/VR;
Height h = hg/Vg;
Time t = tg/V.

Equations (3) and (4) may then be writ-
ten:

aV/dt = -[1/289
[32+(n2/32)] ~ =inl,

and Vap/dt =

(6)
n-cosJ- (7)
Dividing (6) by (7) leads to

az g(Z?"rng)jEHEZ sin)

ar

where

(8)
cosr- n

z = Ve,

The energy height is

b = V2/ 2g + h.

This expression may also be rendered
dimensionless by dividing by g/V3,
giving

b, =V%/2 + h. (9)

Hence, from equations (9), (2), (7) and

8

dh g .2
Z
P tn ; (10)

dy  2E* (cosy-n)
from (1) and (7)

& _ Zcosy . (11)
dF7 n - cosy

from (1) and (2)

éh _ X : 12
ar = ay tan'r ’ (12)
from (7)

dt v (13)

Er)_zn-cosy' :

To summarize, the equations of mo-
tion lead to (8), which relates V and v.
Equation (10) gives the changes of
energy height, (11) and (12) describe
the geometry of the manoeuvre and (13)
enables time to be introduced. All of
these equations have been rendered
dimensionless.

For a given value of n, (8) is of the form
y’ = f(x,y) and may be solved for given
initial conditions by the method of

Ref. 5 using a Hewlett-Packard HP-25
Programmable Calculator. At first sight,
there seem to be insufficient available
steps to insert f(y,Z), but there are sev-
eral redundant steps elsewhere in the
published program. The present pro-
gram is given in Appendix Il

Suitable intervals of v for the pull-ups
are 0.02 or 0.04 radians. For each pull-
up, a few convenient values of Z corre-
sponding to various values of V; were
taken. It was then necessary, for each Z,
to find the load factor ngc which made
Z: about 0.64 when y. was zero. This
was done by trial-and-error, using the
same program, initially with quite
coarse intervals of y. Great accuracy is
not necessary at this stage since the
final energy height is not particularly
sensitive to errors in V..

Appendix II: HP-25 Program
Flight Paths for Sailplanes

Comments Line 16:
Line 18:
Line 44:

Flagin R,

yory + dyinR;
Updated v in R,
Line 48: Updated Z in R,
Line 49: Displays Z

Lines 18-36 inclusive repre-
sent the routine for f(v,Z).



Using the values of ng; @ more accurate DISPLAY e SISPLAY :
calculation of the flight path was then : ENTRY KEY
carried out using smaller intervals of y. | LINE ] CODE s | LINE | CODE ENTF;.V REGISTERS
Further programs were then devised to 00 [evnein, Fa el 25 [15 02| g x
find tthe c(h1a0r;ge gftc;nedr_g)ty he;-:lgh':f'rorr‘? o1 34| CL x 26 |24 07| RCL 7 R o Gxd. ‘
equation and the distance-heig 04 1ST0 & 2 ‘Radia
relationship from (11) and (12). The o 52 T 27 115 _02[ g x° | (Radiang
accuracy of these calculations seems | @3 _|: 28 Sl +
good: the total change of energy height | 04 [24 Ol |RCL 1 29 124 Q6] RCL ‘6 Ryt
calculated from the total changes of 05 |13 18|GTO 18 30 71 =+ il 1.
height and speed agrees within about 06 221 R4 31 51| +
croloolyihatdreatom e |0y 17505510 5| s or oy ReLs|  f, 2
The flight-path program given in Ap- 08 124 O0|RCL O 33 114 05 f cos
pendix Il can obiously be applied to 09 61| X 34 124 07 RCL 7
manoeuvres other than those described | 10 |24 (02|RCL 2 35 41 - nadZ[d_I
here, which is why it seemed useful to 1 51| + 36 71 s
display it in detail. If many such calcula- o
tions are to be done, the limitations of a 12 124 O1/RCL 1 37 | 24 04 RCL 4 FLAG
small programmable calculator become | '3 |24 OOIRCL O 38 |15 71 g x=0 Ra
rather obtrusive and it would pay to use | 14 Sili] <& 39 |13 06f GTO 06
a full-sized computer. 15 (1 B 40 22 R¥
16 |23 04[STO & 41 [24” 03 RCL 3 RgY OR
17 22| Ry 42 Sl % el
18 {23 05|STO 5 43 [ 24 04 RCL O] ”
19 [14 04| f sin 44 | 235101 STO+1 R L
20 02| 2 45 6] X
21 61| X 46 03 2
22 2lixz y 47 71 + Ry_1
23 613 % 48 | 235103 STO+2
24 114 731f last x 49 | 24 02 RCL 2
INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS
1 [Key in program I Ir ” ” I
2 |Store intervals of Y §Y rads I STO _[r 0 ” ” ]
3 |Store initial Yo rads I STO ” 1 ” IL j
conditions Zo | STO Ir 2 Jl “ ]
4 [Store other data E* ESTO jl 6 ” ]l J
5 |Insert chosen n n I STO ” 7 ” ” I
6 |[Set to radians I g “ RAD ” “ ]
7 [Initialize [ £ ]lerem || I |
8 [Solve first step |R/S ” ”_ ” l
[Re ][t LJ[eeeafi ]l v, race
'ROL; ] C 2] I | %1
9 [Repeat as often [R/S ” ” " |
is desired RC1 “ 1 ” “ ) Yy, etc
[RCL ” 2 ][ ” ] 2y, etc




